Title: | Machine Learning in R - Next Generation |
---|---|
Description: | Efficient, object-oriented programming on the building blocks of machine learning. Provides 'R6' objects for tasks, learners, resamplings, and measures. The package is geared towards scalability and larger datasets by supporting parallelization and out-of-memory data-backends like databases. While 'mlr3' focuses on the core computational operations, add-on packages provide additional functionality. |
Authors: | Michel Lang [aut] , Bernd Bischl [aut] , Jakob Richter [aut] , Patrick Schratz [aut] , Giuseppe Casalicchio [ctb] , Stefan Coors [ctb] , Quay Au [ctb] , Martin Binder [aut], Florian Pfisterer [aut] , Raphael Sonabend [aut] , Lennart Schneider [ctb] , Marc Becker [cre, aut] , Sebastian Fischer [aut] , Lona Koers [ctb] |
Maintainer: | Marc Becker <[email protected]> |
License: | LGPL-3 |
Version: | 0.22.1 |
Built: | 2024-12-27 05:59:30 UTC |
Source: | https://github.com/mlr-org/mlr3 |
Efficient, object-oriented programming on the building blocks of machine learning. Provides 'R6' objects for tasks, learners, resamplings, and measures. The package is geared towards scalability and larger datasets by supporting parallelization and out-of-memory data-backends like databases. While 'mlr3' focuses on the core computational operations, add-on packages provide additional functionality.
Book on mlr3: https://mlr3book.mlr-org.com
Use cases and examples gallery: https://mlr3gallery.mlr-org.com
Cheat Sheets: https://github.com/mlr-org/mlr3cheatsheets
Preprocessing and machine learning pipelines: mlr3pipelines
Analysis of benchmark experiments: mlr3benchmark
More classification and regression tasks: mlr3data
Solid selection of good classification and regression learners: mlr3learners
Even more learners: https://github.com/mlr-org/mlr3extralearners
Tuning of hyperparameters: mlr3tuning
Hyperband tuner: mlr3hyperband
Visualizations for many mlr3 objects: mlr3viz
Survival analysis and probabilistic regression: mlr3proba
Cluster analysis: mlr3cluster
Feature selection filters: mlr3filters
Feature selection wrappers: mlr3fselect
Interface to real (out-of-memory) data bases: mlr3db
Performance measures as plain functions: mlr3measures
Resampling methods for spatiotemporal data: mlr3spatiotempcv
Data storage and prediction support for spatial objects: mlr3spatial
"mlr3.exec_random"
: Randomize the order of execution in resample()
and benchmark()
during
parallelization with future. Defaults to TRUE
.
Note that this does not affect the order of results.
"mlr3.exec_chunk_size"
: Number of iterations to perform in a single future::future()
during
parallelization with future. Defaults to 1.
"mlr3.exec_chunk_bins"
: Number of bins to split the iterations into. If set, "mlr3.exec_chunk_size"
is ignored.
"mlr3.debug"
: If set to TRUE
, parallelization via future is disabled to simplify
debugging and provide more concise tracebacks.
Note that results computed in debug mode use a different seeding mechanism and are not reproducible.
"mlr3.allow_utf8_names"
: If set to TRUE
, checks on the feature names are relaxed, allowing
non-ascii characters in column names. This is an experimental and temporal option to
pave the way for text analysis, and will likely be removed in a future version of the package.
analysis.
"mlr3.warn_version_mismatch"
: Set to FALSE
to silence warnings raised during predict if a learner has been
trained with a different version version of mlr3.
Maintainer: Marc Becker [email protected] (ORCID)
Authors:
Michel Lang [email protected] (ORCID)
Bernd Bischl [email protected] (ORCID)
Jakob Richter [email protected] (ORCID)
Patrick Schratz [email protected] (ORCID)
Martin Binder [email protected]
Florian Pfisterer [email protected] (ORCID)
Raphael Sonabend [email protected] (ORCID)
Sebastian Fischer [email protected] (ORCID)
Other contributors:
Giuseppe Casalicchio [email protected] (ORCID) [contributor]
Stefan Coors [email protected] (ORCID) [contributor]
Quay Au [email protected] (ORCID) [contributor]
Lennart Schneider [email protected] (ORCID) [contributor]
Lona Koers [email protected] [contributor]
Lang M, Binder M, Richter J, Schratz P, Pfisterer F, Coors S, Au Q, Casalicchio G, Kotthoff L, Bischl B (2019). “mlr3: A modern object-oriented machine learning framework in R.” Journal of Open Source Software. doi:10.21105/joss.01903, https://joss.theoj.org/papers/10.21105/joss.01903.
Useful links:
Report bugs at https://github.com/mlr-org/mlr3/issues
Convert object to a BenchmarkResult.
as_benchmark_result(x, ...) ## S3 method for class 'BenchmarkResult' as_benchmark_result(x, ...) ## S3 method for class 'ResampleResult' as_benchmark_result(x, ...)
as_benchmark_result(x, ...) ## S3 method for class 'BenchmarkResult' as_benchmark_result(x, ...) ## S3 method for class 'ResampleResult' as_benchmark_result(x, ...)
x |
(any) |
... |
(any) |
Wraps a DataBackend around data.
mlr3 ships with methods for data.frame
(converted to a DataBackendDataTable
and Matrix
from package Matrix (converted to a DataBackendMatrix).
Additional methods are implemented in the package mlr3db, e.g. to connect to real DBMS like PostgreSQL (via dbplyr) or DuckDB (via DBI/duckdb).
## S3 method for class 'Matrix' as_data_backend(data, primary_key = NULL, dense = NULL, ...) as_data_backend(data, primary_key = NULL, ...) ## S3 method for class 'data.frame' as_data_backend(data, primary_key = NULL, keep_rownames = FALSE, ...)
## S3 method for class 'Matrix' as_data_backend(data, primary_key = NULL, dense = NULL, ...) as_data_backend(data, primary_key = NULL, ...) ## S3 method for class 'data.frame' as_data_backend(data, primary_key = NULL, keep_rownames = FALSE, ...)
data |
( |
primary_key |
( |
dense |
( |
... |
(any) |
keep_rownames |
( |
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter10/advanced_technical_aspects_of_mlr3.html#sec-backends
Package mlr3db to interface out-of-memory data, e.g. SQL servers or duckdb.
Other DataBackend:
DataBackend
,
DataBackendDataTable
,
DataBackendMatrix
# create a new backend using the penguins data: as_data_backend(palmerpenguins::penguins)
# create a new backend using the penguins data: as_data_backend(palmerpenguins::penguins)
Convert object to a Learner or a list of Learner.
as_learner(x, ...) ## S3 method for class 'Learner' as_learner(x, clone = FALSE, discard_state = FALSE, ...) as_learners(x, ...) ## Default S3 method: as_learners(x, ...) ## S3 method for class 'list' as_learners(x, ...)
as_learner(x, ...) ## S3 method for class 'Learner' as_learner(x, clone = FALSE, discard_state = FALSE, ...) as_learners(x, ...) ## Default S3 method: as_learners(x, ...) ## S3 method for class 'list' as_learners(x, ...)
x |
(any) |
... |
(any) |
clone |
( |
discard_state |
( |
Convert object to a Measure or a list of Measure.
as_measure(x, ...) ## S3 method for class ''NULL'' as_measure(x, task_type = NULL, ...) ## S3 method for class 'Measure' as_measure(x, clone = FALSE, ...) as_measures(x, ...) ## Default S3 method: as_measures(x, ...) ## S3 method for class ''NULL'' as_measures(x, task_type = NULL, ...) ## S3 method for class 'list' as_measures(x, ...)
as_measure(x, ...) ## S3 method for class ''NULL'' as_measure(x, task_type = NULL, ...) ## S3 method for class 'Measure' as_measure(x, clone = FALSE, ...) as_measures(x, ...) ## Default S3 method: as_measures(x, ...) ## S3 method for class ''NULL'' as_measures(x, task_type = NULL, ...) ## S3 method for class 'list' as_measures(x, ...)
x |
(any) |
... |
(any) |
task_type |
( |
clone |
( |
Convert object to a Prediction or a list of Prediction.
as_prediction(x, check = FALSE, ...) ## S3 method for class 'Prediction' as_prediction(x, check = FALSE, ...) ## S3 method for class 'PredictionDataClassif' as_prediction(x, check = FALSE, ...) ## S3 method for class 'PredictionDataRegr' as_prediction(x, check = FALSE, ...) as_predictions(x, predict_sets = "test", ...) ## S3 method for class 'list' as_predictions(x, predict_sets = "test", ...)
as_prediction(x, check = FALSE, ...) ## S3 method for class 'Prediction' as_prediction(x, check = FALSE, ...) ## S3 method for class 'PredictionDataClassif' as_prediction(x, check = FALSE, ...) ## S3 method for class 'PredictionDataRegr' as_prediction(x, check = FALSE, ...) as_predictions(x, predict_sets = "test", ...) ## S3 method for class 'list' as_predictions(x, predict_sets = "test", ...)
x |
(any) |
check |
( |
... |
(any) |
predict_sets |
( |
Convert object to a PredictionClassif.
as_prediction_classif(x, ...) ## S3 method for class 'PredictionClassif' as_prediction_classif(x, ...) ## S3 method for class 'data.frame' as_prediction_classif(x, ...)
as_prediction_classif(x, ...) ## S3 method for class 'PredictionClassif' as_prediction_classif(x, ...) ## S3 method for class 'data.frame' as_prediction_classif(x, ...)
x |
(any) |
... |
(any) |
# create a prediction object task = tsk("penguins") learner = lrn("classif.rpart", predict_type = "prob") learner$train(task) p = learner$predict(task) # convert to a data.table tab = as.data.table(p) # convert back to a Prediction as_prediction_classif(tab) # split data.table into a list of data.tables tabs = split(tab, tab$truth) # convert back to list of predictions preds = lapply(tabs, as_prediction_classif) # calculate performance in each group sapply(preds, function(p) p$score())
# create a prediction object task = tsk("penguins") learner = lrn("classif.rpart", predict_type = "prob") learner$train(task) p = learner$predict(task) # convert to a data.table tab = as.data.table(p) # convert back to a Prediction as_prediction_classif(tab) # split data.table into a list of data.tables tabs = split(tab, tab$truth) # convert back to list of predictions preds = lapply(tabs, as_prediction_classif) # calculate performance in each group sapply(preds, function(p) p$score())
Convert object to a PredictionData or a list of PredictionData.
as_prediction_data(x, task, row_ids = task$row_ids, check = TRUE, ...) ## S3 method for class 'Prediction' as_prediction_data(x, task, row_ids = task$row_ids, check = TRUE, ...) ## S3 method for class 'PredictionData' as_prediction_data(x, task, row_ids = task$row_ids, check = TRUE, ...) ## S3 method for class 'list' as_prediction_data( x, task, row_ids = task$row_ids, check = TRUE, ..., train_task )
as_prediction_data(x, task, row_ids = task$row_ids, check = TRUE, ...) ## S3 method for class 'Prediction' as_prediction_data(x, task, row_ids = task$row_ids, check = TRUE, ...) ## S3 method for class 'PredictionData' as_prediction_data(x, task, row_ids = task$row_ids, check = TRUE, ...) ## S3 method for class 'list' as_prediction_data( x, task, row_ids = task$row_ids, check = TRUE, ..., train_task )
x |
(any) |
task |
(Task). |
row_ids |
|
check |
( |
... |
(any) |
train_task |
(Task) |
Convert object to a PredictionRegr.
as_prediction_regr(x, ...) ## S3 method for class 'PredictionRegr' as_prediction_regr(x, ...) ## S3 method for class 'data.frame' as_prediction_regr(x, ...)
as_prediction_regr(x, ...) ## S3 method for class 'PredictionRegr' as_prediction_regr(x, ...) ## S3 method for class 'data.frame' as_prediction_regr(x, ...)
x |
(any) |
... |
(any) |
# create a prediction object task = tsk("mtcars") learner = lrn("regr.rpart") learner$train(task) p = learner$predict(task) # convert to a data.table tab = as.data.table(p) # convert back to a Prediction as_prediction_regr(tab) # split data.table into a list of data.tables tabs = split(tab, cut(tab$truth, 3)) # convert back to list of predictions preds = lapply(tabs, as_prediction_regr) # calculate performance in each group sapply(preds, function(p) p$score())
# create a prediction object task = tsk("mtcars") learner = lrn("regr.rpart") learner$train(task) p = learner$predict(task) # convert to a data.table tab = as.data.table(p) # convert back to a Prediction as_prediction_regr(tab) # split data.table into a list of data.tables tabs = split(tab, cut(tab$truth, 3)) # convert back to list of predictions preds = lapply(tabs, as_prediction_regr) # calculate performance in each group sapply(preds, function(p) p$score())
Convert object to a ResampleResult.
The S3 method for list
expects argument x
to be a list of Prediction objects and
all other relevant objects (Task, Learners, and instantiated Resampling) must
be provided, too.
A more flexible way to manually create a ResampleResult is implemented in as_result_data()
.
as_resample_result(x, ...) ## S3 method for class 'ResampleResult' as_resample_result(x, ...) ## S3 method for class 'ResultData' as_resample_result(x, view = NULL, ...) ## S3 method for class 'list' as_resample_result(x, task, learners, resampling, store_backends = TRUE, ...)
as_resample_result(x, ...) ## S3 method for class 'ResampleResult' as_resample_result(x, ...) ## S3 method for class 'ResultData' as_resample_result(x, view = NULL, ...) ## S3 method for class 'list' as_resample_result(x, task, learners, resampling, store_backends = TRUE, ...)
x |
(any) |
... |
(any) |
view |
( |
task |
(Task). |
learners |
(list of trained Learners). |
resampling |
(Resampling). |
store_backends |
( |
Convert object to a Resampling or a list of Resampling.
as_resampling(x, ...) ## S3 method for class 'Resampling' as_resampling(x, clone = FALSE, ...) as_resamplings(x, ...) ## Default S3 method: as_resamplings(x, ...) ## S3 method for class 'list' as_resamplings(x, ...)
as_resampling(x, ...) ## S3 method for class 'Resampling' as_resampling(x, clone = FALSE, ...) as_resamplings(x, ...) ## Default S3 method: as_resamplings(x, ...) ## S3 method for class 'list' as_resamplings(x, ...)
x |
(any) |
... |
(any) |
clone |
( |
This function allows to construct or convert to a ResultData object, the
result container used by ResampleResult and BenchmarkResult.
A ResampleResult or BenchmarkResult can be initialized with the returned object.
Note that ResampleResults can be converted to a BenchmarkResult with as_benchmark_result()
and multiple BenchmarkResults can be combined to a larger BenchmarkResult with the
$combine()
method of BenchmarkResult.
as_result_data( task, learners, resampling, iterations, predictions, learner_states = NULL, store_backends = TRUE )
as_result_data( task, learners, resampling, iterations, predictions, learner_states = NULL, store_backends = TRUE )
task |
(Task). |
learners |
(list of trained Learners). |
resampling |
(Resampling). |
iterations |
( |
predictions |
(list of list of Predictions). |
learner_states |
( |
store_backends |
( |
ResultData
object which can be passed to the constructor of ResampleResult.
task = tsk("penguins") learner = lrn("classif.rpart") resampling = rsmp("cv", folds = 2)$instantiate(task) iterations = seq_len(resampling$iters) # manually train two learners. # store learners and predictions learners = list() predictions = list() for (i in iterations) { l = learner$clone(deep = TRUE) learners[[i]] = l$train(task, row_ids = resampling$train_set(i)) predictions[[i]] = list(test = l$predict(task, row_ids = resampling$test_set(i))) } rdata = as_result_data(task, learners, resampling, iterations, predictions) ResampleResult$new(rdata)
task = tsk("penguins") learner = lrn("classif.rpart") resampling = rsmp("cv", folds = 2)$instantiate(task) iterations = seq_len(resampling$iters) # manually train two learners. # store learners and predictions learners = list() predictions = list() for (i in iterations) { l = learner$clone(deep = TRUE) learners[[i]] = l$train(task, row_ids = resampling$train_set(i)) predictions[[i]] = list(test = l$predict(task, row_ids = resampling$test_set(i))) } rdata = as_result_data(task, learners, resampling, iterations, predictions) ResampleResult$new(rdata)
Convert object to a Task or a list of Task.
as_task(x, ...) ## S3 method for class 'Task' as_task(x, clone = FALSE, ...) as_tasks(x, ...) ## Default S3 method: as_tasks(x, ...) ## S3 method for class 'list' as_tasks(x, ...)
as_task(x, ...) ## S3 method for class 'Task' as_task(x, clone = FALSE, ...) as_tasks(x, ...) ## Default S3 method: as_tasks(x, ...) ## S3 method for class 'list' as_tasks(x, ...)
x |
(any) |
... |
(any) |
clone |
( |
Convert object to a TaskClassif. This is a S3 generic. mlr3 ships with methods for the following objects:
TaskClassif: ensure the identity
formula
, data.frame()
, matrix()
, Matrix::Matrix()
and DataBackend: provides an alternative to the constructor of TaskClassif.
TaskRegr: Calls convert_task()
.
Note that the target column will be converted to a factor()
, if possible.
as_task_classif(x, ...) ## S3 method for class 'TaskClassif' as_task_classif(x, clone = FALSE, ...) ## S3 method for class 'data.frame' as_task_classif( x, target = NULL, id = deparse1(substitute(x)), positive = NULL, label = NA_character_, ... ) ## S3 method for class 'matrix' as_task_classif( x, target, id = deparse1(substitute(x)), label = NA_character_, ... ) ## S3 method for class 'Matrix' as_task_classif( x, target, id = deparse1(substitute(x)), label = NA_character_, ... ) ## S3 method for class 'DataBackend' as_task_classif( x, target = NULL, id = deparse1(substitute(x)), positive = NULL, label = NA_character_, ... ) ## S3 method for class 'TaskRegr' as_task_classif( x, target = NULL, drop_original_target = FALSE, drop_levels = TRUE, ... ) ## S3 method for class 'formula' as_task_classif( x, data, id = deparse1(substitute(data)), positive = NULL, label = NA_character_, ... )
as_task_classif(x, ...) ## S3 method for class 'TaskClassif' as_task_classif(x, clone = FALSE, ...) ## S3 method for class 'data.frame' as_task_classif( x, target = NULL, id = deparse1(substitute(x)), positive = NULL, label = NA_character_, ... ) ## S3 method for class 'matrix' as_task_classif( x, target, id = deparse1(substitute(x)), label = NA_character_, ... ) ## S3 method for class 'Matrix' as_task_classif( x, target, id = deparse1(substitute(x)), label = NA_character_, ... ) ## S3 method for class 'DataBackend' as_task_classif( x, target = NULL, id = deparse1(substitute(x)), positive = NULL, label = NA_character_, ... ) ## S3 method for class 'TaskRegr' as_task_classif( x, target = NULL, drop_original_target = FALSE, drop_levels = TRUE, ... ) ## S3 method for class 'formula' as_task_classif( x, data, id = deparse1(substitute(data)), positive = NULL, label = NA_character_, ... )
x |
(any) |
... |
(any) |
clone |
( |
target |
( |
id |
( |
positive |
( |
label |
( |
drop_original_target |
( |
drop_levels |
( |
data |
( |
as_task_classif(palmerpenguins::penguins, target = "species")
as_task_classif(palmerpenguins::penguins, target = "species")
Convert object to a TaskRegr. This is a S3 generic. mlr3 ships with methods for the following objects:
TaskRegr: ensure the identity
formula
, data.frame()
, matrix()
, Matrix::Matrix()
and DataBackend: provides an alternative to the constructor of TaskRegr.
TaskClassif: Calls convert_task()
.
as_task_regr(x, ...) ## S3 method for class 'TaskRegr' as_task_regr(x, clone = FALSE, ...) ## S3 method for class 'data.frame' as_task_regr( x, target = NULL, id = deparse1(substitute(x)), label = NA_character_, ... ) ## S3 method for class 'matrix' as_task_regr( x, target = NULL, id = deparse1(substitute(x)), label = NA_character_, ... ) ## S3 method for class 'Matrix' as_task_regr( x, target = NULL, id = deparse1(substitute(x)), label = NA_character_, ... ) ## S3 method for class 'DataBackend' as_task_regr( x, target = NULL, id = deparse1(substitute(x)), label = NA_character_, ... ) ## S3 method for class 'TaskClassif' as_task_regr( x, target = NULL, drop_original_target = FALSE, drop_levels = TRUE, ... ) ## S3 method for class 'formula' as_task_regr( x, data, id = deparse1(substitute(data)), label = NA_character_, ... )
as_task_regr(x, ...) ## S3 method for class 'TaskRegr' as_task_regr(x, clone = FALSE, ...) ## S3 method for class 'data.frame' as_task_regr( x, target = NULL, id = deparse1(substitute(x)), label = NA_character_, ... ) ## S3 method for class 'matrix' as_task_regr( x, target = NULL, id = deparse1(substitute(x)), label = NA_character_, ... ) ## S3 method for class 'Matrix' as_task_regr( x, target = NULL, id = deparse1(substitute(x)), label = NA_character_, ... ) ## S3 method for class 'DataBackend' as_task_regr( x, target = NULL, id = deparse1(substitute(x)), label = NA_character_, ... ) ## S3 method for class 'TaskClassif' as_task_regr( x, target = NULL, drop_original_target = FALSE, drop_levels = TRUE, ... ) ## S3 method for class 'formula' as_task_regr( x, data, id = deparse1(substitute(data)), label = NA_character_, ... )
x |
(any) |
... |
(any) |
clone |
( |
target |
( |
id |
( |
label |
( |
drop_original_target |
( |
drop_levels |
( |
data |
( |
as_task_regr(datasets::mtcars, target = "mpg")
as_task_regr(datasets::mtcars, target = "mpg")
Convert object to a TaskUnsupervised or a list of TaskUnsupervised.
as_task_unsupervised(x, ...) ## S3 method for class 'Task' as_task_unsupervised(x, clone = FALSE, ...) ## S3 method for class 'data.frame' as_task_unsupervised( x, id = deparse1(substitute(x)), label = NA_character_, ... ) ## S3 method for class 'DataBackend' as_task_unsupervised( x, id = deparse1(substitute(x)), label = NA_character_, ... ) as_tasks_unsupervised(x, ...) ## S3 method for class 'list' as_tasks_unsupervised(x, clone = FALSE, ...) ## S3 method for class 'Task' as_tasks_unsupervised(x, clone = FALSE, ...)
as_task_unsupervised(x, ...) ## S3 method for class 'Task' as_task_unsupervised(x, clone = FALSE, ...) ## S3 method for class 'data.frame' as_task_unsupervised( x, id = deparse1(substitute(x)), label = NA_character_, ... ) ## S3 method for class 'DataBackend' as_task_unsupervised( x, id = deparse1(substitute(x)), label = NA_character_, ... ) as_tasks_unsupervised(x, ...) ## S3 method for class 'list' as_tasks_unsupervised(x, clone = FALSE, ...) ## S3 method for class 'Task' as_tasks_unsupervised(x, clone = FALSE, ...)
x |
(any) |
... |
(any) |
clone |
( |
id |
( |
label |
( |
Runs a benchmark on arbitrary combinations of tasks (Task), learners (Learner), and resampling strategies (Resampling), possibly in parallel.
For large-scale benchmarking we recommend to use the mlr3batchmark package. This package runs benchmark experiments on high-performance computing clusters and handles failed experiments.
benchmark( design, store_models = FALSE, store_backends = TRUE, encapsulate = NA_character_, allow_hotstart = FALSE, clone = c("task", "learner", "resampling"), unmarshal = TRUE )
benchmark( design, store_models = FALSE, store_backends = TRUE, encapsulate = NA_character_, allow_hotstart = FALSE, clone = c("task", "learner", "resampling"), unmarshal = TRUE )
design |
( |
store_models |
( |
store_backends |
( |
encapsulate |
( |
allow_hotstart |
( |
clone |
( |
unmarshal |
|
If you want to compare the performance of a learner on the training with the performance
on the test set, you have to configure the Learner to predict on multiple sets by
setting the field predict_sets
to c("train", "test")
(default is "test"
).
Each set yields a separate Prediction object during resampling.
In the next step, you have to configure the measures to operate on the respective Prediction object:
m1 = msr("classif.ce", id = "ce.train", predict_sets = "train") m2 = msr("classif.ce", id = "ce.test", predict_sets = "test")
The (list of) created measures can finally be passed to $aggregate()
or $score()
.
This function can be parallelized with the future package.
One job is one resampling iteration, and all jobs are send to an apply function
from future.apply in a single batch.
To select a parallel backend, use future::plan()
.
More on parallelization can be found in the book:
https://mlr3book.mlr-org.com/chapters/chapter10/advanced_technical_aspects_of_mlr3.html
This function supports progress bars via the package progressr.
Simply wrap the function call in progressr::with_progress()
to enable them.
Alternatively, call progressr::handlers()
with global = TRUE
to enable progress bars
globally.
We recommend the progress package as backend which can be enabled with
progressr::handlers("progress")
.
The mlr3 uses the lgr package for logging.
lgr supports multiple log levels which can be queried with
getOption("lgr.log_levels")
.
To suppress output and reduce verbosity, you can lower the log from the
default level "info"
to "warn"
:
lgr::get_logger("mlr3")$set_threshold("warn")
To get additional log output for debugging, increase the log level to "debug"
or "trace"
:
lgr::get_logger("mlr3")$set_threshold("debug")
To log to a file or a data base, see the documentation of lgr::lgr-package.
The fitted models are discarded after the predictions have been scored in order to reduce memory consumption.
If you need access to the models for later analysis, set store_models
to TRUE
.
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter3/evaluation_and_benchmarking.html#sec-benchmarking
Package mlr3viz for some generic visualizations.
mlr3benchmark for post-hoc analysis of benchmark results.
Other benchmark:
BenchmarkResult
,
benchmark_grid()
# benchmarking with benchmark_grid() tasks = lapply(c("penguins", "sonar"), tsk) learners = lapply(c("classif.featureless", "classif.rpart"), lrn) resamplings = rsmp("cv", folds = 3) design = benchmark_grid(tasks, learners, resamplings) print(design) set.seed(123) bmr = benchmark(design) ## Data of all resamplings head(as.data.table(bmr)) ## Aggregated performance values aggr = bmr$aggregate() print(aggr) ## Extract predictions of first resampling result rr = aggr$resample_result[[1]] as.data.table(rr$prediction()) # Benchmarking with a custom design: # - fit classif.featureless on penguins with a 3-fold CV # - fit classif.rpart on sonar using a holdout tasks = list(tsk("penguins"), tsk("sonar")) learners = list(lrn("classif.featureless"), lrn("classif.rpart")) resamplings = list(rsmp("cv", folds = 3), rsmp("holdout")) design = data.table::data.table( task = tasks, learner = learners, resampling = resamplings ) ## Instantiate resamplings design$resampling = Map( function(task, resampling) resampling$clone()$instantiate(task), task = design$task, resampling = design$resampling ) ## Run benchmark bmr = benchmark(design) print(bmr) ## Get the training set of the 2nd iteration of the featureless learner on penguins rr = bmr$aggregate()[learner_id == "classif.featureless"]$resample_result[[1]] rr$resampling$train_set(2)
# benchmarking with benchmark_grid() tasks = lapply(c("penguins", "sonar"), tsk) learners = lapply(c("classif.featureless", "classif.rpart"), lrn) resamplings = rsmp("cv", folds = 3) design = benchmark_grid(tasks, learners, resamplings) print(design) set.seed(123) bmr = benchmark(design) ## Data of all resamplings head(as.data.table(bmr)) ## Aggregated performance values aggr = bmr$aggregate() print(aggr) ## Extract predictions of first resampling result rr = aggr$resample_result[[1]] as.data.table(rr$prediction()) # Benchmarking with a custom design: # - fit classif.featureless on penguins with a 3-fold CV # - fit classif.rpart on sonar using a holdout tasks = list(tsk("penguins"), tsk("sonar")) learners = list(lrn("classif.featureless"), lrn("classif.rpart")) resamplings = list(rsmp("cv", folds = 3), rsmp("holdout")) design = data.table::data.table( task = tasks, learner = learners, resampling = resamplings ) ## Instantiate resamplings design$resampling = Map( function(task, resampling) resampling$clone()$instantiate(task), task = design$task, resampling = design$resampling ) ## Run benchmark bmr = benchmark(design) print(bmr) ## Get the training set of the 2nd iteration of the featureless learner on penguins rr = bmr$aggregate()[learner_id == "classif.featureless"]$resample_result[[1]] rr$resampling$train_set(2)
Takes a lists of Task, a list of Learner and a list of Resampling to
generate a design in an expand.grid()
fashion (a.k.a. cross join or Cartesian product).
There are two modes of operation, depending on the flag paired
.
With paired
set to FALSE
(default), resampling strategies are not allowed to be instantiated, and instead will be instantiated per task internally.
The only exception to this rule applies if all tasks have exactly the same number of rows, and the resamplings are all instantiated for such tasks.
The grid will be generated based on the Cartesian product of tasks, learners, and resamplings.
Because the resamplings are instantiated on the tasks, reproducibility requires a seed to be set before
calling this function, as this process is stochastic.
With paired
set to TRUE
, tasks and resamplings are treated as pairs.
I.e., you must provide as many tasks as corresponding instantiated resamplings.
The grid will be generated based on the Cartesian product of learners and pairs.
benchmark_grid( tasks, learners, resamplings, param_values = NULL, paired = FALSE )
benchmark_grid( tasks, learners, resamplings, param_values = NULL, paired = FALSE )
tasks |
(list of Task). |
learners |
(list of Learner). |
resamplings |
(list of Resampling). |
param_values |
( A list of lists of named lists, from outer to inner: |
paired |
( |
(data.table::data.table()
) with the cross product of the input vectors.
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter3/evaluation_and_benchmarking.html#sec-benchmarking
Package mlr3viz for some generic visualizations.
mlr3benchmark for post-hoc analysis of benchmark results.
Other benchmark:
BenchmarkResult
,
benchmark()
tasks = list(tsk("penguins"), tsk("sonar")) learners = list(lrn("classif.featureless"), lrn("classif.rpart")) resamplings = list(rsmp("cv"), rsmp("subsampling")) # Set a seed to ensure reproducibility of the resampling instantiation set.seed(123) grid = benchmark_grid(tasks, learners, resamplings) # the resamplings are now instantiated head(grid$resampling[[1]]$instance) print(grid) ## Not run: benchmark(grid) ## End(Not run) # paired learner = lrn("classif.rpart") task1 = tsk("penguins") task2 = tsk("german_credit") res1 = rsmp("holdout") res2 = rsmp("holdout") res1$instantiate(task1) res2$instantiate(task2) design = benchmark_grid(list(task1, task2), learner, list(res1, res2), paired = TRUE) print(design) # manual construction of the grid with data.table::CJ() grid = data.table::CJ(task = tasks, learner = learners, resampling = resamplings, sorted = FALSE) # manual instantiation (not suited for a fair comparison of learners!) Map(function(task, resampling) { resampling$instantiate(task) }, task = grid$task, resampling = grid$resampling) ## Not run: benchmark(grid) ## End(Not run)
tasks = list(tsk("penguins"), tsk("sonar")) learners = list(lrn("classif.featureless"), lrn("classif.rpart")) resamplings = list(rsmp("cv"), rsmp("subsampling")) # Set a seed to ensure reproducibility of the resampling instantiation set.seed(123) grid = benchmark_grid(tasks, learners, resamplings) # the resamplings are now instantiated head(grid$resampling[[1]]$instance) print(grid) ## Not run: benchmark(grid) ## End(Not run) # paired learner = lrn("classif.rpart") task1 = tsk("penguins") task2 = tsk("german_credit") res1 = rsmp("holdout") res2 = rsmp("holdout") res1$instantiate(task1) res2$instantiate(task2) design = benchmark_grid(list(task1, task2), learner, list(res1, res2), paired = TRUE) print(design) # manual construction of the grid with data.table::CJ() grid = data.table::CJ(task = tasks, learner = learners, resampling = resamplings, sorted = FALSE) # manual instantiation (not suited for a fair comparison of learners!) Map(function(task, resampling) { resampling$instantiate(task) }, task = grid$task, resampling = grid$resampling) ## Not run: benchmark(grid) ## End(Not run)
This is the result container object returned by benchmark()
.
A BenchmarkResult consists of the data of multiple ResampleResults.
The contents of a BenchmarkResult
and ResampleResult are almost identical and the stored ResampleResults can be extracted via the $resample_result(i)
method, where i is the index of the performed resample experiment.
This allows us to investigate the extracted ResampleResult and individual resampling iterations, as well as the predictions and models from each fold.
BenchmarkResults can be visualized via mlr3viz's autoplot()
function.
For statistical analysis of benchmark results and more advanced plots, see mlr3benchmark.
as.data.table(rr, ..., reassemble_learners = TRUE, convert_predictions = TRUE, predict_sets = "test", task_characteristics = FALSE)
BenchmarkResult -> data.table::data.table()
Returns a tabular view of the internal data.
c(...)
(BenchmarkResult, ...) -> BenchmarkResult
Combines multiple objects convertible to BenchmarkResult into a new BenchmarkResult.
task_type
(character(1)
)
Task type of objects in the BenchmarkResult
.
All stored objects (Task, Learner, Prediction) in a single BenchmarkResult
are
required to have the same task type, e.g., "classif"
or "regr"
.
This is NA
for empty BenchmarkResults.
tasks
(data.table::data.table()
)
Table of included Tasks with three columns:
"task_hash"
(character(1)
),
"task_id"
(character(1)
), and
"task"
(Task).
learners
(data.table::data.table()
)
Table of included Learners with three columns:
"learner_hash"
(character(1)
),
"learner_id"
(character(1)
), and
"learner"
(Learner).
Note that it is not feasible to access learned models via this field, as the training task would be ambiguous.
For this reason the returned learner are reset before they are returned.
Instead, select a row from the table returned by $score()
.
resamplings
(data.table::data.table()
)
Table of included Resamplings with three columns:
"resampling_hash"
(character(1)
),
"resampling_id"
(character(1)
), and
"resampling"
(Resampling).
resample_results
(data.table::data.table()
)
Returns a table with three columns:
uhash
(character()
).
resample_result
(ResampleResult).
n_resample_results
(integer(1)
)
Returns the total number of stored ResampleResults.
uhashes
(character()
)
Set of (unique) hashes of all included ResampleResults.
new()
Creates a new instance of this R6 class.
BenchmarkResult$new(data = NULL)
data
(ResultData
)
An object of type ResultData
, either extracted from another ResampleResult, another
BenchmarkResult, or manually constructed with as_result_data()
.
help()
Opens the help page for this object.
BenchmarkResult$help()
format()
Helper for print outputs.
BenchmarkResult$format(...)
...
(ignored).
print()
Printer.
BenchmarkResult$print()
combine()
Fuses a second BenchmarkResult into itself, mutating the BenchmarkResult in-place.
If the second BenchmarkResult bmr
is NULL
, simply returns self
.
Note that you can alternatively use the combine function c()
which calls this method internally.
BenchmarkResult$combine(bmr)
bmr
(BenchmarkResult)
A second BenchmarkResult object.
Returns the object itself, but modified by reference.
You need to explicitly $clone()
the object beforehand if you want to keep
the object in its previous state.
marshal()
Marshals all stored models.
BenchmarkResult$marshal(...)
...
(any)
Additional arguments passed to marshal_model()
.
unmarshal()
Unmarshals all stored models.
BenchmarkResult$unmarshal(...)
...
(any)
Additional arguments passed to unmarshal_model()
.
score()
Returns a table with one row for each resampling iteration, including
all involved objects: Task, Learner, Resampling, iteration number
(integer(1)
), and Prediction. If ids
is set to TRUE
, character
column of extracted ids are added to the table for convenient
filtering: "task_id"
, "learner_id"
, and "resampling_id"
.
Additionally calculates the provided performance measures and binds the performance scores as extra columns. These columns are named using the id of the respective Measure.
BenchmarkResult$score( measures = NULL, ids = TRUE, conditions = FALSE, predictions = TRUE )
measures
ids
(logical(1)
)
Adds object ids ("task_id"
, "learner_id"
, "resampling_id"
) as
extra character columns to the returned table.
conditions
(logical(1)
)
Adds condition messages ("warnings"
, "errors"
) as extra
list columns of character vectors to the returned table
predictions
(logical(1)
)
Additionally return prediction objects, one column for each predict_set
of all learners combined.
Columns are named "prediction_train"
, "prediction_test"
and "prediction_internal_valid"
,
if present.
obs_loss()
Calculates the observation-wise loss via the loss function set in the
Measure's field obs_loss
.
Returns a data.table()
with the columns row_ids
, truth
, response
and
one additional numeric column for each measure, named with the respective measure id.
If there is no observation-wise loss function for the measure, the column is filled with
NA
values.
Note that some measures such as RMSE, do have an $obs_loss
, but they require an
additional transformation after aggregation, in this example taking the square-root.
BenchmarkResult$obs_loss(measures = NULL, predict_sets = "test")
aggregate()
Returns a result table where resampling iterations are combined into ResampleResults. A column with the aggregated performance score is added for each Measure, named with the id of the respective measure.
The method for aggregation is controlled by the Measure, e.g. micro aggregation, macro aggregation or custom aggregation. Most measures default to macro aggregation.
Note that the aggregated performances just give a quick impression which approaches work well and which approaches are probably underperforming. However, the aggregates do not account for variance and cannot replace a statistical test. See mlr3viz to get a better impression via boxplots or mlr3benchmark for critical difference plots and significance tests.
For convenience, different flags can be set to extract more information from the returned ResampleResult.
BenchmarkResult$aggregate( measures = NULL, ids = TRUE, uhashes = FALSE, params = FALSE, conditions = FALSE )
measures
ids
(logical(1)
)
Adds object ids ("task_id"
, "learner_id"
, "resampling_id"
) as
extra character columns for convenient subsetting.
uhashes
(logical(1)
)
Adds the uhash values of the ResampleResult as extra character
column "uhash"
.
params
(logical(1)
)
Adds the hyperparameter values as extra list column "params"
. You
can unnest them with mlr3misc::unnest()
.
conditions
(logical(1)
)
Adds the number of resampling iterations with at least one warning as
extra integer column "warnings"
, and the number of resampling
iterations with errors as extra integer column "errors"
.
filter()
Subsets the benchmark result. If task_ids
is not NULL
, keeps all
tasks with provided task ids and discards all others tasks.
Same procedure for learner_ids
and resampling_ids
.
BenchmarkResult$filter( task_ids = NULL, task_hashes = NULL, learner_ids = NULL, learner_hashes = NULL, resampling_ids = NULL, resampling_hashes = NULL )
task_ids
(character()
)
Ids of Tasks to keep.
task_hashes
(character()
)
Hashes of Tasks to keep.
learner_ids
(character()
)
Ids of Learners to keep.
learner_hashes
(character()
)
Hashes of Learners to keep.
resampling_ids
(character()
)
Ids of Resamplings to keep.
resampling_hashes
(character()
)
Hashes of Resamplings to keep.
Returns the object itself, but modified by reference.
You need to explicitly $clone()
the object beforehand if you want to keeps
the object in its previous state.
resample_result()
Retrieve the i-th ResampleResult, by position or by unique hash uhash
.
i
and uhash
are mutually exclusive.
BenchmarkResult$resample_result(i = NULL, uhash = NULL)
i
(integer(1)
)
The iteration value to filter for.
uhash
(logical(1)
)
The ushash
value to filter for.
discard()
Shrinks the BenchmarkResult by discarding parts of the internally stored data. Note that certain operations might stop work, e.g. extracting importance values from learners or calculating measures requiring the task's data.
BenchmarkResult$discard(backends = FALSE, models = FALSE)
backends
(logical(1)
)
If TRUE
, the DataBackend is removed from all stored Tasks.
models
(logical(1)
)
If TRUE
, the stored model is removed from all Learners.
Returns the object itself, but modified by reference.
You need to explicitly $clone()
the object beforehand if you want to keeps
the object in its previous state.
clone()
The objects of this class are cloneable with this method.
BenchmarkResult$clone(deep = FALSE)
deep
Whether to make a deep clone.
All stored objects are accessed by reference. Do not modify any extracted object without cloning it first.
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter3/evaluation_and_benchmarking.html#sec-benchmarking
Package mlr3viz for some generic visualizations.
mlr3benchmark for post-hoc analysis of benchmark results.
Other benchmark:
benchmark()
,
benchmark_grid()
set.seed(123) learners = list( lrn("classif.featureless", predict_type = "prob"), lrn("classif.rpart", predict_type = "prob") ) design = benchmark_grid( tasks = list(tsk("sonar"), tsk("penguins")), learners = learners, resamplings = rsmp("cv", folds = 3) ) print(design) bmr = benchmark(design) print(bmr) bmr$tasks bmr$learners # first 5 resampling iterations head(as.data.table(bmr, measures = c("classif.acc", "classif.auc")), 5) # aggregate results bmr$aggregate() # aggregate results with hyperparameters as separate columns mlr3misc::unnest(bmr$aggregate(params = TRUE), "params") # extract resample result for classif.rpart rr = bmr$aggregate()[learner_id == "classif.rpart", resample_result][[1]] print(rr) # access the confusion matrix of the first resampling iteration rr$predictions()[[1]]$confusion # reduce to subset with task id "sonar" bmr$filter(task_ids = "sonar") print(bmr)
set.seed(123) learners = list( lrn("classif.featureless", predict_type = "prob"), lrn("classif.rpart", predict_type = "prob") ) design = benchmark_grid( tasks = list(tsk("sonar"), tsk("penguins")), learners = learners, resamplings = rsmp("cv", folds = 3) ) print(design) bmr = benchmark(design) print(bmr) bmr$tasks bmr$learners # first 5 resampling iterations head(as.data.table(bmr, measures = c("classif.acc", "classif.auc")), 5) # aggregate results bmr$aggregate() # aggregate results with hyperparameters as separate columns mlr3misc::unnest(bmr$aggregate(params = TRUE), "params") # extract resample result for classif.rpart rr = bmr$aggregate()[learner_id == "classif.rpart", resample_result][[1]] print(rr) # access the confusion matrix of the first resampling iteration rr$predictions()[[1]]$confusion # reduce to subset with task id "sonar" bmr$filter(task_ids = "sonar") print(bmr)
A regression task to predict the median house value in California.
Contains 9 features and 20640 observations.
Target column is "median_house_value"
.
R6::R6Class inheriting from TaskRegr.
mlr_tasks$get("california_housing") tsk("california_housing")
Task type: “regr”
Dimensions: 20640x10
Properties: -
Has Missings: TRUE
Target: “median_house_value”
Features: “households”, “housing_median_age”, “latitude”, “longitude”, “median_income”, “ocean_proximity”, “population”, “total_bedrooms”, “total_rooms”
https://www.kaggle.com/datasets/camnugent/california-housing-prices
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html
Package mlr3data for more toy tasks.
Package mlr3oml for downloading tasks from https://www.openml.org.
Package mlr3viz for some generic visualizations.
Dictionary of Tasks: mlr_tasks
as.data.table(mlr_tasks)
for a table of available Tasks in the running session (depending on the loaded packages).
mlr3fselect and mlr3filters for feature selection and feature filtering.
Extension packages for additional task types:
Unsupervised clustering: mlr3cluster
Probabilistic supervised regression and survival analysis: https://mlr3proba.mlr-org.com/.
Other Task:
Task
,
TaskClassif
,
TaskRegr
,
TaskSupervised
,
TaskUnsupervised
,
mlr_tasks
,
mlr_tasks_breast_cancer
,
mlr_tasks_german_credit
,
mlr_tasks_iris
,
mlr_tasks_mtcars
,
mlr_tasks_penguins
,
mlr_tasks_pima
,
mlr_tasks_sonar
,
mlr_tasks_spam
,
mlr_tasks_wine
,
mlr_tasks_zoo
The task's target is replaced by a different column from the data.
convert_task( intask, target = NULL, new_type = NULL, drop_original_target = FALSE, drop_levels = TRUE )
convert_task( intask, target = NULL, new_type = NULL, drop_original_target = FALSE, drop_levels = TRUE )
intask |
|
target |
( |
new_type |
( |
drop_original_target |
( |
drop_levels |
( |
Task of requested type.
This is the abstract base class for data backends.
Data backends provide a layer of abstraction for various data storage systems. It is not recommended to work directly with the DataBackend. Instead, all data access is handled transparently via the Task.
This package comes with two implementations for backends:
DataBackendDataTable which stores the data as data.table::data.table()
.
DataBackendMatrix which stores the data as sparse Matrix::sparseMatrix()
.
To connect to out-of-memory database management systems such as SQL servers, see the extension package mlr3db.
The required set of fields and methods to implement a custom DataBackend
is
listed in the respective sections (see DataBackendDataTable or
DataBackendMatrix for exemplary implementations of the interface).
primary_key
(character(1)
)
Column name of the primary key column of positive and unique integer row ids.
data_formats
(character()
)
Supported data format. Always "data.table"
..
This is deprecated and will be removed in the future.
hash
(character(1)
)
Hash (unique identifier) for this object.
col_hashes
(named character
)
Hash (unique identifier) for all columns except the primary_key
: A character
vector, named by the columns that each element refers to.
Columns of different Task
s or DataBackend
s that have agreeing col_hashes
always represent the same data, given that the same row
s are selected.
The reverse is not necessarily true: There can be columns with the same content that have different col_hashes
.
new()
Creates a new instance of this R6 class.
Note: This object is typically constructed via a derived classes, e.g.
DataBackendDataTable or DataBackendMatrix, or via the S3 method
as_data_backend()
.
DataBackend$new(data, primary_key, data_formats)
data
(any)
The format of the input data depends on the specialization. E.g.,
DataBackendDataTable expects a data.table::data.table()
and
DataBackendMatrix expects a Matrix::Matrix()
from Matrix.
primary_key
(character(1)
)
Each DataBackend needs a way to address rows, which is done via a
column of unique integer values, referenced here by primary_key
. The
use of this variable may differ between backends.
data_formats
(character()
)
Deprecated: ignored, and will be removed in the future.
format()
Helper for print outputs.
DataBackend$format(...)
...
(ignored).
print()
Printer.
DataBackend$print()
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter10/advanced_technical_aspects_of_mlr3.html#sec-backends
Package mlr3db to interface out-of-memory data, e.g. SQL servers or duckdb.
Other DataBackend:
DataBackendDataTable
,
DataBackendMatrix
,
as_data_backend.Matrix()
data = data.table::data.table(id = 1:5, x = runif(5), y = sample(letters[1:3], 5, replace = TRUE)) b = DataBackendDataTable$new(data, primary_key = "id") print(b) b$head(2) b$data(rows = 1:2, cols = "x") b$distinct(rows = b$rownames, "y") b$missings(rows = b$rownames, cols = names(data))
data = data.table::data.table(id = 1:5, x = runif(5), y = sample(letters[1:3], 5, replace = TRUE)) b = DataBackendDataTable$new(data, primary_key = "id") print(b) b$head(2) b$data(rows = 1:2, cols = "x") b$distinct(rows = b$rownames, "y") b$missings(rows = b$rownames, cols = names(data))
DataBackend for data.table which serves as an efficient in-memory data base.
mlr3::DataBackend
-> DataBackendDataTable
compact_seq
logical(1)
If TRUE
, row ids are a natural sequence from 1 to nrow(data)
(determined internally).
In this case, row lookup uses faster positional indices instead of equi joins.
rownames
(integer()
)
Returns vector of all distinct row identifiers, i.e. the contents of the primary key column.
colnames
(character()
)
Returns vector of all column names, including the primary key column.
nrow
(integer(1)
)
Number of rows (observations).
ncol
(integer(1)
)
Number of columns (variables), including the primary key column.
new()
Creates a new instance of this R6 class.
Note that DataBackendDataTable
does not copy the input data, while as_data_backend()
calls data.table::copy()
.
as_data_backend()
also takes care about casting to a data.table()
and adds a primary key column if necessary.
DataBackendDataTable$new(data, primary_key)
data
(data.table::data.table()
)
The input data.table()
.
primary_key
(character(1)
| integer()
)
Name of the primary key column, or integer vector of row ids.
data()
Returns a slice of the data in the specified format.
Currently, the only supported formats are "data.table"
and "Matrix"
.
The rows must be addressed as vector of primary key values, columns must be referred to via column names.
Queries for rows with no matching row id and queries for columns with no matching column name are silently ignored.
Rows are guaranteed to be returned in the same order as rows
, columns may be returned in an arbitrary order.
Duplicated row ids result in duplicated rows, duplicated column names lead to an exception.
DataBackendDataTable$data(rows, cols, data_format)
rows
(positive integer()
)
Vector or row indices.
Always refers to the complete data set, even after filtering.
cols
(character()
)
Vector of column names.
data_format
(character(1)
)
Deprecated. Ignored, and will be removed in the future.
head()
Retrieve the first n
rows.
DataBackendDataTable$head(n = 6L)
n
(integer(1)
)
Number of rows.
data.table::data.table()
of the first n
rows.
distinct()
Returns a named list of vectors of distinct values for each column
specified. If na_rm
is TRUE
, missing values are removed from the
returned vectors of distinct values. Non-existing rows and columns are
silently ignored.
DataBackendDataTable$distinct(rows, cols, na_rm = TRUE)
rows
(positive integer()
)
Vector or row indices.
Always refers to the complete data set, even after filtering.
cols
(character()
)
Vector of column names.
na_rm
logical(1)
Whether to remove NAs or not.
Named list()
of distinct values.
missings()
Returns the number of missing values per column in the specified slice of data. Non-existing rows and columns are silently ignored.
DataBackendDataTable$missings(rows, cols)
rows
(positive integer()
)
Vector or row indices.
Always refers to the complete data set, even after filtering.
cols
(character()
)
Vector of column names.
Total of missing values per column (named numeric()
).
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter10/advanced_technical_aspects_of_mlr3.html#sec-backends
Package mlr3db to interface out-of-memory data, e.g. SQL servers or duckdb.
Other DataBackend:
DataBackend
,
DataBackendMatrix
,
as_data_backend.Matrix()
data = as.data.table(palmerpenguins::penguins) data$id = seq_len(nrow(palmerpenguins::penguins)) b = DataBackendDataTable$new(data = data, primary_key = "id") print(b) b$head() b$data(rows = 100:101, cols = "species") b$nrow head(b$rownames) b$ncol b$colnames # alternative construction as_data_backend(palmerpenguins::penguins)
data = as.data.table(palmerpenguins::penguins) data$id = seq_len(nrow(palmerpenguins::penguins)) b = DataBackendDataTable$new(data = data, primary_key = "id") print(b) b$head() b$data(rows = 100:101, cols = "species") b$nrow head(b$rownames) b$ncol b$colnames # alternative construction as_data_backend(palmerpenguins::penguins)
DataBackend for Matrix.
Data is split into a (numerical) sparse part and an optional dense part.
These parts are automatically merged to a sparse format during $data()
.
Note that merging both parts potentially comes with a data loss, as all
dense columns are converted to numeric columns.
mlr3::DataBackend
-> DataBackendMatrix
rownames
(integer()
)
Returns vector of all distinct row identifiers, i.e. the contents of the primary key column.
colnames
(character()
)
Returns vector of all column names, including the primary key column.
nrow
(integer(1)
)
Number of rows (observations).
ncol
(integer(1)
)
Number of columns (variables), including the primary key column.
new()
Creates a new instance of this R6 class.
DataBackendMatrix$new(data, dense, primary_key = NULL)
data
Matrix::Matrix()
The input Matrix::Matrix()
.
dense
data.frame()
.
Dense data, converted to data.table::data.table()
.
primary_key
(character(1)
| integer()
)
Name of the primary key column, or integer vector of row ids.
data()
Returns a slice of the data as "data.table"
.
The rows must be addressed as vector of primary key values, columns must be referred to via column names.
Queries for rows with no matching row id and queries for columns with no matching column name are silently ignored.
Rows are guaranteed to be returned in the same order as rows
, columns may be returned in an arbitrary order.
Duplicated row ids result in duplicated rows, duplicated column names lead to an exception.
DataBackendMatrix$data(rows, cols, data_format)
rows
(positive integer()
)
Vector or row indices.
Always refers to the complete data set, even after filtering.
cols
(character()
)
Vector of column names.
data_format
(character(1)
)
Deprecated. Ignored, and will be removed in the future.
head()
Retrieve the first n
rows.
DataBackendMatrix$head(n = 6L)
n
(integer(1)
)
Number of rows.
data.table::data.table()
of the first n
rows.
distinct()
Returns a named list of vectors of distinct values for each column
specified. If na_rm
is TRUE
, missing values are removed from the
returned vectors of distinct values. Non-existing rows and columns are
silently ignored.
DataBackendMatrix$distinct(rows, cols, na_rm = TRUE)
rows
(positive integer()
)
Vector or row indices.
Always refers to the complete data set, even after filtering.
cols
(character()
)
Vector of column names.
na_rm
logical(1)
Whether to remove NAs or not.
Named list()
of distinct values.
missings()
Returns the number of missing values per column in the specified slice of data. Non-existing rows and columns are silently ignored.
DataBackendMatrix$missings(rows, cols)
rows
(positive integer()
)
Vector or row indices.
Always refers to the complete data set, even after filtering.
cols
(character()
)
Vector of column names.
Total of missing values per column (named numeric()
).
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter10/advanced_technical_aspects_of_mlr3.html#sec-backends
Package mlr3db to interface out-of-memory data, e.g. SQL servers or duckdb.
Other DataBackend:
DataBackend
,
DataBackendDataTable
,
as_data_backend.Matrix()
requireNamespace("Matrix") data = Matrix::Matrix(sample(0:1, 20, replace = TRUE), ncol = 2) colnames(data) = c("x1", "x2") dense = data.frame( ..row_id = 1:10, num = runif(10), fact = factor(sample(c("a", "b"), 10, replace = TRUE), levels = c("a", "b")) ) b = as_data_backend(data, dense = dense, primary_key = "..row_id") b$head() b$data(1:3, b$colnames)
requireNamespace("Matrix") data = Matrix::Matrix(sample(0:1, 20, replace = TRUE), ncol = 2) colnames(data) = c("x1", "x2") dense = data.frame( ..row_id = 1:10, num = runif(10), fact = factor(sample(c("a", "b"), 10, replace = TRUE), levels = c("a", "b")) ) b = as_data_backend(data, dense = dense, primary_key = "..row_id") b$head() b$data(1:3, b$colnames)
Create a fallback learner for a given learner. The function searches for a suitable fallback learner based on the task type. Additional checks are performed to ensure that the fallback learner supports the predict type.
default_fallback(learner, ...) ## S3 method for class 'Learner' default_fallback(learner, ...) ## S3 method for class 'LearnerClassif' default_fallback(learner, ...) ## S3 method for class 'LearnerRegr' default_fallback(learner, ...)
default_fallback(learner, ...) ## S3 method for class 'Learner' default_fallback(learner, ...) ## S3 method for class 'LearnerClassif' default_fallback(learner, ...) ## S3 method for class 'LearnerRegr' default_fallback(learner, ...)
learner |
Learner |
... |
|
Gets the default measures using the information in mlr_reflections$default_measures:
"classif.ce"
for classification ("classif"
).
"regr.mse"
for regression ("regr"
).
Add-on package may register additional default measures for their own task types.
default_measures(task_type)
default_measures(task_type)
task_type |
( |
list of Measure.
default_measures("classif") default_measures("regr")
default_measures("classif") default_measures("regr")
This class stores learners for hot starting training, i.e. resuming or continuing from an already fitted model. We assume that hot starting is only possible if a single hyperparameter (also called the fidelity parameter, usually controlling the complexity or expensiveness) is altered and all other hyperparameters are identical.
The HotstartStack
stores trained learners which can be potentially used to
hot start a learner. Learner automatically hot start while training if a
stack is attached to the $hotstart_stack
field and the stack contains a
suitable learner.
For example, if you want to train a random forest learner with 1000 trees but
already have a random forest learner with 500 trees (hot start learner),
you can add the hot start learner to the HotstartStack
of the expensive learner
with 1000 trees. If you now call the train()
method (or resample()
or
benchmark()
), a random forest with 500 trees will be fitted and combined
with the 500 trees of the hotstart learner, effectively saving you to
fit 500 trees.
Hot starting is only supported by learners which have the property
"hotstart_forward"
or "hotstart_backward"
. For example, an xgboost
model
(in mlr3learners) can hot start forward by adding more boosting
iterations, and a random forest can go backwards by removing trees.
The fidelity parameters are tagged with "hotstart"
in learner's parameter set.
stack
data.table::data.table()
Stores hot start learners.
hotstart_threshold
(named numeric(1)
)
Threshold for storing learners in the stack.
If the value of the hotstart parameter is below this threshold, the learner is not added to the stack.
new()
Creates a new instance of this R6 class.
HotstartStack$new(learners = NULL, hotstart_threshold = NULL)
learners
(List of Learners)
Learners are added to the hotstart stack. If NULL
(default), empty
stack is created.
hotstart_threshold
(named numeric(1)
)
Threshold for storing learners in the stack.
add()
Add learners to hot start stack.
HotstartStack$add(learners)
learners
(List of Learners). Learners are added to the hotstart stack.
self (invisibly).
start_cost()
Calculates the cost for each learner of the stack to hot start the target learner
.
The following cost values can be returned:
NA_real_
: Learner is unsuitable to hot start target learner
.
-1
: Hotstart learner in the stack and target learner
are identical.
0
Cost for hot starting backwards is always 0.
> 0
Cost for hot starting forward.
HotstartStack$start_cost(learner, task_hash)
format()
Helper for print outputs.
HotstartStack$format(...)
...
(ignored).
print()
Printer.
HotstartStack$print(...)
...
(ignored).
clone()
The objects of this class are cloneable with this method.
HotstartStack$clone(deep = FALSE)
deep
Whether to make a deep clone.
# train learner on pima task task = tsk("pima") learner = lrn("classif.debug", iter = 1) learner$train(task) # initialize stack with previously fitted learner hot = HotstartStack$new(list(learner)) # retrieve learner with increased fidelity parameter learner = lrn("classif.debug", iter = 2) # calculate cost of hot starting hot$start_cost(learner, task$hash) # add stack with hot start learner learner$hotstart_stack = hot # train automatically uses hot start learner while fitting the model learner$train(task)
# train learner on pima task task = tsk("pima") learner = lrn("classif.debug", iter = 1) learner$train(task) # initialize stack with previously fitted learner hot = HotstartStack$new(list(learner)) # retrieve learner with increased fidelity parameter learner = lrn("classif.debug", iter = 2) # calculate cost of hot starting hot$start_cost(learner, task$hash) # add stack with hot start learner learner$hotstart_stack = hot # train automatically uses hot start learner while fitting the model learner$train(task)
extract_pkgs()
extracts required package from various objects, including
TaskGenerator, Learner, Measure and objects from
extension packages such as mlr3pipelines or mlr3filters.
If applied on a list, the function is called recursively on all elements.
install_pkgs()
calls extract_pkgs()
internally and proceeds with the
installation of extracted packages.
install_pkgs(x, ...) extract_pkgs(x) ## S3 method for class 'character' extract_pkgs(x) ## S3 method for class 'R6' extract_pkgs(x) ## S3 method for class 'list' extract_pkgs(x) ## S3 method for class 'ResampleResult' extract_pkgs(x) ## S3 method for class 'BenchmarkResult' extract_pkgs(x)
install_pkgs(x, ...) extract_pkgs(x) ## S3 method for class 'character' extract_pkgs(x) ## S3 method for class 'R6' extract_pkgs(x) ## S3 method for class 'list' extract_pkgs(x) ## S3 method for class 'ResampleResult' extract_pkgs(x) ## S3 method for class 'BenchmarkResult' extract_pkgs(x)
x |
(any) |
... |
(any) |
If a package contains a forward slash ('/'), it is assumed to be a package hosted
on GitHub in "<user>/<repo>"
format, and the string will be passed to
remotes::install_github()
.
Otherwise, the package name will be passed to remotes::install_cran()
.
extract_pkgs()
returns a character()
of package strings,
install_pkgs()
returns the names of extracted packages invisibly.
extract_pkgs(lrns(c("regr.rpart", "regr.featureless")))
extract_pkgs(lrns(c("regr.rpart", "regr.featureless")))
This is the abstract base class for learner objects like LearnerClassif and LearnerRegr.
Learners are build around the three following key parts:
Methods $train()
and $predict()
which call internal methods or private methods $.train()
/$.predict()
).
A paradox::ParamSet which stores meta-information about available hyperparameters, and also stores hyperparameter settings.
Meta-information about the requirements and capabilities of the learner.
The fitted model stored in field $model
, available after calling $train()
.
Predefined learners are stored in the dictionary mlr_learners,
e.g. classif.rpart
or regr.rpart
.
More classification and regression learners are implemented in the add-on package mlr3learners. Learners for survival analysis (or more general, for probabilistic regression) can be found in mlr3proba. Unsupervised cluster algorithms are implemented in mlr3cluster. The dictionary mlr_learners gets automatically populated with the new learners as soon as the respective packages are loaded.
More (experimental) learners can be found in the GitHub repository: https://github.com/mlr-org/mlr3extralearners. A guide on how to extend mlr3 with custom learners can be found in the mlr3book.
To combine the learner with preprocessing operations like factor encoding, mlr3pipelines is recommended.
Hyperparameters stored in the param_set
can be tuned with mlr3tuning.
Specific learner implementations are free to implement additional getters to ease the access of certain parts of the model in the inherited subclasses.
For the following operations, extractors are standardized:
importance(...)
: Returns the feature importance score as numeric vector.
The higher the score, the more important the variable.
The returned vector is named with feature names and sorted in decreasing order.
Note that the model might omit features it has not used at all.
The learner must be tagged with property "importance"
.
To filter variables using the importance scores, see package mlr3filters.
selected_features(...)
: Returns a subset of selected features as character()
.
The learner must be tagged with property "selected_features"
.
oob_error(...)
: Returns the out-of-bag error of the model as numeric(1)
.
The learner must be tagged with property "oob_error"
.
internal_valid_scores
: Returns the internal validation score(s) of the model as a named list()
.
Only available for Learner
s with the "validation"
property.
If the learner is not trained yet, this returns NULL
.
internal_tuned_values
: Returns the internally tuned hyperparameters of the model as a named list()
.
Only available for Learner
s with the "internal_tuning"
property.
If the learner is not trained yet, this returns NULL
.
All information about hyperparameters is stored in the slot param_set
which is a paradox::ParamSet.
The printer gives an overview about the ids of available hyperparameters, their storage type, lower and upper bounds,
possible levels (for factors), default values and assigned values.
To set hyperparameters, assign a named list to the subslot values
:
lrn = lrn("classif.rpart") lrn$param_set$values = list(minsplit = 3, cp = 0.01)
Note that this operation replaces all previously set hyperparameter values.
If you only intend to change one specific hyperparameter value and leave the others as-is, you can use the helper function mlr3misc::insert_named()
:
lrn$param_set$values = mlr3misc::insert_named(lrn$param_set$values, list(cp = 0.001))
If the learner has additional hyperparameters which are not encoded in the ParamSet, you can easily extend the learner.
Here, we add a factor hyperparameter with id "foo"
and possible levels "a"
and "b"
:
lrn$param_set$add(paradox::ParamFct$new("foo", levels = c("a", "b")))
Some Learners, such as XGBoost
, other boosting algorithms, or deep learning models (mlr3torch
),
utilize validation data during the training to prevent overfitting or to log the validation performance.
It is possible to configure learners to be able to receive such an independent validation set during training.
To do so, one must:
annotate the learner with the "validation"
property
implement the active binding $internal_valid_scores
(see section Optional Extractors), as well as the
private method $.extract_internal_valid_scores()
which returns the (final) internal validation scores from the
model of the Learner
and returns them as a named list()
of numeric(1)
.
If the model is not trained yet, this method should return NULL
.
Add the validate
parameter, which can be either NULL
, a ratio in $(0, 1)$, "test"
, or "predefined"
:
NULL
: no validation
ratio
: only proportion 1 - ratio
of the task is used for training and ratio
is used for validation.
"test"
means that the "test"
task is used.
Warning: This can lead to biased performance estimation.
This option is only available if the learner is being trained via resample()
, benchmark()
or functions that
internally use them, e.g. tune()
of mlr3tuning or batchmark()
of mlr3batchmark.
This is especially useful for hyperparameter tuning, where one might e.g. want to use the same validation data
for early stopping and model evaluation.
"predefined"
means that the task's (manually set) $internal_valid_task
is used.
See the Task
documentation for more information.
For an example how to do this, see LearnerClassifDebug
.
Note that in .train()
, the $internal_valid_task
will only be present if the $validate
field of the Learner
is set to a non-NULL
value.
Some learners such as XGBoost
or cv.glmnet
can internally tune hyperparameters.
XGBoost, for example, can tune the number of boosting rounds based on the validation performance.
CV Glmnet, on the other hand, can tune the regularization parameter based on an internal cross-validation.
Internal tuning can therefore rely on the internal validation data, but does not necessarily do so.
In order to be able to combine this internal hyperparamer tuning with the standard hyperparameter optimization implemented via mlr3tuning, one most:
annotate the learner with the "internal_tuning"
property
implement the active binding $internal_tuned_values
(see section Optional Extractors) as well as the
private method $.extract_internal_tuned_values()
which extracts the internally tuned values from the Learner
's
model and returns them as a named list()
.
If the model is not trained yet, this method should return NULL
.
Have at least one parameter tagged with "internal_tuning"
, which requires to also provide a in_tune_fn
and
disable_tune_fn
, and should also include a default aggr
egation function.
For an example how to do this, see LearnerClassifDebug
.
Some Learner
s have models that cannot be serialized as they e.g. contain external pointers.
In order to still be able to save them, use them with parallelization or callr encapsulation it is necessary
to implement how they should be (un)-marshaled. See marshaling
for how to do this.
id
(character(1)
)
Identifier of the object.
Used in tables, plot and text output.
label
(character(1)
)
Label for this object.
Can be used in tables, plot and text output instead of the ID.
state
(NULL
| named list()
)
Current (internal) state of the learner.
Contains all information gathered during train()
and predict()
.
It is not recommended to access elements from state
directly.
This is an internal data structure which may change in the future.
task_type
(character(1)
)
Task type, e.g. "classif"
or "regr"
.
For a complete list of possible task types (depending on the loaded packages),
see mlr_reflections$task_types$type
.
predict_types
(character()
)
Stores the possible predict types the learner is capable of.
A complete list of candidate predict types, grouped by task type, is stored in mlr_reflections$learner_predict_types
.
feature_types
(character()
)
Stores the feature types the learner can handle, e.g. "logical"
, "numeric"
, or "factor"
.
A complete list of candidate feature types, grouped by task type, is stored in mlr_reflections$task_feature_types
.
properties
(character()
)
Stores a set of properties/capabilities the learner has.
A complete list of candidate properties, grouped by task type, is stored in mlr_reflections$learner_properties
.
packages
(character(1)
)
Set of required packages.
These packages are loaded, but not attached.
predict_sets
(character()
)
During resample()
/benchmark()
, a Learner can predict on multiple sets.
Per default, a learner only predicts observations in the test set (predict_sets == "test"
).
To change this behavior, set predict_sets
to a non-empty subset of {"train", "test", "internal_valid"}
.
The "train"
predict set contains the train ids from the resampling. This means that if a learner does validation and
sets $validate
to a ratio (creating the validation data from the training data), the train predictions
will include the predictions for the validation data.
Each set yields a separate Prediction object.
Those can be combined via getters in ResampleResult/BenchmarkResult, or Measures can be configured
to operate on specific subsets of the calculated prediction sets.
parallel_predict
(logical(1)
)
If set to TRUE
, use future to calculate predictions in parallel (default: FALSE
).
The row ids of the task
will be split into future::nbrOfWorkers()
chunks,
and predictions are evaluated according to the active future::plan()
.
This currently only works for methods Learner$predict()
and Learner$predict_newdata()
,
and has no effect during resample()
or benchmark()
where you have other means
to parallelize.
Note that the recorded time required for prediction reports the time required to predict is not properly defined and depends on the parallelization backend.
timeout
(named numeric(2)
)
Timeout for the learner's train and predict steps, in seconds.
This works differently for different encapsulation methods, see
mlr3misc::encapsulate()
.
Default is c(train = Inf, predict = Inf)
.
Also see the section on error handling the mlr3book:
https://mlr3book.mlr-org.com/chapters/chapter10/advanced_technical_aspects_of_mlr3.html#sec-error-handling
man
(character(1)
)
String in the format [pkg]::[topic]
pointing to a manual page for this object.
Defaults to NA
, but can be set by child classes.
data_formats
(character()
)
Supported data format. Always "data.table"
..
This is deprecated and will be removed in the future.
model
(any)
The fitted model. Only available after $train()
has been called.
timings
(named numeric(2)
)
Elapsed time in seconds for the steps "train"
and "predict"
.
When predictions for multiple predict sets were made during resample()
or benchmark()
,
the predict time shows the cumulative duration of all predictions.
If learner$predict()
is called manually, the last predict time gets overwritten.
Measured via mlr3misc::encapsulate()
.
log
(data.table::data.table()
)
Returns the output (including warning and errors) as table with columns
"stage"
("train" or "predict"),
"class"
("output", "warning", or "error"), and
"msg"
(character()
).
warnings
(character()
)
Logged warnings as vector.
errors
(character()
)
Logged errors as vector.
hash
(character(1)
)
Hash (unique identifier) for this object.
The hash is calculated based on the learner id, the parameter settings, the predict type, the fallback hash, the parallel predict setting, the validate setting, and the predict sets.
phash
(character(1)
)
Hash (unique identifier) for this partial object, excluding some components which are varied systematically during tuning (parameter values).
predict_type
(character(1)
)
Stores the currently active predict type, e.g. "response"
.
Must be an element of $predict_types
.
param_set
(paradox::ParamSet)
Set of hyperparameters.
fallback
(Learner)
Returns the fallback learner set with $encapsulate()
.
encapsulation
(character(2)
)
Returns the encapsulation settings set with $encapsulate()
.
hotstart_stack
(HotstartStack)
.
Stores HotstartStack
.
new()
Creates a new instance of this R6 class.
Note that this object is typically constructed via a derived classes, e.g. LearnerClassif or LearnerRegr.
Learner$new( id, task_type, param_set = ps(), predict_types = character(), feature_types = character(), properties = character(), data_formats, packages = character(), label = NA_character_, man = NA_character_ )
id
(character(1)
)
Identifier for the new instance.
task_type
(character(1)
)
Type of task, e.g. "regr"
or "classif"
.
Must be an element of mlr_reflections$task_types$type.
param_set
(paradox::ParamSet)
Set of hyperparameters.
predict_types
(character()
)
Supported predict types. Must be a subset of mlr_reflections$learner_predict_types
.
feature_types
(character()
)
Feature types the learner operates on. Must be a subset of mlr_reflections$task_feature_types
.
properties
(character()
)
Set of properties of the Learner.
Must be a subset of mlr_reflections$learner_properties
.
The following properties are currently standardized and understood by learners in mlr3:
"missings"
: The learner can handle missing values in the data.
"weights"
: The learner supports observation weights.
"importance"
: The learner supports extraction of importance scores, i.e. comes with an $importance()
extractor function (see section on optional extractors in Learner).
"selected_features"
: The learner supports extraction of the set of selected features, i.e. comes with a $selected_features()
extractor function (see section on optional extractors in Learner).
"oob_error"
: The learner supports extraction of estimated out of bag error, i.e. comes with a oob_error()
extractor function (see section on optional extractors in Learner).
"validation"
: The learner can use a validation task during training.
"internal_tuning"
: The learner is able to internally optimize hyperparameters (those are also tagged with "internal_tuning"
).
"marshal"
: To save learners with this property, you need to call $marshal()
first.
If a learner is in a marshaled state, you call first need to call $unmarshal()
to use its model, e.g. for prediction.
data_formats
(character()
)
Deprecated: ignored, and will be removed in the future.
packages
(character()
)
Set of required packages.
A warning is signaled by the constructor if at least one of the packages is not installed,
but loaded (not attached) later on-demand via requireNamespace()
.
label
(character(1)
)
Label for the new instance.
man
(character(1)
)
String in the format [pkg]::[topic]
pointing to a manual page for this object.
The referenced help package can be opened via method $help()
.
format()
Helper for print outputs.
Learner$format(...)
...
(ignored).
print()
Printer.
Learner$print(...)
...
(ignored).
help()
Opens the corresponding help page referenced by field $man
.
Learner$help()
train()
Train the learner on a set of observations of the provided task
.
Mutates the learner by reference, i.e. stores the model alongside other information in field $state
.
Learner$train(task, row_ids = NULL)
task
(Task).
row_ids
(integer()
)
Vector of training indices as subset of task$row_ids
.
For a simple split into training and test set, see partition()
.
Returns the object itself, but modified by reference.
You need to explicitly $clone()
the object beforehand if you want to keeps
the object in its previous state.
predict()
Uses the information stored during $train()
in $state
to create a new Prediction
for a set of observations of the provided task
.
Learner$predict(task, row_ids = NULL)
task
(Task).
row_ids
(integer()
)
Vector of test indices as subset of task$row_ids
.
For a simple split into training and test set, see partition()
.
predict_newdata()
Uses the model fitted during $train()
to create a new Prediction based on the new data in newdata
.
Object task
is the task used during $train()
and required for conversion of newdata
.
If the learner's $train()
method has been called, there is a (size reduced) version
of the training task stored in the learner.
If the learner has been fitted via resample()
or benchmark()
, you need to pass the corresponding task stored
in the ResampleResult or BenchmarkResult, respectively.
Learner$predict_newdata(newdata, task = NULL)
newdata
(any object supported by as_data_backend()
)
New data to predict on.
All data formats convertible by as_data_backend()
are supported, e.g.
data.frame()
or DataBackend.
If a DataBackend is provided as newdata
, the row ids are preserved,
otherwise they are set to to the sequence 1:nrow(newdata)
.
task
(Task).
reset()
Reset the learner, i.e. un-train by resetting the state
.
Learner$reset()
Returns the object itself, but modified by reference.
You need to explicitly $clone()
the object beforehand if you want to keeps
the object in its previous state.
base_learner()
Extracts the base learner from nested learner objects like
GraphLearner
in mlr3pipelines or AutoTuner
in
mlr3tuning.
Returns the Learner itself for regular learners.
Learner$base_learner(recursive = Inf)
recursive
(integer(1)
)
Depth of recursion for multiple nested objects.
encapsulate()
Sets the encapsulation method and fallback learner for the train and predict steps. There are currently four different methods implemented:
"none"
: Just runs the learner in the current session and measures the elapsed time.
Does not keep a log, output is printed directly to the console.
Works well together with traceback()
.
"try"
: Similar to "none"
, but catches error.
Output is printed to the console and not logged.
"evaluate"
: Uses the package evaluate to call the learner, measure time and do the logging.
"callr"
: Uses the package callr to call the learner, measure time and do the logging.
This encapsulation spawns a separate R session in which the learner is called.
While this comes with a considerable overhead, it also guards your session from being teared down by segfaults.
The fallback learner is fitted to create valid predictions in case that either the model fitting or the prediction of the original learner fails.
If the training step or the predict step of the original learner fails, the fallback is used completely to predict predictions sets.
If the original learner only partially fails during predict step (usually in the form of missing to predict some observations or producing some NA`` predictions), these missing predictions are imputed by the fallback. Note that the fallback is always trained, as we do not know in advance whether prediction will fail. If the training step fails, the
$modelfield of the original learner is
NULL'.
Also see the section on error handling the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter10/advanced_technical_aspects_of_mlr3.html#sec-error-handling
Learner$encapsulate(method, fallback = NULL)
method
character(1)
One of "none"
, "try"
, "evaluate"
or "callr"
.
See the description for details.
fallback
Learner
The fallback learner for failed predictions.
self
(invisibly).
clone()
The objects of this class are cloneable with this method.
Learner$clone(deep = FALSE)
deep
Whether to make a deep clone.
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html#sec-learners
Package mlr3learners for a solid collection of essential learners.
Package mlr3extralearners for more learners.
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).
mlr3pipelines to combine learners with pre- and postprocessing steps.
Package mlr3viz for some generic visualizations.
Extension packages for additional task types:
mlr3proba for probabilistic supervised regression and survival analysis.
mlr3cluster for unsupervised clustering.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Other Learner:
LearnerClassif
,
LearnerRegr
,
mlr_learners
,
mlr_learners_classif.debug
,
mlr_learners_classif.featureless
,
mlr_learners_classif.rpart
,
mlr_learners_regr.debug
,
mlr_learners_regr.featureless
,
mlr_learners_regr.rpart
This Learner specializes Learner for classification problems:
task_type
is set to "classif"
.
Creates Predictions of class PredictionClassif.
Possible values for predict_types
are:
"response"
: Predicts a class label for each observation in the test set.
"prob"
: Predicts the posterior probability for each class for each observation in the test set.
Additional learner properties include:
"twoclass"
: The learner works on binary classification problems.
"multiclass"
: The learner works on multiclass classification problems.
Predefined learners can be found in the dictionary mlr_learners. Essential classification learners can be found in this dictionary after loading mlr3learners. Additional learners are implement in the Github package https://github.com/mlr-org/mlr3extralearners.
mlr3::Learner
-> LearnerClassif
new()
Creates a new instance of this R6 class.
LearnerClassif$new( id, param_set = ps(), predict_types = "response", feature_types = character(), properties = character(), data_formats, packages = character(), label = NA_character_, man = NA_character_ )
id
(character(1)
)
Identifier for the new instance.
param_set
(paradox::ParamSet)
Set of hyperparameters.
predict_types
(character()
)
Supported predict types. Must be a subset of mlr_reflections$learner_predict_types
.
feature_types
(character()
)
Feature types the learner operates on. Must be a subset of mlr_reflections$task_feature_types
.
properties
(character()
)
Set of properties of the Learner.
Must be a subset of mlr_reflections$learner_properties
.
The following properties are currently standardized and understood by learners in mlr3:
"missings"
: The learner can handle missing values in the data.
"weights"
: The learner supports observation weights.
"importance"
: The learner supports extraction of importance scores, i.e. comes with an $importance()
extractor function (see section on optional extractors in Learner).
"selected_features"
: The learner supports extraction of the set of selected features, i.e. comes with a $selected_features()
extractor function (see section on optional extractors in Learner).
"oob_error"
: The learner supports extraction of estimated out of bag error, i.e. comes with a oob_error()
extractor function (see section on optional extractors in Learner).
"validation"
: The learner can use a validation task during training.
"internal_tuning"
: The learner is able to internally optimize hyperparameters (those are also tagged with "internal_tuning"
).
"marshal"
: To save learners with this property, you need to call $marshal()
first.
If a learner is in a marshaled state, you call first need to call $unmarshal()
to use its model, e.g. for prediction.
data_formats
(character()
)
Deprecated: ignored, and will be removed in the future.
packages
(character()
)
Set of required packages.
A warning is signaled by the constructor if at least one of the packages is not installed,
but loaded (not attached) later on-demand via requireNamespace()
.
label
(character(1)
)
Label for the new instance.
man
(character(1)
)
String in the format [pkg]::[topic]
pointing to a manual page for this object.
The referenced help package can be opened via method $help()
.
clone()
The objects of this class are cloneable with this method.
LearnerClassif$clone(deep = FALSE)
deep
Whether to make a deep clone.
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html#sec-learners
Package mlr3learners for a solid collection of essential learners.
Package mlr3extralearners for more learners.
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).
mlr3pipelines to combine learners with pre- and postprocessing steps.
Package mlr3viz for some generic visualizations.
Extension packages for additional task types:
mlr3proba for probabilistic supervised regression and survival analysis.
mlr3cluster for unsupervised clustering.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Other Learner:
Learner
,
LearnerRegr
,
mlr_learners
,
mlr_learners_classif.debug
,
mlr_learners_classif.featureless
,
mlr_learners_classif.rpart
,
mlr_learners_regr.debug
,
mlr_learners_regr.featureless
,
mlr_learners_regr.rpart
# get all classification learners from mlr_learners: lrns = mlr_learners$mget(mlr_learners$keys("^classif")) names(lrns) # get a specific learner from mlr_learners: lrn = lrn("classif.rpart") print(lrn) # train the learner: task = tsk("penguins") lrn$train(task, 1:200) # predict on new observations: lrn$predict(task, 201:344)$confusion
# get all classification learners from mlr_learners: lrns = mlr_learners$mget(mlr_learners$keys("^classif")) names(lrns) # get a specific learner from mlr_learners: lrn = lrn("classif.rpart") print(lrn) # train the learner: task = tsk("penguins") lrn$train(task, 1:200) # predict on new observations: lrn$predict(task, 201:344)$confusion
This Learner specializes Learner for regression problems:
task_type
is set to "regr"
.
Creates Predictions of class PredictionRegr.
Possible values for predict_types
are:
"response"
: Predicts a numeric response for each observation in the test set.
"se"
: Predicts the standard error for each value of response for each observation in the test set.
"distr"
: Probability distribution as VectorDistribution
object (requires package distr6
, available via
repository https://raphaels1.r-universe.dev).
Predefined learners can be found in the dictionary mlr_learners. Essential regression learners can be found in this dictionary after loading mlr3learners. Additional learners are implement in the Github package https://github.com/mlr-org/mlr3extralearners.
mlr3::Learner
-> LearnerRegr
quantiles
(numeric()
)
Numeric vector of probabilities to be used while predicting quantiles.
Elements must be between 0 and 1, not missing and provided in ascending order.
If only one quantile is provided, it is used as response.
Otherwise, set $quantile_response
to specify the response quantile.
quantile_response
(numeric(1)
)
The quantile to be used as response.
new()
Creates a new instance of this R6 class.
LearnerRegr$new( id, param_set = ps(), predict_types = "response", feature_types = character(), properties = character(), data_formats, packages = character(), label = NA_character_, man = NA_character_ )
id
(character(1)
)
Identifier for the new instance.
param_set
(paradox::ParamSet)
Set of hyperparameters.
predict_types
(character()
)
Supported predict types. Must be a subset of mlr_reflections$learner_predict_types
.
feature_types
(character()
)
Feature types the learner operates on. Must be a subset of mlr_reflections$task_feature_types
.
properties
(character()
)
Set of properties of the Learner.
Must be a subset of mlr_reflections$learner_properties
.
The following properties are currently standardized and understood by learners in mlr3:
"missings"
: The learner can handle missing values in the data.
"weights"
: The learner supports observation weights.
"importance"
: The learner supports extraction of importance scores, i.e. comes with an $importance()
extractor function (see section on optional extractors in Learner).
"selected_features"
: The learner supports extraction of the set of selected features, i.e. comes with a $selected_features()
extractor function (see section on optional extractors in Learner).
"oob_error"
: The learner supports extraction of estimated out of bag error, i.e. comes with a oob_error()
extractor function (see section on optional extractors in Learner).
"validation"
: The learner can use a validation task during training.
"internal_tuning"
: The learner is able to internally optimize hyperparameters (those are also tagged with "internal_tuning"
).
"marshal"
: To save learners with this property, you need to call $marshal()
first.
If a learner is in a marshaled state, you call first need to call $unmarshal()
to use its model, e.g. for prediction.
data_formats
(character()
)
Deprecated: ignored, and will be removed in the future.
packages
(character()
)
Set of required packages.
A warning is signaled by the constructor if at least one of the packages is not installed,
but loaded (not attached) later on-demand via requireNamespace()
.
label
(character(1)
)
Label for the new instance.
man
(character(1)
)
String in the format [pkg]::[topic]
pointing to a manual page for this object.
The referenced help package can be opened via method $help()
.
clone()
The objects of this class are cloneable with this method.
LearnerRegr$clone(deep = FALSE)
deep
Whether to make a deep clone.
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html#sec-learners
Package mlr3learners for a solid collection of essential learners.
Package mlr3extralearners for more learners.
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).
mlr3pipelines to combine learners with pre- and postprocessing steps.
Package mlr3viz for some generic visualizations.
Extension packages for additional task types:
mlr3proba for probabilistic supervised regression and survival analysis.
mlr3cluster for unsupervised clustering.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Other Learner:
Learner
,
LearnerClassif
,
mlr_learners
,
mlr_learners_classif.debug
,
mlr_learners_classif.featureless
,
mlr_learners_classif.rpart
,
mlr_learners_regr.debug
,
mlr_learners_regr.featureless
,
mlr_learners_regr.rpart
# get all regression learners from mlr_learners: lrns = mlr_learners$mget(mlr_learners$keys("^regr")) names(lrns) # get a specific learner from mlr_learners: mlr_learners$get("regr.rpart") lrn("classif.featureless")
# get all regression learners from mlr_learners: lrns = mlr_learners$mget(mlr_learners$keys("^regr")) names(lrns) # get a specific learner from mlr_learners: mlr_learners$get("regr.rpart") lrn("classif.featureless")
Marshaling is the process of processing the model of a trained Learner
so it an be successfully serialized and
deserialized. The naming is inspired by the marshal package and we
plan to fully migrate to this package once it is on CRAN.
The current implementation should therfore be considered as a temporary solution and is likely
to change in the future.
The central functions (and the only methods that are used by mlr3
internally) are:
the S3 generic marshal_model(model, inplace, ...)
.
Which takes in a model and returns it in marshaled form.
This means, that the resulting object can be serialized and de-serialzed without loss of information.
If a model is serializable anyway, nothing has to be implemented and the generic will fall back to the
default implementation of marshal_model
, which is to return the object as-is.
Otherwise, the marshaled object should be a list with named elements marshaled
and packages
, where the former contains
the marshaled object, and the latter the package that contains the packages required to unmarshal.
Most importantly, this list should contain the package that contains the unmarshal_model
method.
The returned object should have the classes of the original object with the suffix "_marshaled"
appended and the
root class should be set to "marshaled"
.
the S3 generic unmarshal_model(model, inplace ...)
.
Which takes in the marshaled model and returns it in unmarshaled form.
The generic takes care that the packages specified during "marshal"
are loaded, and errs if they are not availabe.
Calling this function on a marshaled model should reconstruct the original model, i.e.
unmarshal_model(marshal_model(x))
should return x
.
The default implementation of this generic returns x
as-is.
the function is_marshaled_model(model)
.
This (helper) function returns TRUE
if the model inherits from class "marshaled"
and FALSE
otherwise.
Note that it is not guarateed that is_marshaled_model(marshal_model(x))
returns TRUE
.
This is because the default marshal_model(x)
returns x
as-is.
For both marshal_model
and unmarshal_model
, the inplace
argument determines whether in-place marshaling
should be performed. This is especially relevant in the context of references semantics.
If inplace
is FALSE
, the original input should not be modified, otherwise this is allowed.
Note that the input and output can still share references, even when inplace
is FALSE
.
learner_unmarshal(.learner, ...) learner_marshal(.learner, ...) learner_marshaled(.learner) marshal_model(model, inplace = FALSE, ...) unmarshal_model(model, inplace = FALSE, ...) is_marshaled_model(model)
learner_unmarshal(.learner, ...) learner_marshal(.learner, ...) learner_marshaled(.learner) marshal_model(model, inplace = FALSE, ...) unmarshal_model(model, inplace = FALSE, ...) is_marshaled_model(model)
.learner |
|
... |
(any) |
model |
(any) |
inplace |
( |
In order to implement marshaling for a Learner, you need to overload the marshal_model
and unmarshal_model
methods for the class of the learner's model and tag the learner with the "marshal"
property.
To make marshaling accessible in an R6-manner, you should also add the public methods $marshal()
, $unmarshal()
and the active binding $marshaled
.
To make this as convenient as possible, the functions learner_marshal(.learner, ...)
, learner_unmarshal(.learner, ...)
and learner_marshaled(.learner)
are provided and can be called from the public methods.
You can verify whether you have correctly implemented marshaling by using the internal test helper
expect_marshalable_learner(learner, task)
. This is also run by expect_learner()
if a task is provided.
For a concrete example on how to implement marshaling, see LearnerClassifDebug
.
This is the abstract base class for measures like MeasureClassif and MeasureRegr.
Measures are classes tailored around two functions doing the work:
A function $score()
which quantifies the performance by comparing the truth and predictions.
A function $aggregator()
which combines multiple performance scores returned by
$score()
to a single numeric value.
In addition to these two functions, meta-information about the performance measure is stored.
Predefined measures are stored in the dictionary mlr_measures,
e.g. classif.auc
or time_train
.
Many of the measures in mlr3 are implemented in mlr3measures as ordinary functions.
A guide on how to extend mlr3 with custom measures can be found in the mlr3book.
For some measures (such as confidence intervals from mlr3inferr
) it is necessary that a measure
returns more than one value.
In such cases it is necessary to overwrite the public methods $aggregate()
and/or $score()
to return a named numeric()
where at least one of its names corresponds to the id
of the measure itself.
id
(character(1)
)
Identifier of the object.
Used in tables, plot and text output.
label
(character(1)
)
Label for this object.
Can be used in tables, plot and text output instead of the ID.
task_type
(character(1)
)
Task type, e.g. "classif"
or "regr"
.
For a complete list of possible task types (depending on the loaded packages),
see mlr_reflections$task_types$type
.
param_set
(paradox::ParamSet)
Set of hyperparameters.
obs_loss
(function()
| NULL
)
Function to calculate the observation-wise loss.
trafo
(list()
| NULL
)
NULL
or a list with two elements:
trafo
: the transformation function applied after aggregating
observation-wise losses (e.g. sqrt
for RMSE)
deriv
: The derivative of the trafo
.
predict_type
(character(1)
)
Required predict type of the Learner.
check_prerequisites
(character(1)
)
How to proceed if one of the following prerequisites is not met:
wrong predict type (e.g., probabilities required, but only labels available).
wrong predict set (e.g., learner predicted on training set, but predictions of test set required).
task properties not satisfied (e.g., binary classification measure on multiclass task).
Possible values are "ignore"
(just return NaN
) and "warn"
(default, raise a warning before returning NaN
).
task_properties
(character()
)
Required properties of the Task.
range
(numeric(2)
)
Lower and upper bound of possible performance scores.
properties
(character()
)
Properties of this measure.
minimize
(logical(1)
)
If TRUE
, good predictions correspond to small values of performance scores.
packages
(character(1)
)
Set of required packages.
These packages are loaded, but not attached.
man
(character(1)
)
String in the format [pkg]::[topic]
pointing to a manual page for this object.
Defaults to NA
, but can be set by child classes.
predict_sets
(character()
)
During resample()
/benchmark()
, a Learner can predict on multiple sets.
Per default, a learner only predicts observations in the test set (predict_sets == "test"
).
To change this behavior, set predict_sets
to a non-empty subset of {"train", "test", "internal_valid"}
.
The "train"
predict set contains the train ids from the resampling. This means that if a learner does validation and
sets $validate
to a ratio (creating the validation data from the training data), the train predictions
will include the predictions for the validation data.
Each set yields a separate Prediction object.
Those can be combined via getters in ResampleResult/BenchmarkResult, or Measures can be configured
to operate on specific subsets of the calculated prediction sets.
hash
(character(1)
)
Hash (unique identifier) for this object.
The hash is calculated based on the id, the parameter settings, predict sets and the $score
, $average
, $aggregator
, $obs_loss
, $trafo
method.
Measure can define additional fields to be included in the hash by setting the field $.extra_hash
.
average
(character(1)
)
Method for aggregation:
"micro"
:
All predictions from multiple resampling iterations are first combined into a single Prediction object.
Next, the scoring function of the measure is applied on this combined object, yielding a single numeric score.
"macro"
:
The scoring function is applied on the Prediction object of each resampling iterations,
each yielding a single numeric score.
Next, the scores are combined with the aggregator
function to a single numerical score.
"custom"
:
The measure comes with a custom aggregation method which directly operates on a ResampleResult.
aggregator
(function()
)
Function to aggregate scores computed on different resampling iterations.
new()
Creates a new instance of this R6 class.
Note that this object is typically constructed via a derived classes, e.g. MeasureClassif or MeasureRegr.
Measure$new( id, task_type = NA, param_set = ps(), range = c(-Inf, Inf), minimize = NA, average = "macro", aggregator = NULL, obs_loss = NULL, properties = character(), predict_type = "response", predict_sets = "test", task_properties = character(), packages = character(), label = NA_character_, man = NA_character_, trafo = NULL )
id
(character(1)
)
Identifier for the new instance.
task_type
(character(1)
)
Type of task, e.g. "regr"
or "classif"
.
Must be an element of mlr_reflections$task_types$type.
param_set
(paradox::ParamSet)
Set of hyperparameters.
range
(numeric(2)
)
Feasible range for this measure as c(lower_bound, upper_bound)
.
Both bounds may be infinite.
minimize
(logical(1)
)
Set to TRUE
if good predictions correspond to small values,
and to FALSE
if good predictions correspond to large values.
If set to NA
(default), tuning this measure is not possible.
average
(character(1)
)
How to average multiple Predictions from a ResampleResult.
The default, "macro"
, calculates the individual performances scores for each Prediction and then uses the
function defined in $aggregator
to average them to a single number.
If set to "micro"
, the individual Prediction objects are first combined into a single new Prediction object which is then used to assess the performance.
The function in $aggregator
is not used in this case.
aggregator
(function()
)
Function to aggregate over multiple iterations. The role of this function depends on
the value of field "average"
:
"macro"
: A numeric vector of scores (one per iteration) is passed.
The aggregate function defaults to mean()
in this case.
"micro"
: The aggregator
function is not used.
Instead, predictions from multiple iterations are first combined and then
scored in one go.
"custom"
: A ResampleResult is passed to the aggregate function.
obs_loss
(function
or NULL
)
The observation-wise loss function, e.g. zero-one for classification error.
properties
(character()
)
Properties of the measure.
Must be a subset of mlr_reflections$measure_properties.
Supported by mlr3
:
"requires_task"
(requires the complete Task),
"requires_learner"
(requires the trained Learner),
"requires_model"
(requires the trained Learner, including the fitted
model),
"requires_train_set"
(requires the training indices from the Resampling), and
"na_score"
(the measure is expected to occasionally return NA
or NaN
).
"primary_iters"
(the measure explictly handles resamplings that only use a subset
of their iterations for the point estimate).
"requires_no_prediction"
(No prediction is required; This usually means that the
measure extracts some information from the learner state.).
predict_type
(character(1)
)
Required predict type of the Learner.
Possible values are stored in mlr_reflections$learner_predict_types.
predict_sets
(character()
)
Prediction sets to operate on, used in aggregate()
to extract the matching predict_sets
from the ResampleResult.
Multiple predict sets are calculated by the respective Learner during resample()
/benchmark()
.
Must be a non-empty subset of {"train", "test", "internal_valid"}
.
If multiple sets are provided, these are first combined to a single prediction object.
Default is "test"
.
task_properties
(character()
)
Required task properties, see Task.
packages
(character()
)
Set of required packages.
A warning is signaled by the constructor if at least one of the packages is not installed,
but loaded (not attached) later on-demand via requireNamespace()
.
label
(character(1)
)
Label for the new instance.
man
(character(1)
)
String in the format [pkg]::[topic]
pointing to a manual page for this object.
The referenced help package can be opened via method $help()
.
trafo
(list()
or NULL
)
An optional list with two elements, containing the transformation "fn"
and its derivative "deriv"
.
The transformation function is the function that is applied after aggregating the pointwise losses, i.e.
this requires an $obs_loss
to be present. An example is sqrt
for RMSE.
format()
Helper for print outputs.
Measure$format(...)
...
(ignored).
print()
Printer.
Measure$print(...)
...
(ignored).
help()
Opens the corresponding help page referenced by field $man
.
Measure$help()
score()
Takes a Prediction (or a list of Prediction objects named with valid predict_sets
)
and calculates a numeric score.
If the measure if flagged with the properties "requires_task"
, "requires_learner"
,
"requires_model"
or "requires_train_set"
, you must additionally
pass the respective Task, the (trained) Learner or the training set indices.
This is handled internally during resample()
/benchmark()
.
Measure$score(prediction, task = NULL, learner = NULL, train_set = NULL)
prediction
(Prediction | named list of Prediction).
task
(Task).
learner
(Learner).
train_set
(integer()
).
numeric(1)
.
aggregate()
Aggregates multiple performance scores into a single score, e.g. by using the aggregator
function of the measure.
Measure$aggregate(rr)
rr
numeric(1)
.
clone()
The objects of this class are cloneable with this method.
Measure$clone(deep = FALSE)
deep
Whether to make a deep clone.
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html#sec-eval
Package mlr3measures for the scoring functions.
Dictionary of Measures: mlr_measures
as.data.table(mlr_measures)
for a table of available Measures in the running session (depending on the loaded packages).
Extension packages for additional task types:
mlr3proba for probabilistic supervised regression and survival analysis.
mlr3cluster for unsupervised clustering.
Other Measure:
MeasureClassif
,
MeasureRegr
,
MeasureSimilarity
,
mlr_measures
,
mlr_measures_aic
,
mlr_measures_bic
,
mlr_measures_classif.costs
,
mlr_measures_debug_classif
,
mlr_measures_elapsed_time
,
mlr_measures_internal_valid_score
,
mlr_measures_oob_error
,
mlr_measures_regr.rsq
,
mlr_measures_selected_features
This measure specializes Measure for classification problems:
task_type
is set to "classif"
.
Possible values for predict_type
are "response"
and "prob"
.
Predefined measures can be found in the dictionary mlr_measures.
The default measure for classification is classif.ce
.
mlr3::Measure
-> MeasureClassif
new()
Creates a new instance of this R6 class.
MeasureClassif$new( id, param_set = ps(), range, minimize = NA, average = "macro", aggregator = NULL, properties = character(), predict_type = "response", predict_sets = "test", task_properties = character(), packages = character(), label = NA_character_, man = NA_character_ )
id
(character(1)
)
Identifier for the new instance.
param_set
(paradox::ParamSet)
Set of hyperparameters.
range
(numeric(2)
)
Feasible range for this measure as c(lower_bound, upper_bound)
.
Both bounds may be infinite.
minimize
(logical(1)
)
Set to TRUE
if good predictions correspond to small values,
and to FALSE
if good predictions correspond to large values.
If set to NA
(default), tuning this measure is not possible.
average
(character(1)
)
How to average multiple Predictions from a ResampleResult.
The default, "macro"
, calculates the individual performances scores for each Prediction and then uses the
function defined in $aggregator
to average them to a single number.
If set to "micro"
, the individual Prediction objects are first combined into a single new Prediction object which is then used to assess the performance.
The function in $aggregator
is not used in this case.
aggregator
(function()
)
Function to aggregate over multiple iterations. The role of this function depends on
the value of field "average"
:
"macro"
: A numeric vector of scores (one per iteration) is passed.
The aggregate function defaults to mean()
in this case.
"micro"
: The aggregator
function is not used.
Instead, predictions from multiple iterations are first combined and then
scored in one go.
"custom"
: A ResampleResult is passed to the aggregate function.
properties
(character()
)
Properties of the measure.
Must be a subset of mlr_reflections$measure_properties.
Supported by mlr3
:
"requires_task"
(requires the complete Task),
"requires_learner"
(requires the trained Learner),
"requires_model"
(requires the trained Learner, including the fitted
model),
"requires_train_set"
(requires the training indices from the Resampling), and
"na_score"
(the measure is expected to occasionally return NA
or NaN
).
"primary_iters"
(the measure explictly handles resamplings that only use a subset
of their iterations for the point estimate).
"requires_no_prediction"
(No prediction is required; This usually means that the
measure extracts some information from the learner state.).
predict_type
(character(1)
)
Required predict type of the Learner.
Possible values are stored in mlr_reflections$learner_predict_types.
predict_sets
(character()
)
Prediction sets to operate on, used in aggregate()
to extract the matching predict_sets
from the ResampleResult.
Multiple predict sets are calculated by the respective Learner during resample()
/benchmark()
.
Must be a non-empty subset of {"train", "test", "internal_valid"}
.
If multiple sets are provided, these are first combined to a single prediction object.
Default is "test"
.
task_properties
(character()
)
Required task properties, see Task.
packages
(character()
)
Set of required packages.
A warning is signaled by the constructor if at least one of the packages is not installed,
but loaded (not attached) later on-demand via requireNamespace()
.
label
(character(1)
)
Label for the new instance.
man
(character(1)
)
String in the format [pkg]::[topic]
pointing to a manual page for this object.
The referenced help package can be opened via method $help()
.
clone()
The objects of this class are cloneable with this method.
MeasureClassif$clone(deep = FALSE)
deep
Whether to make a deep clone.
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html#sec-eval
Package mlr3measures for the scoring functions.
Dictionary of Measures: mlr_measures
as.data.table(mlr_measures)
for a table of available Measures in the running session (depending on the loaded packages).
Extension packages for additional task types:
mlr3proba for probabilistic supervised regression and survival analysis.
mlr3cluster for unsupervised clustering.
Other Measure:
Measure
,
MeasureRegr
,
MeasureSimilarity
,
mlr_measures
,
mlr_measures_aic
,
mlr_measures_bic
,
mlr_measures_classif.costs
,
mlr_measures_debug_classif
,
mlr_measures_elapsed_time
,
mlr_measures_internal_valid_score
,
mlr_measures_oob_error
,
mlr_measures_regr.rsq
,
mlr_measures_selected_features
This measure specializes Measure for regression problems:
task_type
is set to "regr"
.
Possible values for predict_type
are "response"
, "se"
and "distr"
.
Predefined measures can be found in the dictionary mlr_measures.
The default measure for regression is regr.mse
.
mlr3::Measure
-> MeasureRegr
new()
Creates a new instance of this R6 class.
MeasureRegr$new( id, param_set = ps(), range, minimize = NA, average = "macro", aggregator = NULL, properties = character(), predict_type = "response", predict_sets = "test", task_properties = character(), packages = character(), label = NA_character_, man = NA_character_ )
id
(character(1)
)
Identifier for the new instance.
param_set
(paradox::ParamSet)
Set of hyperparameters.
range
(numeric(2)
)
Feasible range for this measure as c(lower_bound, upper_bound)
.
Both bounds may be infinite.
minimize
(logical(1)
)
Set to TRUE
if good predictions correspond to small values,
and to FALSE
if good predictions correspond to large values.
If set to NA
(default), tuning this measure is not possible.
average
(character(1)
)
How to average multiple Predictions from a ResampleResult.
The default, "macro"
, calculates the individual performances scores for each Prediction and then uses the
function defined in $aggregator
to average them to a single number.
If set to "micro"
, the individual Prediction objects are first combined into a single new Prediction object which is then used to assess the performance.
The function in $aggregator
is not used in this case.
aggregator
(function()
)
Function to aggregate over multiple iterations. The role of this function depends on
the value of field "average"
:
"macro"
: A numeric vector of scores (one per iteration) is passed.
The aggregate function defaults to mean()
in this case.
"micro"
: The aggregator
function is not used.
Instead, predictions from multiple iterations are first combined and then
scored in one go.
"custom"
: A ResampleResult is passed to the aggregate function.
properties
(character()
)
Properties of the measure.
Must be a subset of mlr_reflections$measure_properties.
Supported by mlr3
:
"requires_task"
(requires the complete Task),
"requires_learner"
(requires the trained Learner),
"requires_model"
(requires the trained Learner, including the fitted
model),
"requires_train_set"
(requires the training indices from the Resampling), and
"na_score"
(the measure is expected to occasionally return NA
or NaN
).
"primary_iters"
(the measure explictly handles resamplings that only use a subset
of their iterations for the point estimate).
"requires_no_prediction"
(No prediction is required; This usually means that the
measure extracts some information from the learner state.).
predict_type
(character(1)
)
Required predict type of the Learner.
Possible values are stored in mlr_reflections$learner_predict_types.
predict_sets
(character()
)
Prediction sets to operate on, used in aggregate()
to extract the matching predict_sets
from the ResampleResult.
Multiple predict sets are calculated by the respective Learner during resample()
/benchmark()
.
Must be a non-empty subset of {"train", "test", "internal_valid"}
.
If multiple sets are provided, these are first combined to a single prediction object.
Default is "test"
.
task_properties
(character()
)
Required task properties, see Task.
packages
(character()
)
Set of required packages.
A warning is signaled by the constructor if at least one of the packages is not installed,
but loaded (not attached) later on-demand via requireNamespace()
.
label
(character(1)
)
Label for the new instance.
man
(character(1)
)
String in the format [pkg]::[topic]
pointing to a manual page for this object.
The referenced help package can be opened via method $help()
.
clone()
The objects of this class are cloneable with this method.
MeasureRegr$clone(deep = FALSE)
deep
Whether to make a deep clone.
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html#sec-eval
Package mlr3measures for the scoring functions.
Dictionary of Measures: mlr_measures
as.data.table(mlr_measures)
for a table of available Measures in the running session (depending on the loaded packages).
Extension packages for additional task types:
mlr3proba for probabilistic supervised regression and survival analysis.
mlr3cluster for unsupervised clustering.
Other Measure:
Measure
,
MeasureClassif
,
MeasureSimilarity
,
mlr_measures
,
mlr_measures_aic
,
mlr_measures_bic
,
mlr_measures_classif.costs
,
mlr_measures_debug_classif
,
mlr_measures_elapsed_time
,
mlr_measures_internal_valid_score
,
mlr_measures_oob_error
,
mlr_measures_regr.rsq
,
mlr_measures_selected_features
This measure specializes Measure for measures quantifying the similarity of
sets of selected features.
To calculate similarity measures, the Learner must have the property
"selected_features"
.
task_type
is set to NA_character_
.
average
is set to "custom"
.
Predefined measures can be found in the dictionary
mlr_measures, prefixed with "sim."
.
mlr3::Measure
-> MeasureSimilarity
new()
Creates a new instance of this R6 class.
MeasureSimilarity$new( id, param_set = ps(), range, minimize = NA, average = "macro", aggregator = NULL, properties = character(), predict_type = NA_character_, predict_sets = "test", task_properties = character(), packages = character(), label = NA_character_, man = NA_character_ )
id
(character(1)
)
Identifier for the new instance.
param_set
(paradox::ParamSet)
Set of hyperparameters.
range
(numeric(2)
)
Feasible range for this measure as c(lower_bound, upper_bound)
.
Both bounds may be infinite.
minimize
(logical(1)
)
Set to TRUE
if good predictions correspond to small values,
and to FALSE
if good predictions correspond to large values.
If set to NA
(default), tuning this measure is not possible.
average
(character(1)
)
How to average multiple Predictions from a ResampleResult.
The default, "macro"
, calculates the individual performances scores for each Prediction and then uses the
function defined in $aggregator
to average them to a single number.
If set to "micro"
, the individual Prediction objects are first combined into a single new Prediction object which is then used to assess the performance.
The function in $aggregator
is not used in this case.
aggregator
(function()
)
Function to aggregate over multiple iterations. The role of this function depends on
the value of field "average"
:
"macro"
: A numeric vector of scores (one per iteration) is passed.
The aggregate function defaults to mean()
in this case.
"micro"
: The aggregator
function is not used.
Instead, predictions from multiple iterations are first combined and then
scored in one go.
"custom"
: A ResampleResult is passed to the aggregate function.
properties
(character()
)
Properties of the measure.
Must be a subset of mlr_reflections$measure_properties.
Supported by mlr3
:
"requires_task"
(requires the complete Task),
"requires_learner"
(requires the trained Learner),
"requires_model"
(requires the trained Learner, including the fitted
model),
"requires_train_set"
(requires the training indices from the Resampling), and
"na_score"
(the measure is expected to occasionally return NA
or NaN
).
"primary_iters"
(the measure explictly handles resamplings that only use a subset
of their iterations for the point estimate).
"requires_no_prediction"
(No prediction is required; This usually means that the
measure extracts some information from the learner state.).
predict_type
(character(1)
)
Required predict type of the Learner.
Possible values are stored in mlr_reflections$learner_predict_types.
predict_sets
(character()
)
Prediction sets to operate on, used in aggregate()
to extract the matching predict_sets
from the ResampleResult.
Multiple predict sets are calculated by the respective Learner during resample()
/benchmark()
.
Must be a non-empty subset of {"train", "test", "internal_valid"}
.
If multiple sets are provided, these are first combined to a single prediction object.
Default is "test"
.
task_properties
(character()
)
Required task properties, see Task.
packages
(character()
)
Set of required packages.
A warning is signaled by the constructor if at least one of the packages is not installed,
but loaded (not attached) later on-demand via requireNamespace()
.
label
(character(1)
)
Label for the new instance.
man
(character(1)
)
String in the format [pkg]::[topic]
pointing to a manual page for this object.
The referenced help package can be opened via method $help()
.
clone()
The objects of this class are cloneable with this method.
MeasureSimilarity$clone(deep = FALSE)
deep
Whether to make a deep clone.
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html#sec-eval
Package mlr3measures for the scoring functions.
Dictionary of Measures: mlr_measures
as.data.table(mlr_measures)
for a table of available Measures in the running session (depending on the loaded packages).
Extension packages for additional task types:
mlr3proba for probabilistic supervised regression and survival analysis.
mlr3cluster for unsupervised clustering.
Other Measure:
Measure
,
MeasureClassif
,
MeasureRegr
,
mlr_measures
,
mlr_measures_aic
,
mlr_measures_bic
,
mlr_measures_classif.costs
,
mlr_measures_debug_classif
,
mlr_measures_elapsed_time
,
mlr_measures_internal_valid_score
,
mlr_measures_oob_error
,
mlr_measures_regr.rsq
,
mlr_measures_selected_features
task = tsk("penguins") learners = list( lrn("classif.rpart", maxdepth = 1, id = "r1"), lrn("classif.rpart", maxdepth = 2, id = "r2") ) resampling = rsmp("cv", folds = 3) grid = benchmark_grid(task, learners, resampling) bmr = benchmark(grid, store_models = TRUE) bmr$aggregate(msrs(c("classif.ce", "sim.jaccard")))
task = tsk("penguins") learners = list( lrn("classif.rpart", maxdepth = 1, id = "r1"), lrn("classif.rpart", maxdepth = 2, id = "r2") ) resampling = rsmp("cv", folds = 3) grid = benchmark_grid(task, learners, resampling) bmr = benchmark(grid, store_models = TRUE) bmr$aggregate(msrs(c("classif.ce", "sim.jaccard")))
A simple mlr3misc::Dictionary storing objects of class Learner.
Each learner has an associated help page, see mlr_learners_[id]
.
This dictionary can get populated with additional learners by add-on packages. For an opinionated set of solid classification and regression learners, install and load the mlr3learners package. More learners are connected via https://github.com/mlr-org/mlr3extralearners.
For a more convenient way to retrieve and construct learners, see lrn()
/lrns()
.
R6::R6Class object inheriting from mlr3misc::Dictionary.
See mlr3misc::Dictionary.
as.data.table(dict, ..., objects = FALSE)
mlr3misc::Dictionary -> data.table::data.table()
Returns a data.table::data.table()
with fields "key", "label", "task_type", "feature_types", "packages",
"properties", and "predict_types" as columns.
If objects
is set to TRUE
, the constructed objects are returned in the list column named object
.
Sugar functions: lrn()
, lrns()
Extension Packages: mlr3learners
Other Dictionary:
mlr_measures
,
mlr_resamplings
,
mlr_task_generators
,
mlr_tasks
Other Learner:
Learner
,
LearnerClassif
,
LearnerRegr
,
mlr_learners_classif.debug
,
mlr_learners_classif.featureless
,
mlr_learners_classif.rpart
,
mlr_learners_regr.debug
,
mlr_learners_regr.featureless
,
mlr_learners_regr.rpart
as.data.table(mlr_learners) mlr_learners$get("classif.featureless") lrn("classif.rpart")
as.data.table(mlr_learners) mlr_learners$get("classif.featureless") lrn("classif.rpart")
A simple LearnerClassif used primarily in the unit tests and for debugging purposes. If no hyperparameter is set, it simply constantly predicts a randomly selected label. The following hyperparameters trigger the following actions:
Probability to raise an exception during predict.
Probability to raises an exception during train.
Probability to output a message during predict.
Probability to output a message during train.
Ratio of predictions which will be NA.
To to encode missingness. “na” will insert NA values, “omit” will just return fewer predictions than requested.
Saves input task in model
slot during training and prediction.
Probability to provokes a segfault during predict.
Probability to provokes a segfault during train.
Function returning a single number determining how many seconds to sleep during $train()
.
Function returning a single number determining how many seconds to sleep during $predict()
.
Number of threads to use. Has no effect.
Probability to signal a warning during predict.
Probability to signal a warning during train.
Numeric tuning parameter. Has no effect.
Integer parameter for testing hotstarting.
If TRUE
, marshal_model
will increase the marshal_count
by 1 each time it is called. The default is FALSE
.
If TRUE
, the $predict()
function will throw an error if the model was not unmarshaled in the same session that is used for prediction.)
Note that segfaults may not be triggered reliably on your operating system. Also note that if they work as intended, they will tear down your R session immediately!
This Learner can be instantiated via the dictionary mlr_learners or with the associated sugar function lrn()
:
mlr_learners$get("classif.debug") lrn("classif.debug")
Task type: “classif”
Predict Types: “response”, “prob”
Feature Types: “logical”, “integer”, “numeric”, “character”, “factor”, “ordered”
Required Packages: mlr3
Id | Type | Default | Levels | Range |
error_predict | numeric | 0 | |
|
error_train | numeric | 0 | |
|
message_predict | numeric | 0 | |
|
message_train | numeric | 0 | |
|
predict_missing | numeric | 0 | |
|
predict_missing_type | character | na | na, omit | - |
save_tasks | logical | FALSE | TRUE, FALSE | - |
segfault_predict | numeric | 0 | |
|
segfault_train | numeric | 0 | |
|
sleep_train | untyped | - | - | |
sleep_predict | untyped | - | - | |
threads | integer | - | |
|
warning_predict | numeric | 0 | |
|
warning_train | numeric | 0 | |
|
x | numeric | - | |
|
iter | integer | 1 | |
|
early_stopping | logical | FALSE | TRUE, FALSE | - |
count_marshaling | logical | FALSE | TRUE, FALSE | - |
check_pid | logical | TRUE | TRUE, FALSE | - |
mlr3::Learner
-> mlr3::LearnerClassif
-> LearnerClassifDebug
marshaled
(logical(1)
)
Whether the learner has been marshaled.
internal_valid_scores
Retrieves the internal validation scores as a named list()
.
Returns NULL
if learner is not trained yet.
internal_tuned_values
Retrieves the internally tuned values as a named list()
.
Returns NULL
if learner is not trained yet.
validate
How to construct the internal validation data. This parameter can be either NULL
,
a ratio in $(0, 1)$, "test"
, or "predefined"
.
new()
Creates a new instance of this R6 class.
LearnerClassifDebug$new()
marshal()
Marshal the learner's model.
LearnerClassifDebug$marshal(...)
...
(any)
Additional arguments passed to marshal_model()
.
unmarshal()
Unmarshal the learner's model.
LearnerClassifDebug$unmarshal(...)
...
(any)
Additional arguments passed to unmarshal_model()
.
importance()
Returns 0 for each feature seen in training.
LearnerClassifDebug$importance()
Named numeric()
.
selected_features()
Always returns character(0).
LearnerClassifDebug$selected_features()
character()
.
clone()
The objects of this class are cloneable with this method.
LearnerClassifDebug$clone(deep = FALSE)
deep
Whether to make a deep clone.
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html#sec-learners
Package mlr3learners for a solid collection of essential learners.
Package mlr3extralearners for more learners.
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).
mlr3pipelines to combine learners with pre- and postprocessing steps.
Package mlr3viz for some generic visualizations.
Extension packages for additional task types:
mlr3proba for probabilistic supervised regression and survival analysis.
mlr3cluster for unsupervised clustering.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Other Learner:
Learner
,
LearnerClassif
,
LearnerRegr
,
mlr_learners
,
mlr_learners_classif.featureless
,
mlr_learners_classif.rpart
,
mlr_learners_regr.debug
,
mlr_learners_regr.featureless
,
mlr_learners_regr.rpart
learner = lrn("classif.debug") learner$param_set$values = list(message_train = 1, save_tasks = TRUE) # this should signal a message task = tsk("penguins") learner$train(task) learner$predict(task) # task_train and task_predict are the input tasks for train() and predict() names(learner$model)
learner = lrn("classif.debug") learner$param_set$values = list(message_train = 1, save_tasks = TRUE) # this should signal a message task = tsk("penguins") learner$train(task) learner$predict(task) # task_train and task_predict are the input tasks for train() and predict() names(learner$model)
A simple LearnerClassif which only analyzes the labels during train, ignoring all features.
Hyperparameter method
determines the mode of operation during prediction:
Predicts the most frequent label. If there are two or more labels tied, randomly selects one per prediction. Probabilities correspond to the relative frequency of the class labels in the training set.
Randomly predict a label uniformly. Probabilities correspond to a uniform distribution of class labels, i.e. 1 divided by the number of classes.
Randomly predict a label, with probability estimated from the training distribution. For consistency, probabilities are 1 for the sampled label and 0 for all other labels.
This Learner can be instantiated via the dictionary mlr_learners or with the associated sugar function lrn()
:
mlr_learners$get("classif.featureless") lrn("classif.featureless")
Task type: “classif”
Predict Types: “response”, “prob”
Feature Types: “logical”, “integer”, “numeric”, “character”, “factor”, “ordered”, “POSIXct”
Required Packages: mlr3
Id | Type | Default | Levels |
method | character | mode | mode, sample, weighted.sample |
mlr3::Learner
-> mlr3::LearnerClassif
-> LearnerClassifFeatureless
new()
Creates a new instance of this R6 class.
LearnerClassifFeatureless$new()
importance()
All features have a score of 0
for this learner.
LearnerClassifFeatureless$importance()
Named numeric()
.
selected_features()
Selected features are always the empty set for this learner.
LearnerClassifFeatureless$selected_features()
character(0)
.
clone()
The objects of this class are cloneable with this method.
LearnerClassifFeatureless$clone(deep = FALSE)
deep
Whether to make a deep clone.
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html#sec-learners
Package mlr3learners for a solid collection of essential learners.
Package mlr3extralearners for more learners.
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).
mlr3pipelines to combine learners with pre- and postprocessing steps.
Package mlr3viz for some generic visualizations.
Extension packages for additional task types:
mlr3proba for probabilistic supervised regression and survival analysis.
mlr3cluster for unsupervised clustering.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Other Learner:
Learner
,
LearnerClassif
,
LearnerRegr
,
mlr_learners
,
mlr_learners_classif.debug
,
mlr_learners_classif.rpart
,
mlr_learners_regr.debug
,
mlr_learners_regr.featureless
,
mlr_learners_regr.rpart
A LearnerClassif for a classification tree implemented in rpart::rpart()
in package rpart.
Parameter xval
is initialized to 0 in order to save some computation time.
Parameter model
has been renamed to keep_model
.
This Learner can be instantiated via the dictionary mlr_learners or with the associated sugar function lrn()
:
mlr_learners$get("classif.rpart") lrn("classif.rpart")
Task type: “classif”
Predict Types: “response”, “prob”
Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”
Id | Type | Default | Levels | Range |
cp | numeric | 0.01 | |
|
keep_model | logical | FALSE | TRUE, FALSE | - |
maxcompete | integer | 4 | |
|
maxdepth | integer | 30 | |
|
maxsurrogate | integer | 5 | |
|
minbucket | integer | - | |
|
minsplit | integer | 20 | |
|
surrogatestyle | integer | 0 | |
|
usesurrogate | integer | 2 | |
|
xval | integer | 10 | |
|
mlr3::Learner
-> mlr3::LearnerClassif
-> LearnerClassifRpart
new()
Creates a new instance of this R6 class.
LearnerClassifRpart$new()
importance()
The importance scores are extracted from the model slot variable.importance
.
LearnerClassifRpart$importance()
Named numeric()
.
selected_features()
Selected features are extracted from the model slot frame$var
.
LearnerClassifRpart$selected_features()
character()
.
clone()
The objects of this class are cloneable with this method.
LearnerClassifRpart$clone(deep = FALSE)
deep
Whether to make a deep clone.
Breiman L, Friedman JH, Olshen RA, Stone CJ (1984). Classification And Regression Trees. Routledge. doi:10.1201/9781315139470.
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html#sec-learners
Package mlr3learners for a solid collection of essential learners.
Package mlr3extralearners for more learners.
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).
mlr3pipelines to combine learners with pre- and postprocessing steps.
Package mlr3viz for some generic visualizations.
Extension packages for additional task types:
mlr3proba for probabilistic supervised regression and survival analysis.
mlr3cluster for unsupervised clustering.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Other Learner:
Learner
,
LearnerClassif
,
LearnerRegr
,
mlr_learners
,
mlr_learners_classif.debug
,
mlr_learners_classif.featureless
,
mlr_learners_regr.debug
,
mlr_learners_regr.featureless
,
mlr_learners_regr.rpart
A simple LearnerRegr used primarily in the unit tests and for debugging purposes. If no hyperparameter is set, it simply constantly predicts the mean value of the training data. The following hyperparameters trigger the following actions:
Ratio of predictions which will be NA.
To to encode missingness. “na” will insert NA values, “omit” will just return fewer predictions than requested.
Saves input task in model
slot during training and prediction.
Number of threads to use. Has no effect.
Numeric tuning parameter. Has no effect.
This Learner can be instantiated via the dictionary mlr_learners or with the associated sugar function lrn()
:
mlr_learners$get("regr.debug") lrn("regr.debug")
Task type: “regr”
Predict Types: “response”, “se”, “quantiles”
Feature Types: “logical”, “integer”, “numeric”, “character”, “factor”, “ordered”
Required Packages: mlr3
Id | Type | Default | Levels | Range |
predict_missing | numeric | 0 | |
|
predict_missing_type | character | na | na, omit | - |
save_tasks | logical | FALSE | TRUE, FALSE | - |
threads | integer | - | |
|
x | numeric | - | |
|
mlr3::Learner
-> mlr3::LearnerRegr
-> LearnerRegrDebug
new()
Creates a new instance of this R6 class.
LearnerRegrDebug$new()
importance()
Returns 0 for each feature seen in training.
LearnerRegrDebug$importance()
Named numeric()
.
selected_features()
Always returns character(0).
LearnerRegrDebug$selected_features()
character()
.
clone()
The objects of this class are cloneable with this method.
LearnerRegrDebug$clone(deep = FALSE)
deep
Whether to make a deep clone.
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html#sec-learners
Package mlr3learners for a solid collection of essential learners.
Package mlr3extralearners for more learners.
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).
mlr3pipelines to combine learners with pre- and postprocessing steps.
Package mlr3viz for some generic visualizations.
Extension packages for additional task types:
mlr3proba for probabilistic supervised regression and survival analysis.
mlr3cluster for unsupervised clustering.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Other Learner:
Learner
,
LearnerClassif
,
LearnerRegr
,
mlr_learners
,
mlr_learners_classif.debug
,
mlr_learners_classif.featureless
,
mlr_learners_classif.rpart
,
mlr_learners_regr.featureless
,
mlr_learners_regr.rpart
task = tsk("mtcars") learner = lrn("regr.debug", save_tasks = TRUE) learner$train(task, row_ids = 1:20) prediction = learner$predict(task, row_ids = 21:32) learner$model$task_train learner$model$task_predict
task = tsk("mtcars") learner = lrn("regr.debug", save_tasks = TRUE) learner$train(task, row_ids = 1:20) prediction = learner$predict(task, row_ids = 21:32) learner$model$task_train learner$model$task_predict
A simple LearnerRegr which only analyzes the response during train, ignoring all features.
If hyperparameter robust
is FALSE
(default), constantly predicts mean(y)
as response
and sd(y)
as standard error.
If robust
is TRUE
, median()
and mad()
are used instead of mean()
and sd()
,
respectively.
This Learner can be instantiated via the dictionary mlr_learners or with the associated sugar function lrn()
:
mlr_learners$get("regr.featureless") lrn("regr.featureless")
Task type: “regr”
Predict Types: “response”, “se”, “quantiles”
Feature Types: “logical”, “integer”, “numeric”, “character”, “factor”, “ordered”, “POSIXct”
Required Packages: mlr3, 'stats'
Id | Type | Default | Levels |
robust | logical | TRUE | TRUE, FALSE |
mlr3::Learner
-> mlr3::LearnerRegr
-> LearnerRegrFeatureless
new()
Creates a new instance of this R6 class.
LearnerRegrFeatureless$new()
importance()
All features have a score of 0
for this learner.
LearnerRegrFeatureless$importance()
Named numeric()
.
selected_features()
Selected features are always the empty set for this learner.
LearnerRegrFeatureless$selected_features()
character(0)
.
clone()
The objects of this class are cloneable with this method.
LearnerRegrFeatureless$clone(deep = FALSE)
deep
Whether to make a deep clone.
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html#sec-learners
Package mlr3learners for a solid collection of essential learners.
Package mlr3extralearners for more learners.
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).
mlr3pipelines to combine learners with pre- and postprocessing steps.
Package mlr3viz for some generic visualizations.
Extension packages for additional task types:
mlr3proba for probabilistic supervised regression and survival analysis.
mlr3cluster for unsupervised clustering.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Other Learner:
Learner
,
LearnerClassif
,
LearnerRegr
,
mlr_learners
,
mlr_learners_classif.debug
,
mlr_learners_classif.featureless
,
mlr_learners_classif.rpart
,
mlr_learners_regr.debug
,
mlr_learners_regr.rpart
A LearnerRegr for a regression tree implemented in rpart::rpart()
in package rpart.
Parameter xval
is initialized to 0 in order to save some computation time.
Parameter model
has been renamed to keep_model
.
This Learner can be instantiated via the dictionary mlr_learners or with the associated sugar function lrn()
:
mlr_learners$get("regr.rpart") lrn("regr.rpart")
Task type: “regr”
Predict Types: “response”
Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”
Id | Type | Default | Levels | Range |
cp | numeric | 0.01 | |
|
keep_model | logical | FALSE | TRUE, FALSE | - |
maxcompete | integer | 4 | |
|
maxdepth | integer | 30 | |
|
maxsurrogate | integer | 5 | |
|
minbucket | integer | - | |
|
minsplit | integer | 20 | |
|
surrogatestyle | integer | 0 | |
|
usesurrogate | integer | 2 | |
|
xval | integer | 10 | |
|
mlr3::Learner
-> mlr3::LearnerRegr
-> LearnerRegrRpart
new()
Creates a new instance of this R6 class.
LearnerRegrRpart$new()
importance()
The importance scores are extracted from the model slot variable.importance
.
LearnerRegrRpart$importance()
Named numeric()
.
selected_features()
Selected features are extracted from the model slot frame$var
.
LearnerRegrRpart$selected_features()
character()
.
clone()
The objects of this class are cloneable with this method.
LearnerRegrRpart$clone(deep = FALSE)
deep
Whether to make a deep clone.
Breiman L, Friedman JH, Olshen RA, Stone CJ (1984). Classification And Regression Trees. Routledge. doi:10.1201/9781315139470.
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html#sec-learners
Package mlr3learners for a solid collection of essential learners.
Package mlr3extralearners for more learners.
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).
mlr3pipelines to combine learners with pre- and postprocessing steps.
Package mlr3viz for some generic visualizations.
Extension packages for additional task types:
mlr3proba for probabilistic supervised regression and survival analysis.
mlr3cluster for unsupervised clustering.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Other Learner:
Learner
,
LearnerClassif
,
LearnerRegr
,
mlr_learners
,
mlr_learners_classif.debug
,
mlr_learners_classif.featureless
,
mlr_learners_classif.rpart
,
mlr_learners_regr.debug
,
mlr_learners_regr.featureless
A simple mlr3misc::Dictionary storing objects of class Measure.
Each measure has an associated help page, see mlr_measures_[id]
.
This dictionary can get populated with additional measures by add-on packages. E.g., mlr3proba adds survival measures and mlr3cluster adds cluster analysis measures.
For a more convenient way to retrieve and construct measures, see msr()
/msrs()
.
R6::R6Class object inheriting from mlr3misc::Dictionary.
See mlr3misc::Dictionary.
as.data.table(dict, ..., objects = FALSE)
mlr3misc::Dictionary -> data.table::data.table()
Returns a data.table::data.table()
with fields "key", "label", "task_type", "packages",
"predict_type", and "task_properties" as columns.
If objects
is set to TRUE
, the constructed objects are returned in the list column named object
.
Sugar functions: msr()
, msrs()
Implementation of most measures: mlr3measures
Other Dictionary:
mlr_learners
,
mlr_resamplings
,
mlr_task_generators
,
mlr_tasks
Other Measure:
Measure
,
MeasureClassif
,
MeasureRegr
,
MeasureSimilarity
,
mlr_measures_aic
,
mlr_measures_bic
,
mlr_measures_classif.costs
,
mlr_measures_debug_classif
,
mlr_measures_elapsed_time
,
mlr_measures_internal_valid_score
,
mlr_measures_oob_error
,
mlr_measures_regr.rsq
,
mlr_measures_selected_features
as.data.table(mlr_measures) mlr_measures$get("classif.ce") msr("regr.mse")
as.data.table(mlr_measures) mlr_measures$get("classif.ce") msr("regr.mse")
Calculates the Akaike Information Criterion (AIC) which is a
trade-off between goodness of fit (measured in terms of
log-likelihood) and model complexity (measured in terms of number
of included features).
Internally, stats::AIC()
is called with parameter k
(defaulting to 2).
Requires the learner property "loglik"
, NA
is returned for unsupported learners.
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr()
:
mlr_measures$get("aic") msr("aic")
Task type: “NA”
Range:
Minimize: TRUE
Average: macro
Required Prediction: “NA”
Required Packages: mlr3
Id | Type | Default | Range |
k | integer | - | |
mlr3::Measure
-> MeasureAIC
new()
Creates a new instance of this R6 class.
MeasureAIC$new()
clone()
The objects of this class are cloneable with this method.
MeasureAIC$clone(deep = FALSE)
deep
Whether to make a deep clone.
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html#sec-eval
Package mlr3measures for the scoring functions.
Dictionary of Measures: mlr_measures
as.data.table(mlr_measures)
for a table of available Measures in the running session (depending on the loaded packages).
Extension packages for additional task types:
mlr3proba for probabilistic supervised regression and survival analysis.
mlr3cluster for unsupervised clustering.
Other Measure:
Measure
,
MeasureClassif
,
MeasureRegr
,
MeasureSimilarity
,
mlr_measures
,
mlr_measures_bic
,
mlr_measures_classif.costs
,
mlr_measures_debug_classif
,
mlr_measures_elapsed_time
,
mlr_measures_internal_valid_score
,
mlr_measures_oob_error
,
mlr_measures_regr.rsq
,
mlr_measures_selected_features
Calculates the Bayesian Information Criterion (BIC) which is a
trade-off between goodness of fit (measured in terms of
log-likelihood) and model complexity (measured in terms of number
of included features).
Internally, stats::BIC()
is called.
Requires the learner property "loglik"
, NA
is returned for unsupported learners.
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr()
:
mlr_measures$get("bic") msr("bic")
Task type: “NA”
Range:
Minimize: TRUE
Average: macro
Required Prediction: “NA”
Required Packages: mlr3
Empty ParamSet
mlr3::Measure
-> MeasureBIC
new()
Creates a new instance of this R6 class.
MeasureBIC$new()
clone()
The objects of this class are cloneable with this method.
MeasureBIC$clone(deep = FALSE)
deep
Whether to make a deep clone.
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html#sec-eval
Package mlr3measures for the scoring functions.
Dictionary of Measures: mlr_measures
as.data.table(mlr_measures)
for a table of available Measures in the running session (depending on the loaded packages).
Extension packages for additional task types:
mlr3proba for probabilistic supervised regression and survival analysis.
mlr3cluster for unsupervised clustering.
Other Measure:
Measure
,
MeasureClassif
,
MeasureRegr
,
MeasureSimilarity
,
mlr_measures
,
mlr_measures_aic
,
mlr_measures_classif.costs
,
mlr_measures_debug_classif
,
mlr_measures_elapsed_time
,
mlr_measures_internal_valid_score
,
mlr_measures_oob_error
,
mlr_measures_regr.rsq
,
mlr_measures_selected_features
Measure to compare true observed labels with predicted labels in multiclass classification tasks.
The Classification Accuracy is defined as
where are normalized weights for all observations
.
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr()
:
mlr_measures$get("classif.acc") msr("classif.acc")
Empty ParamSet
Type: "classif"
Range:
Minimize: FALSE
Required prediction: response
The score function calls mlr3measures::acc()
from package mlr3measures.
If the measure is undefined for the input, NaN
is returned.
This can be customized by setting the field na_value
.
Dictionary of Measures: mlr_measures
as.data.table(mlr_measures)
for a complete table of all (also dynamically created) Measure implementations.
Other classification measures:
mlr_measures_classif.auc
,
mlr_measures_classif.bacc
,
mlr_measures_classif.bbrier
,
mlr_measures_classif.ce
,
mlr_measures_classif.costs
,
mlr_measures_classif.dor
,
mlr_measures_classif.fbeta
,
mlr_measures_classif.fdr
,
mlr_measures_classif.fn
,
mlr_measures_classif.fnr
,
mlr_measures_classif.fomr
,
mlr_measures_classif.fp
,
mlr_measures_classif.fpr
,
mlr_measures_classif.logloss
,
mlr_measures_classif.mauc_au1p
,
mlr_measures_classif.mauc_au1u
,
mlr_measures_classif.mauc_aunp
,
mlr_measures_classif.mauc_aunu
,
mlr_measures_classif.mauc_mu
,
mlr_measures_classif.mbrier
,
mlr_measures_classif.mcc
,
mlr_measures_classif.npv
,
mlr_measures_classif.ppv
,
mlr_measures_classif.prauc
,
mlr_measures_classif.precision
,
mlr_measures_classif.recall
,
mlr_measures_classif.sensitivity
,
mlr_measures_classif.specificity
,
mlr_measures_classif.tn
,
mlr_measures_classif.tnr
,
mlr_measures_classif.tp
,
mlr_measures_classif.tpr
Other multiclass classification measures:
mlr_measures_classif.bacc
,
mlr_measures_classif.ce
,
mlr_measures_classif.costs
,
mlr_measures_classif.logloss
,
mlr_measures_classif.mauc_au1p
,
mlr_measures_classif.mauc_au1u
,
mlr_measures_classif.mauc_aunp
,
mlr_measures_classif.mauc_aunu
,
mlr_measures_classif.mauc_mu
,
mlr_measures_classif.mbrier
,
mlr_measures_classif.mcc
Measure to compare true observed labels with predicted probabilities in binary classification tasks.
Computes the area under the Receiver Operator Characteristic (ROC) curve. The AUC can be interpreted as the probability that a randomly chosen positive observation has a higher predicted probability than a randomly chosen negative observation.
This measure is undefined if the true values are either all positive or all negative.
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr()
:
mlr_measures$get("classif.auc") msr("classif.auc")
Empty ParamSet
Type: "binary"
Range:
Minimize: FALSE
Required prediction: prob
The score function calls mlr3measures::auc()
from package mlr3measures.
If the measure is undefined for the input, NaN
is returned.
This can be customized by setting the field na_value
.
Dictionary of Measures: mlr_measures
as.data.table(mlr_measures)
for a complete table of all (also dynamically created) Measure implementations.
Other classification measures:
mlr_measures_classif.acc
,
mlr_measures_classif.bacc
,
mlr_measures_classif.bbrier
,
mlr_measures_classif.ce
,
mlr_measures_classif.costs
,
mlr_measures_classif.dor
,
mlr_measures_classif.fbeta
,
mlr_measures_classif.fdr
,
mlr_measures_classif.fn
,
mlr_measures_classif.fnr
,
mlr_measures_classif.fomr
,
mlr_measures_classif.fp
,
mlr_measures_classif.fpr
,
mlr_measures_classif.logloss
,
mlr_measures_classif.mauc_au1p
,
mlr_measures_classif.mauc_au1u
,
mlr_measures_classif.mauc_aunp
,
mlr_measures_classif.mauc_aunu
,
mlr_measures_classif.mauc_mu
,
mlr_measures_classif.mbrier
,
mlr_measures_classif.mcc
,
mlr_measures_classif.npv
,
mlr_measures_classif.ppv
,
mlr_measures_classif.prauc
,
mlr_measures_classif.precision
,
mlr_measures_classif.recall
,
mlr_measures_classif.sensitivity
,
mlr_measures_classif.specificity
,
mlr_measures_classif.tn
,
mlr_measures_classif.tnr
,
mlr_measures_classif.tp
,
mlr_measures_classif.tpr
Other binary classification measures:
mlr_measures_classif.bbrier
,
mlr_measures_classif.dor
,
mlr_measures_classif.fbeta
,
mlr_measures_classif.fdr
,
mlr_measures_classif.fn
,
mlr_measures_classif.fnr
,
mlr_measures_classif.fomr
,
mlr_measures_classif.fp
,
mlr_measures_classif.fpr
,
mlr_measures_classif.npv
,
mlr_measures_classif.ppv
,
mlr_measures_classif.prauc
,
mlr_measures_classif.precision
,
mlr_measures_classif.recall
,
mlr_measures_classif.sensitivity
,
mlr_measures_classif.specificity
,
mlr_measures_classif.tn
,
mlr_measures_classif.tnr
,
mlr_measures_classif.tp
,
mlr_measures_classif.tpr
Measure to compare true observed labels with predicted labels in multiclass classification tasks.
The Balanced Accuracy computes the weighted balanced accuracy, suitable for imbalanced data sets. It is defined analogously to the definition in sklearn.
First, all sample weights are normalized per class so that each class has the same influence:
The Balanced Accuracy is then calculated as
This definition is equivalent to acc()
with class-balanced sample weights.
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr()
:
mlr_measures$get("classif.bacc") msr("classif.bacc")
Empty ParamSet
Type: "classif"
Range:
Minimize: FALSE
Required prediction: response
The score function calls mlr3measures::bacc()
from package mlr3measures.
If the measure is undefined for the input, NaN
is returned.
This can be customized by setting the field na_value
.
Dictionary of Measures: mlr_measures
as.data.table(mlr_measures)
for a complete table of all (also dynamically created) Measure implementations.
Other classification measures:
mlr_measures_classif.acc
,
mlr_measures_classif.auc
,
mlr_measures_classif.bbrier
,
mlr_measures_classif.ce
,
mlr_measures_classif.costs
,
mlr_measures_classif.dor
,
mlr_measures_classif.fbeta
,
mlr_measures_classif.fdr
,
mlr_measures_classif.fn
,
mlr_measures_classif.fnr
,
mlr_measures_classif.fomr
,
mlr_measures_classif.fp
,
mlr_measures_classif.fpr
,
mlr_measures_classif.logloss
,
mlr_measures_classif.mauc_au1p
,
mlr_measures_classif.mauc_au1u
,
mlr_measures_classif.mauc_aunp
,
mlr_measures_classif.mauc_aunu
,
mlr_measures_classif.mauc_mu
,
mlr_measures_classif.mbrier
,
mlr_measures_classif.mcc
,
mlr_measures_classif.npv
,
mlr_measures_classif.ppv
,
mlr_measures_classif.prauc
,
mlr_measures_classif.precision
,
mlr_measures_classif.recall
,
mlr_measures_classif.sensitivity
,
mlr_measures_classif.specificity
,
mlr_measures_classif.tn
,
mlr_measures_classif.tnr
,
mlr_measures_classif.tp
,
mlr_measures_classif.tpr
Other multiclass classification measures:
mlr_measures_classif.acc
,
mlr_measures_classif.ce
,
mlr_measures_classif.costs
,
mlr_measures_classif.logloss
,
mlr_measures_classif.mauc_au1p
,
mlr_measures_classif.mauc_au1u
,
mlr_measures_classif.mauc_aunp
,
mlr_measures_classif.mauc_aunu
,
mlr_measures_classif.mauc_mu
,
mlr_measures_classif.mbrier
,
mlr_measures_classif.mcc
Measure to compare true observed labels with predicted probabilities in binary classification tasks.
The Binary Brier Score is defined as
where are the sample weights,
and
is 1 if observation
belongs to the positive class, and 0 otherwise.
Note that this (more common) definition of the Brier score is equivalent to the
original definition of the multi-class Brier score (see mbrier()
) divided by 2.
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr()
:
mlr_measures$get("classif.bbrier") msr("classif.bbrier")
Empty ParamSet
Type: "binary"
Range:
Minimize: TRUE
Required prediction: prob
The score function calls mlr3measures::bbrier()
from package mlr3measures.
If the measure is undefined for the input, NaN
is returned.
This can be customized by setting the field na_value
.
Dictionary of Measures: mlr_measures
as.data.table(mlr_measures)
for a complete table of all (also dynamically created) Measure implementations.
Other classification measures:
mlr_measures_classif.acc
,
mlr_measures_classif.auc
,
mlr_measures_classif.bacc
,
mlr_measures_classif.ce
,
mlr_measures_classif.costs
,
mlr_measures_classif.dor
,
mlr_measures_classif.fbeta
,
mlr_measures_classif.fdr
,
mlr_measures_classif.fn
,
mlr_measures_classif.fnr
,
mlr_measures_classif.fomr
,
mlr_measures_classif.fp
,
mlr_measures_classif.fpr
,
mlr_measures_classif.logloss
,
mlr_measures_classif.mauc_au1p
,
mlr_measures_classif.mauc_au1u
,
mlr_measures_classif.mauc_aunp
,
mlr_measures_classif.mauc_aunu
,
mlr_measures_classif.mauc_mu
,
mlr_measures_classif.mbrier
,
mlr_measures_classif.mcc
,
mlr_measures_classif.npv
,
mlr_measures_classif.ppv
,
mlr_measures_classif.prauc
,
mlr_measures_classif.precision
,
mlr_measures_classif.recall
,
mlr_measures_classif.sensitivity
,
mlr_measures_classif.specificity
,
mlr_measures_classif.tn
,
mlr_measures_classif.tnr
,
mlr_measures_classif.tp
,
mlr_measures_classif.tpr
Other binary classification measures:
mlr_measures_classif.auc
,
mlr_measures_classif.dor
,
mlr_measures_classif.fbeta
,
mlr_measures_classif.fdr
,
mlr_measures_classif.fn
,
mlr_measures_classif.fnr
,
mlr_measures_classif.fomr
,
mlr_measures_classif.fp
,
mlr_measures_classif.fpr
,
mlr_measures_classif.npv
,
mlr_measures_classif.ppv
,
mlr_measures_classif.prauc
,
mlr_measures_classif.precision
,
mlr_measures_classif.recall
,
mlr_measures_classif.sensitivity
,
mlr_measures_classif.specificity
,
mlr_measures_classif.tn
,
mlr_measures_classif.tnr
,
mlr_measures_classif.tp
,
mlr_measures_classif.tpr
Measure to compare true observed labels with predicted labels in multiclass classification tasks.
The Classification Error is defined as
where are normalized weights for each observation
.
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr()
:
mlr_measures$get("classif.ce") msr("classif.ce")
Empty ParamSet
Type: "classif"
Range:
Minimize: TRUE
Required prediction: response
The score function calls mlr3measures::ce()
from package mlr3measures.
If the measure is undefined for the input, NaN
is returned.
This can be customized by setting the field na_value
.
Dictionary of Measures: mlr_measures
as.data.table(mlr_measures)
for a complete table of all (also dynamically created) Measure implementations.
Other classification measures:
mlr_measures_classif.acc
,
mlr_measures_classif.auc
,
mlr_measures_classif.bacc
,
mlr_measures_classif.bbrier
,
mlr_measures_classif.costs
,
mlr_measures_classif.dor
,
mlr_measures_classif.fbeta
,
mlr_measures_classif.fdr
,
mlr_measures_classif.fn
,
mlr_measures_classif.fnr
,
mlr_measures_classif.fomr
,
mlr_measures_classif.fp
,
mlr_measures_classif.fpr
,
mlr_measures_classif.logloss
,
mlr_measures_classif.mauc_au1p
,
mlr_measures_classif.mauc_au1u
,
mlr_measures_classif.mauc_aunp
,
mlr_measures_classif.mauc_aunu
,
mlr_measures_classif.mauc_mu
,
mlr_measures_classif.mbrier
,
mlr_measures_classif.mcc
,
mlr_measures_classif.npv
,
mlr_measures_classif.ppv
,
mlr_measures_classif.prauc
,
mlr_measures_classif.precision
,
mlr_measures_classif.recall
,
mlr_measures_classif.sensitivity
,
mlr_measures_classif.specificity
,
mlr_measures_classif.tn
,
mlr_measures_classif.tnr
,
mlr_measures_classif.tp
,
mlr_measures_classif.tpr
Other multiclass classification measures:
mlr_measures_classif.acc
,
mlr_measures_classif.bacc
,
mlr_measures_classif.costs
,
mlr_measures_classif.logloss
,
mlr_measures_classif.mauc_au1p
,
mlr_measures_classif.mauc_au1u
,
mlr_measures_classif.mauc_aunp
,
mlr_measures_classif.mauc_aunu
,
mlr_measures_classif.mauc_mu
,
mlr_measures_classif.mbrier
,
mlr_measures_classif.mcc
Uses a cost matrix to create a classification measure.
True labels must be arranged in columns, predicted labels must be arranged in rows.
The cost matrix is stored as slot $costs
.
For calculation of the score, the confusion matrix is multiplied element-wise with the cost matrix.
The costs are then summed up (and potentially divided by the number of observations if normalize
is set to TRUE
(default)).
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr()
:
mlr_measures$get("classif.costs") msr("classif.costs")
Task type: “classif”
Range:
Minimize: TRUE
Average: macro
Required Prediction: “response”
Required Packages: mlr3
Id | Type | Default | Levels |
normalize | logical | - | TRUE, FALSE |
mlr3::Measure
-> mlr3::MeasureClassif
-> MeasureClassifCosts
costs
(numeric matrix()
)
Matrix of costs (truth in columns, predicted response in rows).
new()
Creates a new instance of this R6 class.
MeasureClassifCosts$new()
clone()
The objects of this class are cloneable with this method.
MeasureClassifCosts$clone(deep = FALSE)
deep
Whether to make a deep clone.
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html#sec-eval
Package mlr3measures for the scoring functions.
Dictionary of Measures: mlr_measures
as.data.table(mlr_measures)
for a table of available Measures in the running session (depending on the loaded packages).
Extension packages for additional task types:
mlr3proba for probabilistic supervised regression and survival analysis.
mlr3cluster for unsupervised clustering.
Other Measure:
Measure
,
MeasureClassif
,
MeasureRegr
,
MeasureSimilarity
,
mlr_measures
,
mlr_measures_aic
,
mlr_measures_bic
,
mlr_measures_debug_classif
,
mlr_measures_elapsed_time
,
mlr_measures_internal_valid_score
,
mlr_measures_oob_error
,
mlr_measures_regr.rsq
,
mlr_measures_selected_features
Other classification measures:
mlr_measures_classif.acc
,
mlr_measures_classif.auc
,
mlr_measures_classif.bacc
,
mlr_measures_classif.bbrier
,
mlr_measures_classif.ce
,
mlr_measures_classif.dor
,
mlr_measures_classif.fbeta
,
mlr_measures_classif.fdr
,
mlr_measures_classif.fn
,
mlr_measures_classif.fnr
,
mlr_measures_classif.fomr
,
mlr_measures_classif.fp
,
mlr_measures_classif.fpr
,
mlr_measures_classif.logloss
,
mlr_measures_classif.mauc_au1p
,
mlr_measures_classif.mauc_au1u
,
mlr_measures_classif.mauc_aunp
,
mlr_measures_classif.mauc_aunu
,
mlr_measures_classif.mauc_mu
,
mlr_measures_classif.mbrier
,
mlr_measures_classif.mcc
,
mlr_measures_classif.npv
,
mlr_measures_classif.ppv
,
mlr_measures_classif.prauc
,
mlr_measures_classif.precision
,
mlr_measures_classif.recall
,
mlr_measures_classif.sensitivity
,
mlr_measures_classif.specificity
,
mlr_measures_classif.tn
,
mlr_measures_classif.tnr
,
mlr_measures_classif.tp
,
mlr_measures_classif.tpr
Other multiclass classification measures:
mlr_measures_classif.acc
,
mlr_measures_classif.bacc
,
mlr_measures_classif.ce
,
mlr_measures_classif.logloss
,
mlr_measures_classif.mauc_au1p
,
mlr_measures_classif.mauc_au1u
,
mlr_measures_classif.mauc_aunp
,
mlr_measures_classif.mauc_aunu
,
mlr_measures_classif.mauc_mu
,
mlr_measures_classif.mbrier
,
mlr_measures_classif.mcc
# get a cost sensitive task task = tsk("german_credit") # cost matrix as given on the UCI page of the german credit data set # https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data) costs = matrix(c(0, 5, 1, 0), nrow = 2) dimnames(costs) = list(truth = task$class_names, predicted = task$class_names) print(costs) # mlr3 needs truth in columns, predictions in rows costs = t(costs) # create a cost measure which calculates the absolute costs m = msr("classif.costs", id = "german_credit_costs", costs = costs, normalize = FALSE) # fit models and evaluate with the cost measure learner = lrn("classif.rpart") rr = resample(task, learner, rsmp("cv", folds = 3)) rr$aggregate(m)
# get a cost sensitive task task = tsk("german_credit") # cost matrix as given on the UCI page of the german credit data set # https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data) costs = matrix(c(0, 5, 1, 0), nrow = 2) dimnames(costs) = list(truth = task$class_names, predicted = task$class_names) print(costs) # mlr3 needs truth in columns, predictions in rows costs = t(costs) # create a cost measure which calculates the absolute costs m = msr("classif.costs", id = "german_credit_costs", costs = costs, normalize = FALSE) # fit models and evaluate with the cost measure learner = lrn("classif.rpart") rr = resample(task, learner, rsmp("cv", folds = 3)) rr$aggregate(m)
Measure to compare true observed labels with predicted labels in binary classification tasks.
The Diagnostic Odds Ratio is defined as
This measure is undefined if FP = 0 or FN = 0.
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr()
:
mlr_measures$get("classif.dor") msr("classif.dor")
Empty ParamSet
Type: "binary"
Range:
Minimize: FALSE
Required prediction: response
The score function calls mlr3measures::dor()
from package mlr3measures.
If the measure is undefined for the input, NaN
is returned.
This can be customized by setting the field na_value
.
Dictionary of Measures: mlr_measures
as.data.table(mlr_measures)
for a complete table of all (also dynamically created) Measure implementations.
Other classification measures:
mlr_measures_classif.acc
,
mlr_measures_classif.auc
,
mlr_measures_classif.bacc
,
mlr_measures_classif.bbrier
,
mlr_measures_classif.ce
,
mlr_measures_classif.costs
,
mlr_measures_classif.fbeta
,
mlr_measures_classif.fdr
,
mlr_measures_classif.fn
,
mlr_measures_classif.fnr
,
mlr_measures_classif.fomr
,
mlr_measures_classif.fp
,
mlr_measures_classif.fpr
,
mlr_measures_classif.logloss
,
mlr_measures_classif.mauc_au1p
,
mlr_measures_classif.mauc_au1u
,
mlr_measures_classif.mauc_aunp
,
mlr_measures_classif.mauc_aunu
,
mlr_measures_classif.mauc_mu
,
mlr_measures_classif.mbrier
,
mlr_measures_classif.mcc
,
mlr_measures_classif.npv
,
mlr_measures_classif.ppv
,
mlr_measures_classif.prauc
,
mlr_measures_classif.precision
,
mlr_measures_classif.recall
,
mlr_measures_classif.sensitivity
,
mlr_measures_classif.specificity
,
mlr_measures_classif.tn
,
mlr_measures_classif.tnr
,
mlr_measures_classif.tp
,
mlr_measures_classif.tpr
Other binary classification measures:
mlr_measures_classif.auc
,
mlr_measures_classif.bbrier
,
mlr_measures_classif.fbeta
,
mlr_measures_classif.fdr
,
mlr_measures_classif.fn
,
mlr_measures_classif.fnr
,
mlr_measures_classif.fomr
,
mlr_measures_classif.fp
,
mlr_measures_classif.fpr
,
mlr_measures_classif.npv
,
mlr_measures_classif.ppv
,
mlr_measures_classif.prauc
,
mlr_measures_classif.precision
,
mlr_measures_classif.recall
,
mlr_measures_classif.sensitivity
,
mlr_measures_classif.specificity
,
mlr_measures_classif.tn
,
mlr_measures_classif.tnr
,
mlr_measures_classif.tp
,
mlr_measures_classif.tpr
Measure to compare true observed labels with predicted labels in binary classification tasks.
With as
precision()
and as
recall()
, the F-beta Score is defined as
It measures the effectiveness of retrieval with respect to a user who attaches times
as much importance to recall as precision.
For
, this measure is called "F1" score.
This measure is undefined if precision or recall is undefined, i.e. TP + FP = 0 or TP + FN = 0.
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr()
:
mlr_measures$get("classif.fbeta") msr("classif.fbeta")
Id | Type | Default | Range |
beta | integer | - | |
Type: "binary"
Range:
Minimize: FALSE
Required prediction: response
The score function calls mlr3measures::fbeta()
from package mlr3measures.
If the measure is undefined for the input, NaN
is returned.
This can be customized by setting the field na_value
.
Dictionary of Measures: mlr_measures
as.data.table(mlr_measures)
for a complete table of all (also dynamically created) Measure implementations.
Other classification measures:
mlr_measures_classif.acc
,
mlr_measures_classif.auc
,
mlr_measures_classif.bacc
,
mlr_measures_classif.bbrier
,
mlr_measures_classif.ce
,
mlr_measures_classif.costs
,
mlr_measures_classif.dor
,
mlr_measures_classif.fdr
,
mlr_measures_classif.fn
,
mlr_measures_classif.fnr
,
mlr_measures_classif.fomr
,
mlr_measures_classif.fp
,
mlr_measures_classif.fpr
,
mlr_measures_classif.logloss
,
mlr_measures_classif.mauc_au1p
,
mlr_measures_classif.mauc_au1u
,
mlr_measures_classif.mauc_aunp
,
mlr_measures_classif.mauc_aunu
,
mlr_measures_classif.mauc_mu
,
mlr_measures_classif.mbrier
,
mlr_measures_classif.mcc
,
mlr_measures_classif.npv
,
mlr_measures_classif.ppv
,
mlr_measures_classif.prauc
,
mlr_measures_classif.precision
,
mlr_measures_classif.recall
,
mlr_measures_classif.sensitivity
,
mlr_measures_classif.specificity
,
mlr_measures_classif.tn
,
mlr_measures_classif.tnr
,
mlr_measures_classif.tp
,
mlr_measures_classif.tpr
Other binary classification measures:
mlr_measures_classif.auc
,
mlr_measures_classif.bbrier
,
mlr_measures_classif.dor
,
mlr_measures_classif.fdr
,
mlr_measures_classif.fn
,
mlr_measures_classif.fnr
,
mlr_measures_classif.fomr
,
mlr_measures_classif.fp
,
mlr_measures_classif.fpr
,
mlr_measures_classif.npv
,
mlr_measures_classif.ppv
,
mlr_measures_classif.prauc
,
mlr_measures_classif.precision
,
mlr_measures_classif.recall
,
mlr_measures_classif.sensitivity
,
mlr_measures_classif.specificity
,
mlr_measures_classif.tn
,
mlr_measures_classif.tnr
,
mlr_measures_classif.tp
,
mlr_measures_classif.tpr
Measure to compare true observed labels with predicted labels in binary classification tasks.
The False Discovery Rate is defined as
This measure is undefined if TP + FP = 0.
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr()
:
mlr_measures$get("classif.fdr") msr("classif.fdr")
Empty ParamSet
Type: "binary"
Range:
Minimize: TRUE
Required prediction: response
The score function calls mlr3measures::fdr()
from package mlr3measures.
If the measure is undefined for the input, NaN
is returned.
This can be customized by setting the field na_value
.
Dictionary of Measures: mlr_measures
as.data.table(mlr_measures)
for a complete table of all (also dynamically created) Measure implementations.
Other classification measures:
mlr_measures_classif.acc
,
mlr_measures_classif.auc
,
mlr_measures_classif.bacc
,
mlr_measures_classif.bbrier
,
mlr_measures_classif.ce
,
mlr_measures_classif.costs
,
mlr_measures_classif.dor
,
mlr_measures_classif.fbeta
,
mlr_measures_classif.fn
,
mlr_measures_classif.fnr
,
mlr_measures_classif.fomr
,
mlr_measures_classif.fp
,
mlr_measures_classif.fpr
,
mlr_measures_classif.logloss
,
mlr_measures_classif.mauc_au1p
,
mlr_measures_classif.mauc_au1u
,
mlr_measures_classif.mauc_aunp
,
mlr_measures_classif.mauc_aunu
,
mlr_measures_classif.mauc_mu
,
mlr_measures_classif.mbrier
,
mlr_measures_classif.mcc
,
mlr_measures_classif.npv
,
mlr_measures_classif.ppv
,
mlr_measures_classif.prauc
,
mlr_measures_classif.precision
,
mlr_measures_classif.recall
,
mlr_measures_classif.sensitivity
,
mlr_measures_classif.specificity
,
mlr_measures_classif.tn
,
mlr_measures_classif.tnr
,
mlr_measures_classif.tp
,
mlr_measures_classif.tpr
Other binary classification measures:
mlr_measures_classif.auc
,
mlr_measures_classif.bbrier
,
mlr_measures_classif.dor
,
mlr_measures_classif.fbeta
,
mlr_measures_classif.fn
,
mlr_measures_classif.fnr
,
mlr_measures_classif.fomr
,
mlr_measures_classif.fp
,
mlr_measures_classif.fpr
,
mlr_measures_classif.npv
,
mlr_measures_classif.ppv
,
mlr_measures_classif.prauc
,
mlr_measures_classif.precision
,
mlr_measures_classif.recall
,
mlr_measures_classif.sensitivity
,
mlr_measures_classif.specificity
,
mlr_measures_classif.tn
,
mlr_measures_classif.tnr
,
mlr_measures_classif.tp
,
mlr_measures_classif.tpr
Measure to compare true observed labels with predicted labels in binary classification tasks.
This measure counts the false negatives (type 2 error), i.e. the number of predictions indicating a negative class label while in fact it is positive. This is sometimes also called a "miss" or an "underestimation".
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr()
:
mlr_measures$get("classif.fn") msr("classif.fn")
Empty ParamSet
Type: "binary"
Range:
Minimize: TRUE
Required prediction: response
The score function calls mlr3measures::fn()
from package mlr3measures.
If the measure is undefined for the input, NaN
is returned.
This can be customized by setting the field na_value
.
Dictionary of Measures: mlr_measures
as.data.table(mlr_measures)
for a complete table of all (also dynamically created) Measure implementations.
Other classification measures:
mlr_measures_classif.acc
,
mlr_measures_classif.auc
,
mlr_measures_classif.bacc
,
mlr_measures_classif.bbrier
,
mlr_measures_classif.ce
,
mlr_measures_classif.costs
,
mlr_measures_classif.dor
,
mlr_measures_classif.fbeta
,
mlr_measures_classif.fdr
,
mlr_measures_classif.fnr
,
mlr_measures_classif.fomr
,
mlr_measures_classif.fp
,
mlr_measures_classif.fpr
,
mlr_measures_classif.logloss
,
mlr_measures_classif.mauc_au1p
,
mlr_measures_classif.mauc_au1u
,
mlr_measures_classif.mauc_aunp
,
mlr_measures_classif.mauc_aunu
,
mlr_measures_classif.mauc_mu
,
mlr_measures_classif.mbrier
,
mlr_measures_classif.mcc
,
mlr_measures_classif.npv
,
mlr_measures_classif.ppv
,
mlr_measures_classif.prauc
,
mlr_measures_classif.precision
,
mlr_measures_classif.recall
,
mlr_measures_classif.sensitivity
,
mlr_measures_classif.specificity
,
mlr_measures_classif.tn
,
mlr_measures_classif.tnr
,
mlr_measures_classif.tp
,
mlr_measures_classif.tpr
Other binary classification measures:
mlr_measures_classif.auc
,
mlr_measures_classif.bbrier
,
mlr_measures_classif.dor
,
mlr_measures_classif.fbeta
,
mlr_measures_classif.fdr
,
mlr_measures_classif.fnr
,
mlr_measures_classif.fomr
,
mlr_measures_classif.fp
,
mlr_measures_classif.fpr
,
mlr_measures_classif.npv
,
mlr_measures_classif.ppv
,
mlr_measures_classif.prauc
,
mlr_measures_classif.precision
,
mlr_measures_classif.recall
,
mlr_measures_classif.sensitivity
,
mlr_measures_classif.specificity
,
mlr_measures_classif.tn
,
mlr_measures_classif.tnr
,
mlr_measures_classif.tp
,
mlr_measures_classif.tpr
Measure to compare true observed labels with predicted labels in binary classification tasks.
The False Negative Rate is defined as
Also know as "miss rate".
This measure is undefined if TP + FN = 0.
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr()
:
mlr_measures$get("classif.fnr") msr("classif.fnr")
Empty ParamSet
Type: "binary"
Range:
Minimize: TRUE
Required prediction: response
The score function calls mlr3measures::fnr()
from package mlr3measures.
If the measure is undefined for the input, NaN
is returned.
This can be customized by setting the field na_value
.
Dictionary of Measures: mlr_measures
as.data.table(mlr_measures)
for a complete table of all (also dynamically created) Measure implementations.
Other classification measures:
mlr_measures_classif.acc
,
mlr_measures_classif.auc
,
mlr_measures_classif.bacc
,
mlr_measures_classif.bbrier
,
mlr_measures_classif.ce
,
mlr_measures_classif.costs
,
mlr_measures_classif.dor
,
mlr_measures_classif.fbeta
,
mlr_measures_classif.fdr
,
mlr_measures_classif.fn
,
mlr_measures_classif.fomr
,
mlr_measures_classif.fp
,
mlr_measures_classif.fpr
,
mlr_measures_classif.logloss
,
mlr_measures_classif.mauc_au1p
,
mlr_measures_classif.mauc_au1u
,
mlr_measures_classif.mauc_aunp
,
mlr_measures_classif.mauc_aunu
,
mlr_measures_classif.mauc_mu
,
mlr_measures_classif.mbrier
,
mlr_measures_classif.mcc
,
mlr_measures_classif.npv
,
mlr_measures_classif.ppv
,
mlr_measures_classif.prauc
,
mlr_measures_classif.precision
,
mlr_measures_classif.recall
,
mlr_measures_classif.sensitivity
,
mlr_measures_classif.specificity
,
mlr_measures_classif.tn
,
mlr_measures_classif.tnr
,
mlr_measures_classif.tp
,
mlr_measures_classif.tpr
Other binary classification measures:
mlr_measures_classif.auc
,
mlr_measures_classif.bbrier
,
mlr_measures_classif.dor
,
mlr_measures_classif.fbeta
,
mlr_measures_classif.fdr
,
mlr_measures_classif.fn
,
mlr_measures_classif.fomr
,
mlr_measures_classif.fp
,
mlr_measures_classif.fpr
,
mlr_measures_classif.npv
,
mlr_measures_classif.ppv
,
mlr_measures_classif.prauc
,
mlr_measures_classif.precision
,
mlr_measures_classif.recall
,
mlr_measures_classif.sensitivity
,
mlr_measures_classif.specificity
,
mlr_measures_classif.tn
,
mlr_measures_classif.tnr
,
mlr_measures_classif.tp
,
mlr_measures_classif.tpr
Measure to compare true observed labels with predicted labels in binary classification tasks.
The False Omission Rate is defined as
This measure is undefined if FN + TN = 0.
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr()
:
mlr_measures$get("classif.fomr") msr("classif.fomr")
Empty ParamSet
Type: "binary"
Range:
Minimize: TRUE
Required prediction: response
The score function calls mlr3measures::fomr()
from package mlr3measures.
If the measure is undefined for the input, NaN
is returned.
This can be customized by setting the field na_value
.
Dictionary of Measures: mlr_measures
as.data.table(mlr_measures)
for a complete table of all (also dynamically created) Measure implementations.
Other classification measures:
mlr_measures_classif.acc
,
mlr_measures_classif.auc
,
mlr_measures_classif.bacc
,
mlr_measures_classif.bbrier
,
mlr_measures_classif.ce
,
mlr_measures_classif.costs
,
mlr_measures_classif.dor
,
mlr_measures_classif.fbeta
,
mlr_measures_classif.fdr
,
mlr_measures_classif.fn
,
mlr_measures_classif.fnr
,
mlr_measures_classif.fp
,
mlr_measures_classif.fpr
,
mlr_measures_classif.logloss
,
mlr_measures_classif.mauc_au1p
,
mlr_measures_classif.mauc_au1u
,
mlr_measures_classif.mauc_aunp
,
mlr_measures_classif.mauc_aunu
,
mlr_measures_classif.mauc_mu
,
mlr_measures_classif.mbrier
,
mlr_measures_classif.mcc
,
mlr_measures_classif.npv
,
mlr_measures_classif.ppv
,
mlr_measures_classif.prauc
,
mlr_measures_classif.precision
,
mlr_measures_classif.recall
,
mlr_measures_classif.sensitivity
,
mlr_measures_classif.specificity
,
mlr_measures_classif.tn
,
mlr_measures_classif.tnr
,
mlr_measures_classif.tp
,
mlr_measures_classif.tpr
Other binary classification measures:
mlr_measures_classif.auc
,
mlr_measures_classif.bbrier
,
mlr_measures_classif.dor
,
mlr_measures_classif.fbeta
,
mlr_measures_classif.fdr
,
mlr_measures_classif.fn
,
mlr_measures_classif.fnr
,
mlr_measures_classif.fp
,
mlr_measures_classif.fpr
,
mlr_measures_classif.npv
,
mlr_measures_classif.ppv
,
mlr_measures_classif.prauc
,
mlr_measures_classif.precision
,
mlr_measures_classif.recall
,
mlr_measures_classif.sensitivity
,
mlr_measures_classif.specificity
,
mlr_measures_classif.tn
,
mlr_measures_classif.tnr
,
mlr_measures_classif.tp
,
mlr_measures_classif.tpr
Measure to compare true observed labels with predicted labels in binary classification tasks.
This measure counts the false positives (type 1 error), i.e. the number of predictions indicating a positive class label while in fact it is negative. This is sometimes also called a "false alarm".
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr()
:
mlr_measures$get("classif.fp") msr("classif.fp")
Empty ParamSet
Type: "binary"
Range:
Minimize: TRUE
Required prediction: response
The score function calls mlr3measures::fp()
from package mlr3measures.
If the measure is undefined for the input, NaN
is returned.
This can be customized by setting the field na_value
.
Dictionary of Measures: mlr_measures
as.data.table(mlr_measures)
for a complete table of all (also dynamically created) Measure implementations.
Other classification measures:
mlr_measures_classif.acc
,
mlr_measures_classif.auc
,
mlr_measures_classif.bacc
,
mlr_measures_classif.bbrier
,
mlr_measures_classif.ce
,
mlr_measures_classif.costs
,
mlr_measures_classif.dor
,
mlr_measures_classif.fbeta
,
mlr_measures_classif.fdr
,
mlr_measures_classif.fn
,
mlr_measures_classif.fnr
,
mlr_measures_classif.fomr
,
mlr_measures_classif.fpr
,
mlr_measures_classif.logloss
,
mlr_measures_classif.mauc_au1p
,
mlr_measures_classif.mauc_au1u
,
mlr_measures_classif.mauc_aunp
,
mlr_measures_classif.mauc_aunu
,
mlr_measures_classif.mauc_mu
,
mlr_measures_classif.mbrier
,
mlr_measures_classif.mcc
,
mlr_measures_classif.npv
,
mlr_measures_classif.ppv
,
mlr_measures_classif.prauc
,
mlr_measures_classif.precision
,
mlr_measures_classif.recall
,
mlr_measures_classif.sensitivity
,
mlr_measures_classif.specificity
,
mlr_measures_classif.tn
,
mlr_measures_classif.tnr
,
mlr_measures_classif.tp
,
mlr_measures_classif.tpr
Other binary classification measures:
mlr_measures_classif.auc
,
mlr_measures_classif.bbrier
,
mlr_measures_classif.dor
,
mlr_measures_classif.fbeta
,
mlr_measures_classif.fdr
,
mlr_measures_classif.fn
,
mlr_measures_classif.fnr
,
mlr_measures_classif.fomr
,
mlr_measures_classif.fpr
,
mlr_measures_classif.npv
,
mlr_measures_classif.ppv
,
mlr_measures_classif.prauc
,
mlr_measures_classif.precision
,
mlr_measures_classif.recall
,
mlr_measures_classif.sensitivity
,
mlr_measures_classif.specificity
,
mlr_measures_classif.tn
,
mlr_measures_classif.tnr
,
mlr_measures_classif.tp
,
mlr_measures_classif.tpr
Measure to compare true observed labels with predicted labels in binary classification tasks.
The False Positive Rate is defined as
Also know as fall out or probability of false alarm.
This measure is undefined if FP + TN = 0.
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr()
:
mlr_measures$get("classif.fpr") msr("classif.fpr")
Empty ParamSet
Type: "binary"
Range:
Minimize: TRUE
Required prediction: response
The score function calls mlr3measures::fpr()
from package mlr3measures.
If the measure is undefined for the input, NaN
is returned.
This can be customized by setting the field na_value
.
Dictionary of Measures: mlr_measures
as.data.table(mlr_measures)
for a complete table of all (also dynamically created) Measure implementations.
Other classification measures:
mlr_measures_classif.acc
,
mlr_measures_classif.auc
,
mlr_measures_classif.bacc
,
mlr_measures_classif.bbrier
,
mlr_measures_classif.ce
,
mlr_measures_classif.costs
,
mlr_measures_classif.dor
,
mlr_measures_classif.fbeta
,
mlr_measures_classif.fdr
,
mlr_measures_classif.fn
,
mlr_measures_classif.fnr
,
mlr_measures_classif.fomr
,
mlr_measures_classif.fp
,
mlr_measures_classif.logloss
,
mlr_measures_classif.mauc_au1p
,
mlr_measures_classif.mauc_au1u
,
mlr_measures_classif.mauc_aunp
,
mlr_measures_classif.mauc_aunu
,
mlr_measures_classif.mauc_mu
,
mlr_measures_classif.mbrier
,
mlr_measures_classif.mcc
,
mlr_measures_classif.npv
,
mlr_measures_classif.ppv
,
mlr_measures_classif.prauc
,
mlr_measures_classif.precision
,
mlr_measures_classif.recall
,
mlr_measures_classif.sensitivity
,
mlr_measures_classif.specificity
,
mlr_measures_classif.tn
,
mlr_measures_classif.tnr
,
mlr_measures_classif.tp
,
mlr_measures_classif.tpr
Other binary classification measures:
mlr_measures_classif.auc
,
mlr_measures_classif.bbrier
,
mlr_measures_classif.dor
,
mlr_measures_classif.fbeta
,
mlr_measures_classif.fdr
,
mlr_measures_classif.fn
,
mlr_measures_classif.fnr
,
mlr_measures_classif.fomr
,
mlr_measures_classif.fp
,
mlr_measures_classif.npv
,
mlr_measures_classif.ppv
,
mlr_measures_classif.prauc
,
mlr_measures_classif.precision
,
mlr_measures_classif.recall
,
mlr_measures_classif.sensitivity
,
mlr_measures_classif.specificity
,
mlr_measures_classif.tn
,
mlr_measures_classif.tnr
,
mlr_measures_classif.tp
,
mlr_measures_classif.tpr
Measure to compare true observed labels with predicted probabilities in multiclass classification tasks.
The Log Loss (a.k.a Benoulli Loss, Logistic Loss, Cross-Entropy Loss) is defined as
where is the probability for the true class of observation
and
are normalized weights for each observation
.
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr()
:
mlr_measures$get("classif.logloss") msr("classif.logloss")
Empty ParamSet
Type: "classif"
Range:
Minimize: TRUE
Required prediction: prob
The score function calls mlr3measures::logloss()
from package mlr3measures.
If the measure is undefined for the input, NaN
is returned.
This can be customized by setting the field na_value
.
Dictionary of Measures: mlr_measures
as.data.table(mlr_measures)
for a complete table of all (also dynamically created) Measure implementations.
Other classification measures:
mlr_measures_classif.acc
,
mlr_measures_classif.auc
,
mlr_measures_classif.bacc
,
mlr_measures_classif.bbrier
,
mlr_measures_classif.ce
,
mlr_measures_classif.costs
,
mlr_measures_classif.dor
,
mlr_measures_classif.fbeta
,
mlr_measures_classif.fdr
,
mlr_measures_classif.fn
,
mlr_measures_classif.fnr
,
mlr_measures_classif.fomr
,
mlr_measures_classif.fp
,
mlr_measures_classif.fpr
,
mlr_measures_classif.mauc_au1p
,
mlr_measures_classif.mauc_au1u
,
mlr_measures_classif.mauc_aunp
,
mlr_measures_classif.mauc_aunu
,
mlr_measures_classif.mauc_mu
,
mlr_measures_classif.mbrier
,
mlr_measures_classif.mcc
,
mlr_measures_classif.npv
,
mlr_measures_classif.ppv
,
mlr_measures_classif.prauc
,
mlr_measures_classif.precision
,
mlr_measures_classif.recall
,
mlr_measures_classif.sensitivity
,
mlr_measures_classif.specificity
,
mlr_measures_classif.tn
,
mlr_measures_classif.tnr
,
mlr_measures_classif.tp
,
mlr_measures_classif.tpr
Other multiclass classification measures:
mlr_measures_classif.acc
,
mlr_measures_classif.bacc
,
mlr_measures_classif.ce
,
mlr_measures_classif.costs
,
mlr_measures_classif.mauc_au1p
,
mlr_measures_classif.mauc_au1u
,
mlr_measures_classif.mauc_aunp
,
mlr_measures_classif.mauc_aunu
,
mlr_measures_classif.mauc_mu
,
mlr_measures_classif.mbrier
,
mlr_measures_classif.mcc
Measure to compare true observed labels with predicted probabilities in multiclass classification tasks.
Multiclass AUC measures.
AUNU: AUC of each class against the rest, using the uniform class
distribution. Computes the AUC treating a c
-dimensional classifier
as c
two-dimensional 1-vs-rest classifiers, where classes are assumed to have
uniform distribution, in order to have a measure which is independent
of class distribution change (Fawcett 2001).
AUNP: AUC of each class against the rest, using the a-priori class
distribution. Computes the AUC treating a c
-dimensional classifier as c
two-dimensional 1-vs-rest classifiers, taking into account the prior probability of
each class (Fawcett 2001).
AU1U: AUC of each class against each other, using the uniform class
distribution. Computes something like the AUC of c(c - 1)
binary classifiers
(all possible pairwise combinations). See Hand (2001) for details.
AU1P: AUC of each class against each other, using the a-priori class
distribution. Computes something like AUC of c(c - 1)
binary classifiers
while considering the a-priori distribution of the classes as suggested
in Ferri (2009). Note we deviate from the definition in
Ferri (2009) by a factor of c
.
MU: Multiclass AUC as defined in Kleinman and Page (2019). This measure is an average of the pairwise AUCs between all classes. The measure was tested against the Python implementation by Ross Kleinman.
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr()
:
mlr_measures$get("classif.mauc_au1p") msr("classif.mauc_au1p")
Empty ParamSet
Type: "classif"
Range:
Minimize: FALSE
Required prediction: prob
The score function calls mlr3measures::mauc_au1p()
from package mlr3measures.
If the measure is undefined for the input, NaN
is returned.
This can be customized by setting the field na_value
.
Dictionary of Measures: mlr_measures
as.data.table(mlr_measures)
for a complete table of all (also dynamically created) Measure implementations.
Other classification measures:
mlr_measures_classif.acc
,
mlr_measures_classif.auc
,
mlr_measures_classif.bacc
,
mlr_measures_classif.bbrier
,
mlr_measures_classif.ce
,
mlr_measures_classif.costs
,
mlr_measures_classif.dor
,
mlr_measures_classif.fbeta
,
mlr_measures_classif.fdr
,
mlr_measures_classif.fn
,
mlr_measures_classif.fnr
,
mlr_measures_classif.fomr
,
mlr_measures_classif.fp
,
mlr_measures_classif.fpr
,
mlr_measures_classif.logloss
,
mlr_measures_classif.mauc_au1u
,
mlr_measures_classif.mauc_aunp
,
mlr_measures_classif.mauc_aunu
,
mlr_measures_classif.mauc_mu
,
mlr_measures_classif.mbrier
,
mlr_measures_classif.mcc
,
mlr_measures_classif.npv
,
mlr_measures_classif.ppv
,
mlr_measures_classif.prauc
,
mlr_measures_classif.precision
,
mlr_measures_classif.recall
,
mlr_measures_classif.sensitivity
,
mlr_measures_classif.specificity
,
mlr_measures_classif.tn
,
mlr_measures_classif.tnr
,
mlr_measures_classif.tp
,
mlr_measures_classif.tpr
Other multiclass classification measures:
mlr_measures_classif.acc
,
mlr_measures_classif.bacc
,
mlr_measures_classif.ce
,
mlr_measures_classif.costs
,
mlr_measures_classif.logloss
,
mlr_measures_classif.mauc_au1u
,
mlr_measures_classif.mauc_aunp
,
mlr_measures_classif.mauc_aunu
,
mlr_measures_classif.mauc_mu
,
mlr_measures_classif.mbrier
,
mlr_measures_classif.mcc
Measure to compare true observed labels with predicted probabilities in multiclass classification tasks.
Multiclass AUC measures.
AUNU: AUC of each class against the rest, using the uniform class
distribution. Computes the AUC treating a c
-dimensional classifier
as c
two-dimensional 1-vs-rest classifiers, where classes are assumed to have
uniform distribution, in order to have a measure which is independent
of class distribution change (Fawcett 2001).
AUNP: AUC of each class against the rest, using the a-priori class
distribution. Computes the AUC treating a c
-dimensional classifier as c
two-dimensional 1-vs-rest classifiers, taking into account the prior probability of
each class (Fawcett 2001).
AU1U: AUC of each class against each other, using the uniform class
distribution. Computes something like the AUC of c(c - 1)
binary classifiers
(all possible pairwise combinations). See Hand (2001) for details.
AU1P: AUC of each class against each other, using the a-priori class
distribution. Computes something like AUC of c(c - 1)
binary classifiers
while considering the a-priori distribution of the classes as suggested
in Ferri (2009). Note we deviate from the definition in
Ferri (2009) by a factor of c
.
MU: Multiclass AUC as defined in Kleinman and Page (2019). This measure is an average of the pairwise AUCs between all classes. The measure was tested against the Python implementation by Ross Kleinman.
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr()
:
mlr_measures$get("classif.mauc_au1u") msr("classif.mauc_au1u")
Empty ParamSet
Type: "classif"
Range:
Minimize: FALSE
Required prediction: prob
The score function calls mlr3measures::mauc_au1u()
from package mlr3measures.
If the measure is undefined for the input, NaN
is returned.
This can be customized by setting the field na_value
.
Dictionary of Measures: mlr_measures
as.data.table(mlr_measures)
for a complete table of all (also dynamically created) Measure implementations.
Other classification measures:
mlr_measures_classif.acc
,
mlr_measures_classif.auc
,
mlr_measures_classif.bacc
,
mlr_measures_classif.bbrier
,
mlr_measures_classif.ce
,
mlr_measures_classif.costs
,
mlr_measures_classif.dor
,
mlr_measures_classif.fbeta
,
mlr_measures_classif.fdr
,
mlr_measures_classif.fn
,
mlr_measures_classif.fnr
,
mlr_measures_classif.fomr
,
mlr_measures_classif.fp
,
mlr_measures_classif.fpr
,
mlr_measures_classif.logloss
,
mlr_measures_classif.mauc_au1p
,
mlr_measures_classif.mauc_aunp
,
mlr_measures_classif.mauc_aunu
,
mlr_measures_classif.mauc_mu
,
mlr_measures_classif.mbrier
,
mlr_measures_classif.mcc
,
mlr_measures_classif.npv
,
mlr_measures_classif.ppv
,
mlr_measures_classif.prauc
,
mlr_measures_classif.precision
,
mlr_measures_classif.recall
,
mlr_measures_classif.sensitivity
,
mlr_measures_classif.specificity
,
mlr_measures_classif.tn
,
mlr_measures_classif.tnr
,
mlr_measures_classif.tp
,
mlr_measures_classif.tpr
Other multiclass classification measures:
mlr_measures_classif.acc
,
mlr_measures_classif.bacc
,
mlr_measures_classif.ce
,
mlr_measures_classif.costs
,
mlr_measures_classif.logloss
,
mlr_measures_classif.mauc_au1p
,
mlr_measures_classif.mauc_aunp
,
mlr_measures_classif.mauc_aunu
,
mlr_measures_classif.mauc_mu
,
mlr_measures_classif.mbrier
,
mlr_measures_classif.mcc
Measure to compare true observed labels with predicted probabilities in multiclass classification tasks.
Multiclass AUC measures.
AUNU: AUC of each class against the rest, using the uniform class
distribution. Computes the AUC treating a c
-dimensional classifier
as c
two-dimensional 1-vs-rest classifiers, where classes are assumed to have
uniform distribution, in order to have a measure which is independent
of class distribution change (Fawcett 2001).
AUNP: AUC of each class against the rest, using the a-priori class
distribution. Computes the AUC treating a c
-dimensional classifier as c
two-dimensional 1-vs-rest classifiers, taking into account the prior probability of
each class (Fawcett 2001).
AU1U: AUC of each class against each other, using the uniform class
distribution. Computes something like the AUC of c(c - 1)
binary classifiers
(all possible pairwise combinations). See Hand (2001) for details.
AU1P: AUC of each class against each other, using the a-priori class
distribution. Computes something like AUC of c(c - 1)
binary classifiers
while considering the a-priori distribution of the classes as suggested
in Ferri (2009). Note we deviate from the definition in
Ferri (2009) by a factor of c
.
MU: Multiclass AUC as defined in Kleinman and Page (2019). This measure is an average of the pairwise AUCs between all classes. The measure was tested against the Python implementation by Ross Kleinman.
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr()
:
mlr_measures$get("classif.mauc_aunp") msr("classif.mauc_aunp")
Empty ParamSet
Type: "classif"
Range:
Minimize: FALSE
Required prediction: prob
The score function calls mlr3measures::mauc_aunp()
from package mlr3measures.
If the measure is undefined for the input, NaN
is returned.
This can be customized by setting the field na_value
.
Dictionary of Measures: mlr_measures
as.data.table(mlr_measures)
for a complete table of all (also dynamically created) Measure implementations.
Other classification measures:
mlr_measures_classif.acc
,
mlr_measures_classif.auc
,
mlr_measures_classif.bacc
,
mlr_measures_classif.bbrier
,
mlr_measures_classif.ce
,
mlr_measures_classif.costs
,
mlr_measures_classif.dor
,
mlr_measures_classif.fbeta
,
mlr_measures_classif.fdr
,
mlr_measures_classif.fn
,
mlr_measures_classif.fnr
,
mlr_measures_classif.fomr
,
mlr_measures_classif.fp
,
mlr_measures_classif.fpr
,
mlr_measures_classif.logloss
,
mlr_measures_classif.mauc_au1p
,
mlr_measures_classif.mauc_au1u
,
mlr_measures_classif.mauc_aunu
,
mlr_measures_classif.mauc_mu
,
mlr_measures_classif.mbrier
,
mlr_measures_classif.mcc
,
mlr_measures_classif.npv
,
mlr_measures_classif.ppv
,
mlr_measures_classif.prauc
,
mlr_measures_classif.precision
,
mlr_measures_classif.recall
,
mlr_measures_classif.sensitivity
,
mlr_measures_classif.specificity
,
mlr_measures_classif.tn
,
mlr_measures_classif.tnr
,
mlr_measures_classif.tp
,
mlr_measures_classif.tpr
Other multiclass classification measures:
mlr_measures_classif.acc
,
mlr_measures_classif.bacc
,
mlr_measures_classif.ce
,
mlr_measures_classif.costs
,
mlr_measures_classif.logloss
,
mlr_measures_classif.mauc_au1p
,
mlr_measures_classif.mauc_au1u
,
mlr_measures_classif.mauc_aunu
,
mlr_measures_classif.mauc_mu
,
mlr_measures_classif.mbrier
,
mlr_measures_classif.mcc
Measure to compare true observed labels with predicted probabilities in multiclass classification tasks.
Multiclass AUC measures.
AUNU: AUC of each class against the rest, using the uniform class
distribution. Computes the AUC treating a c
-dimensional classifier
as c
two-dimensional 1-vs-rest classifiers, where classes are assumed to have
uniform distribution, in order to have a measure which is independent
of class distribution change (Fawcett 2001).
AUNP: AUC of each class against the rest, using the a-priori class
distribution. Computes the AUC treating a c
-dimensional classifier as c
two-dimensional 1-vs-rest classifiers, taking into account the prior probability of
each class (Fawcett 2001).
AU1U: AUC of each class against each other, using the uniform class
distribution. Computes something like the AUC of c(c - 1)
binary classifiers
(all possible pairwise combinations). See Hand (2001) for details.
AU1P: AUC of each class against each other, using the a-priori class
distribution. Computes something like AUC of c(c - 1)
binary classifiers
while considering the a-priori distribution of the classes as suggested
in Ferri (2009). Note we deviate from the definition in
Ferri (2009) by a factor of c
.
MU: Multiclass AUC as defined in Kleinman and Page (2019). This measure is an average of the pairwise AUCs between all classes. The measure was tested against the Python implementation by Ross Kleinman.
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr()
:
mlr_measures$get("classif.mauc_aunu") msr("classif.mauc_aunu")
Empty ParamSet
Type: "classif"
Range:
Minimize: FALSE
Required prediction: prob
The score function calls mlr3measures::mauc_aunu()
from package mlr3measures.
If the measure is undefined for the input, NaN
is returned.
This can be customized by setting the field na_value
.
Dictionary of Measures: mlr_measures
as.data.table(mlr_measures)
for a complete table of all (also dynamically created) Measure implementations.
Other classification measures:
mlr_measures_classif.acc
,
mlr_measures_classif.auc
,
mlr_measures_classif.bacc
,
mlr_measures_classif.bbrier
,
mlr_measures_classif.ce
,
mlr_measures_classif.costs
,
mlr_measures_classif.dor
,
mlr_measures_classif.fbeta
,
mlr_measures_classif.fdr
,
mlr_measures_classif.fn
,
mlr_measures_classif.fnr
,
mlr_measures_classif.fomr
,
mlr_measures_classif.fp
,
mlr_measures_classif.fpr
,
mlr_measures_classif.logloss
,
mlr_measures_classif.mauc_au1p
,
mlr_measures_classif.mauc_au1u
,
mlr_measures_classif.mauc_aunp
,
mlr_measures_classif.mauc_mu
,
mlr_measures_classif.mbrier
,
mlr_measures_classif.mcc
,
mlr_measures_classif.npv
,
mlr_measures_classif.ppv
,
mlr_measures_classif.prauc
,
mlr_measures_classif.precision
,
mlr_measures_classif.recall
,
mlr_measures_classif.sensitivity
,
mlr_measures_classif.specificity
,
mlr_measures_classif.tn
,
mlr_measures_classif.tnr
,
mlr_measures_classif.tp
,
mlr_measures_classif.tpr
Other multiclass classification measures:
mlr_measures_classif.acc
,
mlr_measures_classif.bacc
,
mlr_measures_classif.ce
,
mlr_measures_classif.costs
,
mlr_measures_classif.logloss
,
mlr_measures_classif.mauc_au1p
,
mlr_measures_classif.mauc_au1u
,
mlr_measures_classif.mauc_aunp
,
mlr_measures_classif.mauc_mu
,
mlr_measures_classif.mbrier
,
mlr_measures_classif.mcc
Measure to compare true observed labels with predicted probabilities in multiclass classification tasks.
Multiclass AUC measures.
AUNU: AUC of each class against the rest, using the uniform class
distribution. Computes the AUC treating a c
-dimensional classifier
as c
two-dimensional 1-vs-rest classifiers, where classes are assumed to have
uniform distribution, in order to have a measure which is independent
of class distribution change (Fawcett 2001).
AUNP: AUC of each class against the rest, using the a-priori class
distribution. Computes the AUC treating a c
-dimensional classifier as c
two-dimensional 1-vs-rest classifiers, taking into account the prior probability of
each class (Fawcett 2001).
AU1U: AUC of each class against each other, using the uniform class
distribution. Computes something like the AUC of c(c - 1)
binary classifiers
(all possible pairwise combinations). See Hand (2001) for details.
AU1P: AUC of each class against each other, using the a-priori class
distribution. Computes something like AUC of c(c - 1)
binary classifiers
while considering the a-priori distribution of the classes as suggested
in Ferri (2009). Note we deviate from the definition in
Ferri (2009) by a factor of c
.
MU: Multiclass AUC as defined in Kleinman and Page (2019). This measure is an average of the pairwise AUCs between all classes. The measure was tested against the Python implementation by Ross Kleinman.
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr()
:
mlr_measures$get("classif.mauc_mu") msr("classif.mauc_mu")
Empty ParamSet
Type: "classif"
Range:
Minimize: FALSE
Required prediction: prob
The score function calls mlr3measures::mauc_mu()
from package mlr3measures.
If the measure is undefined for the input, NaN
is returned.
This can be customized by setting the field na_value
.
Dictionary of Measures: mlr_measures
as.data.table(mlr_measures)
for a complete table of all (also dynamically created) Measure implementations.
Other classification measures:
mlr_measures_classif.acc
,
mlr_measures_classif.auc
,
mlr_measures_classif.bacc
,
mlr_measures_classif.bbrier
,
mlr_measures_classif.ce
,
mlr_measures_classif.costs
,
mlr_measures_classif.dor
,
mlr_measures_classif.fbeta
,
mlr_measures_classif.fdr
,
mlr_measures_classif.fn
,
mlr_measures_classif.fnr
,
mlr_measures_classif.fomr
,
mlr_measures_classif.fp
,
mlr_measures_classif.fpr
,
mlr_measures_classif.logloss
,
mlr_measures_classif.mauc_au1p
,
mlr_measures_classif.mauc_au1u
,
mlr_measures_classif.mauc_aunp
,
mlr_measures_classif.mauc_aunu
,
mlr_measures_classif.mbrier
,
mlr_measures_classif.mcc
,
mlr_measures_classif.npv
,
mlr_measures_classif.ppv
,
mlr_measures_classif.prauc
,
mlr_measures_classif.precision
,
mlr_measures_classif.recall
,
mlr_measures_classif.sensitivity
,
mlr_measures_classif.specificity
,
mlr_measures_classif.tn
,
mlr_measures_classif.tnr
,
mlr_measures_classif.tp
,
mlr_measures_classif.tpr
Other multiclass classification measures:
mlr_measures_classif.acc
,
mlr_measures_classif.bacc
,
mlr_measures_classif.ce
,
mlr_measures_classif.costs
,
mlr_measures_classif.logloss
,
mlr_measures_classif.mauc_au1p
,
mlr_measures_classif.mauc_au1u
,
mlr_measures_classif.mauc_aunp
,
mlr_measures_classif.mauc_aunu
,
mlr_measures_classif.mbrier
,
mlr_measures_classif.mcc
Measure to compare true observed labels with predicted probabilities in multiclass classification tasks.
Brier score for multi-class classification problems with labels defined as
is 1 if observation
has true label
, and 0 otherwise.
is the probability that observation
belongs to class
.
Note that there also is the more common definition of the Brier score for binary
classification problems in bbrier()
.
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr()
:
mlr_measures$get("classif.mbrier") msr("classif.mbrier")
Empty ParamSet
Type: "classif"
Range:
Minimize: TRUE
Required prediction: prob
The score function calls mlr3measures::mbrier()
from package mlr3measures.
If the measure is undefined for the input, NaN
is returned.
This can be customized by setting the field na_value
.
Dictionary of Measures: mlr_measures
as.data.table(mlr_measures)
for a complete table of all (also dynamically created) Measure implementations.
Other classification measures:
mlr_measures_classif.acc
,
mlr_measures_classif.auc
,
mlr_measures_classif.bacc
,
mlr_measures_classif.bbrier
,
mlr_measures_classif.ce
,
mlr_measures_classif.costs
,
mlr_measures_classif.dor
,
mlr_measures_classif.fbeta
,
mlr_measures_classif.fdr
,
mlr_measures_classif.fn
,
mlr_measures_classif.fnr
,
mlr_measures_classif.fomr
,
mlr_measures_classif.fp
,
mlr_measures_classif.fpr
,
mlr_measures_classif.logloss
,
mlr_measures_classif.mauc_au1p
,
mlr_measures_classif.mauc_au1u
,
mlr_measures_classif.mauc_aunp
,
mlr_measures_classif.mauc_aunu
,
mlr_measures_classif.mauc_mu
,
mlr_measures_classif.mcc
,
mlr_measures_classif.npv
,
mlr_measures_classif.ppv
,
mlr_measures_classif.prauc
,
mlr_measures_classif.precision
,
mlr_measures_classif.recall
,
mlr_measures_classif.sensitivity
,
mlr_measures_classif.specificity
,
mlr_measures_classif.tn
,
mlr_measures_classif.tnr
,
mlr_measures_classif.tp
,
mlr_measures_classif.tpr
Other multiclass classification measures:
mlr_measures_classif.acc
,
mlr_measures_classif.bacc
,
mlr_measures_classif.ce
,
mlr_measures_classif.costs
,
mlr_measures_classif.logloss
,
mlr_measures_classif.mauc_au1p
,
mlr_measures_classif.mauc_au1u
,
mlr_measures_classif.mauc_aunp
,
mlr_measures_classif.mauc_aunu
,
mlr_measures_classif.mauc_mu
,
mlr_measures_classif.mcc
Measure to compare true observed labels with predicted labels in multiclass classification tasks.
In the binary case, the Matthews Correlation Coefficient is defined as
where ,
,
,
are the number of true positives, false positives, true negatives, and false negatives respectively.
In the multi-class case, the Matthews Correlation Coefficient is defined for a multi-class confusion matrix with
classes:
where
: total number of samples
: total number of correctly predicted samples
: number of predictions for each class
: number of true occurrences for each class
.
The above formula is undefined if any of the four sums in the denominator is 0 in the binary case and more generally if either or
is equal to 0.
The denominator is then set to 1.
When there are more than two classes, the MCC will no longer range between -1 and +1. Instead, the minimum value will be between -1 and 0 depending on the true distribution. The maximum value is always +1.
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr()
:
mlr_measures$get("classif.mcc") msr("classif.mcc")
Empty ParamSet
Type: "classif"
Range:
Minimize: FALSE
Required prediction: response
The score function calls mlr3measures::mcc()
from package mlr3measures.
If the measure is undefined for the input, NaN
is returned.
This can be customized by setting the field na_value
.
Dictionary of Measures: mlr_measures
as.data.table(mlr_measures)
for a complete table of all (also dynamically created) Measure implementations.
Other classification measures:
mlr_measures_classif.acc
,
mlr_measures_classif.auc
,
mlr_measures_classif.bacc
,
mlr_measures_classif.bbrier
,
mlr_measures_classif.ce
,
mlr_measures_classif.costs
,
mlr_measures_classif.dor
,
mlr_measures_classif.fbeta
,
mlr_measures_classif.fdr
,
mlr_measures_classif.fn
,
mlr_measures_classif.fnr
,
mlr_measures_classif.fomr
,
mlr_measures_classif.fp
,
mlr_measures_classif.fpr
,
mlr_measures_classif.logloss
,
mlr_measures_classif.mauc_au1p
,
mlr_measures_classif.mauc_au1u
,
mlr_measures_classif.mauc_aunp
,
mlr_measures_classif.mauc_aunu
,
mlr_measures_classif.mauc_mu
,
mlr_measures_classif.mbrier
,
mlr_measures_classif.npv
,
mlr_measures_classif.ppv
,
mlr_measures_classif.prauc
,
mlr_measures_classif.precision
,
mlr_measures_classif.recall
,
mlr_measures_classif.sensitivity
,
mlr_measures_classif.specificity
,
mlr_measures_classif.tn
,
mlr_measures_classif.tnr
,
mlr_measures_classif.tp
,
mlr_measures_classif.tpr
Other multiclass classification measures:
mlr_measures_classif.acc
,
mlr_measures_classif.bacc
,
mlr_measures_classif.ce
,
mlr_measures_classif.costs
,
mlr_measures_classif.logloss
,
mlr_measures_classif.mauc_au1p
,
mlr_measures_classif.mauc_au1u
,
mlr_measures_classif.mauc_aunp
,
mlr_measures_classif.mauc_aunu
,
mlr_measures_classif.mauc_mu
,
mlr_measures_classif.mbrier
Measure to compare true observed labels with predicted labels in binary classification tasks.
The Negative Predictive Value is defined as
This measure is undefined if FN + TN = 0.
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr()
:
mlr_measures$get("classif.npv") msr("classif.npv")
Empty ParamSet
Type: "binary"
Range:
Minimize: FALSE
Required prediction: response
The score function calls mlr3measures::npv()
from package mlr3measures.
If the measure is undefined for the input, NaN
is returned.
This can be customized by setting the field na_value
.
Dictionary of Measures: mlr_measures
as.data.table(mlr_measures)
for a complete table of all (also dynamically created) Measure implementations.
Other classification measures:
mlr_measures_classif.acc
,
mlr_measures_classif.auc
,
mlr_measures_classif.bacc
,
mlr_measures_classif.bbrier
,
mlr_measures_classif.ce
,
mlr_measures_classif.costs
,
mlr_measures_classif.dor
,
mlr_measures_classif.fbeta
,
mlr_measures_classif.fdr
,
mlr_measures_classif.fn
,
mlr_measures_classif.fnr
,
mlr_measures_classif.fomr
,
mlr_measures_classif.fp
,
mlr_measures_classif.fpr
,
mlr_measures_classif.logloss
,
mlr_measures_classif.mauc_au1p
,
mlr_measures_classif.mauc_au1u
,
mlr_measures_classif.mauc_aunp
,
mlr_measures_classif.mauc_aunu
,
mlr_measures_classif.mauc_mu
,
mlr_measures_classif.mbrier
,
mlr_measures_classif.mcc
,
mlr_measures_classif.ppv
,
mlr_measures_classif.prauc
,
mlr_measures_classif.precision
,
mlr_measures_classif.recall
,
mlr_measures_classif.sensitivity
,
mlr_measures_classif.specificity
,
mlr_measures_classif.tn
,
mlr_measures_classif.tnr
,
mlr_measures_classif.tp
,
mlr_measures_classif.tpr
Other binary classification measures:
mlr_measures_classif.auc
,
mlr_measures_classif.bbrier
,
mlr_measures_classif.dor
,
mlr_measures_classif.fbeta
,
mlr_measures_classif.fdr
,
mlr_measures_classif.fn
,
mlr_measures_classif.fnr
,
mlr_measures_classif.fomr
,
mlr_measures_classif.fp
,
mlr_measures_classif.fpr
,
mlr_measures_classif.ppv
,
mlr_measures_classif.prauc
,
mlr_measures_classif.precision
,
mlr_measures_classif.recall
,
mlr_measures_classif.sensitivity
,
mlr_measures_classif.specificity
,
mlr_measures_classif.tn
,
mlr_measures_classif.tnr
,
mlr_measures_classif.tp
,
mlr_measures_classif.tpr
Measure to compare true observed labels with predicted labels in binary classification tasks.
The Positive Predictive Value is defined as
Also know as "precision".
This measure is undefined if TP + FP = 0.
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr()
:
mlr_measures$get("classif.ppv") msr("classif.ppv")
Empty ParamSet
Type: "binary"
Range:
Minimize: FALSE
Required prediction: response
The score function calls mlr3measures::ppv()
from package mlr3measures.
If the measure is undefined for the input, NaN
is returned.
This can be customized by setting the field na_value
.
Dictionary of Measures: mlr_measures
as.data.table(mlr_measures)
for a complete table of all (also dynamically created) Measure implementations.
Other classification measures:
mlr_measures_classif.acc
,
mlr_measures_classif.auc
,
mlr_measures_classif.bacc
,
mlr_measures_classif.bbrier
,
mlr_measures_classif.ce
,
mlr_measures_classif.costs
,
mlr_measures_classif.dor
,
mlr_measures_classif.fbeta
,
mlr_measures_classif.fdr
,
mlr_measures_classif.fn
,
mlr_measures_classif.fnr
,
mlr_measures_classif.fomr
,
mlr_measures_classif.fp
,
mlr_measures_classif.fpr
,
mlr_measures_classif.logloss
,
mlr_measures_classif.mauc_au1p
,
mlr_measures_classif.mauc_au1u
,
mlr_measures_classif.mauc_aunp
,
mlr_measures_classif.mauc_aunu
,
mlr_measures_classif.mauc_mu
,
mlr_measures_classif.mbrier
,
mlr_measures_classif.mcc
,
mlr_measures_classif.npv
,
mlr_measures_classif.prauc
,
mlr_measures_classif.precision
,
mlr_measures_classif.recall
,
mlr_measures_classif.sensitivity
,
mlr_measures_classif.specificity
,
mlr_measures_classif.tn
,
mlr_measures_classif.tnr
,
mlr_measures_classif.tp
,
mlr_measures_classif.tpr
Other binary classification measures:
mlr_measures_classif.auc
,
mlr_measures_classif.bbrier
,
mlr_measures_classif.dor
,
mlr_measures_classif.fbeta
,
mlr_measures_classif.fdr
,
mlr_measures_classif.fn
,
mlr_measures_classif.fnr
,
mlr_measures_classif.fomr
,
mlr_measures_classif.fp
,
mlr_measures_classif.fpr
,
mlr_measures_classif.npv
,
mlr_measures_classif.prauc
,
mlr_measures_classif.precision
,
mlr_measures_classif.recall
,
mlr_measures_classif.sensitivity
,
mlr_measures_classif.specificity
,
mlr_measures_classif.tn
,
mlr_measures_classif.tnr
,
mlr_measures_classif.tp
,
mlr_measures_classif.tpr
Measure to compare true observed labels with predicted probabilities in binary classification tasks.
Computes the area under the Precision-Recall curve (PRC). The PRC can be interpreted as the relationship between precision and recall (sensitivity), and is considered to be a more appropriate measure for unbalanced datasets than the ROC curve. The AUC-PRC is computed by integration of the piecewise function.
This measure is undefined if the true values are either all positive or all negative.
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr()
:
mlr_measures$get("classif.prauc") msr("classif.prauc")
Empty ParamSet
Type: "binary"
Range:
Minimize: FALSE
Required prediction: prob
The score function calls mlr3measures::prauc()
from package mlr3measures.
If the measure is undefined for the input, NaN
is returned.
This can be customized by setting the field na_value
.
Dictionary of Measures: mlr_measures
as.data.table(mlr_measures)
for a complete table of all (also dynamically created) Measure implementations.
Other classification measures:
mlr_measures_classif.acc
,
mlr_measures_classif.auc
,
mlr_measures_classif.bacc
,
mlr_measures_classif.bbrier
,
mlr_measures_classif.ce
,
mlr_measures_classif.costs
,
mlr_measures_classif.dor
,
mlr_measures_classif.fbeta
,
mlr_measures_classif.fdr
,
mlr_measures_classif.fn
,
mlr_measures_classif.fnr
,
mlr_measures_classif.fomr
,
mlr_measures_classif.fp
,
mlr_measures_classif.fpr
,
mlr_measures_classif.logloss
,
mlr_measures_classif.mauc_au1p
,
mlr_measures_classif.mauc_au1u
,
mlr_measures_classif.mauc_aunp
,
mlr_measures_classif.mauc_aunu
,
mlr_measures_classif.mauc_mu
,
mlr_measures_classif.mbrier
,
mlr_measures_classif.mcc
,
mlr_measures_classif.npv
,
mlr_measures_classif.ppv
,
mlr_measures_classif.precision
,
mlr_measures_classif.recall
,
mlr_measures_classif.sensitivity
,
mlr_measures_classif.specificity
,
mlr_measures_classif.tn
,
mlr_measures_classif.tnr
,
mlr_measures_classif.tp
,
mlr_measures_classif.tpr
Other binary classification measures:
mlr_measures_classif.auc
,
mlr_measures_classif.bbrier
,
mlr_measures_classif.dor
,
mlr_measures_classif.fbeta
,
mlr_measures_classif.fdr
,
mlr_measures_classif.fn
,
mlr_measures_classif.fnr
,
mlr_measures_classif.fomr
,
mlr_measures_classif.fp
,
mlr_measures_classif.fpr
,
mlr_measures_classif.npv
,
mlr_measures_classif.ppv
,
mlr_measures_classif.precision
,
mlr_measures_classif.recall
,
mlr_measures_classif.sensitivity
,
mlr_measures_classif.specificity
,
mlr_measures_classif.tn
,
mlr_measures_classif.tnr
,
mlr_measures_classif.tp
,
mlr_measures_classif.tpr
Measure to compare true observed labels with predicted labels in binary classification tasks.
The Positive Predictive Value is defined as
Also know as "precision".
This measure is undefined if TP + FP = 0.
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr()
:
mlr_measures$get("classif.precision") msr("classif.precision")
Empty ParamSet
Type: "binary"
Range:
Minimize: FALSE
Required prediction: response
The score function calls mlr3measures::precision()
from package mlr3measures.
If the measure is undefined for the input, NaN
is returned.
This can be customized by setting the field na_value
.
Dictionary of Measures: mlr_measures
as.data.table(mlr_measures)
for a complete table of all (also dynamically created) Measure implementations.
Other classification measures:
mlr_measures_classif.acc
,
mlr_measures_classif.auc
,
mlr_measures_classif.bacc
,
mlr_measures_classif.bbrier
,
mlr_measures_classif.ce
,
mlr_measures_classif.costs
,
mlr_measures_classif.dor
,
mlr_measures_classif.fbeta
,
mlr_measures_classif.fdr
,
mlr_measures_classif.fn
,
mlr_measures_classif.fnr
,
mlr_measures_classif.fomr
,
mlr_measures_classif.fp
,
mlr_measures_classif.fpr
,
mlr_measures_classif.logloss
,
mlr_measures_classif.mauc_au1p
,
mlr_measures_classif.mauc_au1u
,
mlr_measures_classif.mauc_aunp
,
mlr_measures_classif.mauc_aunu
,
mlr_measures_classif.mauc_mu
,
mlr_measures_classif.mbrier
,
mlr_measures_classif.mcc
,
mlr_measures_classif.npv
,
mlr_measures_classif.ppv
,
mlr_measures_classif.prauc
,
mlr_measures_classif.recall
,
mlr_measures_classif.sensitivity
,
mlr_measures_classif.specificity
,
mlr_measures_classif.tn
,
mlr_measures_classif.tnr
,
mlr_measures_classif.tp
,
mlr_measures_classif.tpr
Other binary classification measures:
mlr_measures_classif.auc
,
mlr_measures_classif.bbrier
,
mlr_measures_classif.dor
,
mlr_measures_classif.fbeta
,
mlr_measures_classif.fdr
,
mlr_measures_classif.fn
,
mlr_measures_classif.fnr
,
mlr_measures_classif.fomr
,
mlr_measures_classif.fp
,
mlr_measures_classif.fpr
,
mlr_measures_classif.npv
,
mlr_measures_classif.ppv
,
mlr_measures_classif.prauc
,
mlr_measures_classif.recall
,
mlr_measures_classif.sensitivity
,
mlr_measures_classif.specificity
,
mlr_measures_classif.tn
,
mlr_measures_classif.tnr
,
mlr_measures_classif.tp
,
mlr_measures_classif.tpr
Measure to compare true observed labels with predicted labels in binary classification tasks.
The True Positive Rate is defined as
This is also know as "recall", "sensitivity", or "probability of detection".
This measure is undefined if TP + FN = 0.
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr()
:
mlr_measures$get("classif.recall") msr("classif.recall")
Empty ParamSet
Type: "binary"
Range:
Minimize: FALSE
Required prediction: response
The score function calls mlr3measures::recall()
from package mlr3measures.
If the measure is undefined for the input, NaN
is returned.
This can be customized by setting the field na_value
.
Dictionary of Measures: mlr_measures
as.data.table(mlr_measures)
for a complete table of all (also dynamically created) Measure implementations.
Other classification measures:
mlr_measures_classif.acc
,
mlr_measures_classif.auc
,
mlr_measures_classif.bacc
,
mlr_measures_classif.bbrier
,
mlr_measures_classif.ce
,
mlr_measures_classif.costs
,
mlr_measures_classif.dor
,
mlr_measures_classif.fbeta
,
mlr_measures_classif.fdr
,
mlr_measures_classif.fn
,
mlr_measures_classif.fnr
,
mlr_measures_classif.fomr
,
mlr_measures_classif.fp
,
mlr_measures_classif.fpr
,
mlr_measures_classif.logloss
,
mlr_measures_classif.mauc_au1p
,
mlr_measures_classif.mauc_au1u
,
mlr_measures_classif.mauc_aunp
,
mlr_measures_classif.mauc_aunu
,
mlr_measures_classif.mauc_mu
,
mlr_measures_classif.mbrier
,
mlr_measures_classif.mcc
,
mlr_measures_classif.npv
,
mlr_measures_classif.ppv
,
mlr_measures_classif.prauc
,
mlr_measures_classif.precision
,
mlr_measures_classif.sensitivity
,
mlr_measures_classif.specificity
,
mlr_measures_classif.tn
,
mlr_measures_classif.tnr
,
mlr_measures_classif.tp
,
mlr_measures_classif.tpr
Other binary classification measures:
mlr_measures_classif.auc
,
mlr_measures_classif.bbrier
,
mlr_measures_classif.dor
,
mlr_measures_classif.fbeta
,
mlr_measures_classif.fdr
,
mlr_measures_classif.fn
,
mlr_measures_classif.fnr
,
mlr_measures_classif.fomr
,
mlr_measures_classif.fp
,
mlr_measures_classif.fpr
,
mlr_measures_classif.npv
,
mlr_measures_classif.ppv
,
mlr_measures_classif.prauc
,
mlr_measures_classif.precision
,
mlr_measures_classif.sensitivity
,
mlr_measures_classif.specificity
,
mlr_measures_classif.tn
,
mlr_measures_classif.tnr
,
mlr_measures_classif.tp
,
mlr_measures_classif.tpr
Measure to compare true observed labels with predicted labels in binary classification tasks.
The True Positive Rate is defined as
This is also know as "recall", "sensitivity", or "probability of detection".
This measure is undefined if TP + FN = 0.
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr()
:
mlr_measures$get("classif.sensitivity") msr("classif.sensitivity")
Empty ParamSet
Type: "binary"
Range:
Minimize: FALSE
Required prediction: response
The score function calls mlr3measures::sensitivity()
from package mlr3measures.
If the measure is undefined for the input, NaN
is returned.
This can be customized by setting the field na_value
.
Dictionary of Measures: mlr_measures
as.data.table(mlr_measures)
for a complete table of all (also dynamically created) Measure implementations.
Other classification measures:
mlr_measures_classif.acc
,
mlr_measures_classif.auc
,
mlr_measures_classif.bacc
,
mlr_measures_classif.bbrier
,
mlr_measures_classif.ce
,
mlr_measures_classif.costs
,
mlr_measures_classif.dor
,
mlr_measures_classif.fbeta
,
mlr_measures_classif.fdr
,
mlr_measures_classif.fn
,
mlr_measures_classif.fnr
,
mlr_measures_classif.fomr
,
mlr_measures_classif.fp
,
mlr_measures_classif.fpr
,
mlr_measures_classif.logloss
,
mlr_measures_classif.mauc_au1p
,
mlr_measures_classif.mauc_au1u
,
mlr_measures_classif.mauc_aunp
,
mlr_measures_classif.mauc_aunu
,
mlr_measures_classif.mauc_mu
,
mlr_measures_classif.mbrier
,
mlr_measures_classif.mcc
,
mlr_measures_classif.npv
,
mlr_measures_classif.ppv
,
mlr_measures_classif.prauc
,
mlr_measures_classif.precision
,
mlr_measures_classif.recall
,
mlr_measures_classif.specificity
,
mlr_measures_classif.tn
,
mlr_measures_classif.tnr
,
mlr_measures_classif.tp
,
mlr_measures_classif.tpr
Other binary classification measures:
mlr_measures_classif.auc
,
mlr_measures_classif.bbrier
,
mlr_measures_classif.dor
,
mlr_measures_classif.fbeta
,
mlr_measures_classif.fdr
,
mlr_measures_classif.fn
,
mlr_measures_classif.fnr
,
mlr_measures_classif.fomr
,
mlr_measures_classif.fp
,
mlr_measures_classif.fpr
,
mlr_measures_classif.npv
,
mlr_measures_classif.ppv
,
mlr_measures_classif.prauc
,
mlr_measures_classif.precision
,
mlr_measures_classif.recall
,
mlr_measures_classif.specificity
,
mlr_measures_classif.tn
,
mlr_measures_classif.tnr
,
mlr_measures_classif.tp
,
mlr_measures_classif.tpr
Measure to compare true observed labels with predicted labels in binary classification tasks.
The True Negative Rate is defined as
Also know as "specificity" or "selectivity".
This measure is undefined if FP + TN = 0.
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr()
:
mlr_measures$get("classif.specificity") msr("classif.specificity")
Empty ParamSet
Type: "binary"
Range:
Minimize: FALSE
Required prediction: response
The score function calls mlr3measures::specificity()
from package mlr3measures.
If the measure is undefined for the input, NaN
is returned.
This can be customized by setting the field na_value
.
Dictionary of Measures: mlr_measures
as.data.table(mlr_measures)
for a complete table of all (also dynamically created) Measure implementations.
Other classification measures:
mlr_measures_classif.acc
,
mlr_measures_classif.auc
,
mlr_measures_classif.bacc
,
mlr_measures_classif.bbrier
,
mlr_measures_classif.ce
,
mlr_measures_classif.costs
,
mlr_measures_classif.dor
,
mlr_measures_classif.fbeta
,
mlr_measures_classif.fdr
,
mlr_measures_classif.fn
,
mlr_measures_classif.fnr
,
mlr_measures_classif.fomr
,
mlr_measures_classif.fp
,
mlr_measures_classif.fpr
,
mlr_measures_classif.logloss
,
mlr_measures_classif.mauc_au1p
,
mlr_measures_classif.mauc_au1u
,
mlr_measures_classif.mauc_aunp
,
mlr_measures_classif.mauc_aunu
,
mlr_measures_classif.mauc_mu
,
mlr_measures_classif.mbrier
,
mlr_measures_classif.mcc
,
mlr_measures_classif.npv
,
mlr_measures_classif.ppv
,
mlr_measures_classif.prauc
,
mlr_measures_classif.precision
,
mlr_measures_classif.recall
,
mlr_measures_classif.sensitivity
,
mlr_measures_classif.tn
,
mlr_measures_classif.tnr
,
mlr_measures_classif.tp
,
mlr_measures_classif.tpr
Other binary classification measures:
mlr_measures_classif.auc
,
mlr_measures_classif.bbrier
,
mlr_measures_classif.dor
,
mlr_measures_classif.fbeta
,
mlr_measures_classif.fdr
,
mlr_measures_classif.fn
,
mlr_measures_classif.fnr
,
mlr_measures_classif.fomr
,
mlr_measures_classif.fp
,
mlr_measures_classif.fpr
,
mlr_measures_classif.npv
,
mlr_measures_classif.ppv
,
mlr_measures_classif.prauc
,
mlr_measures_classif.precision
,
mlr_measures_classif.recall
,
mlr_measures_classif.sensitivity
,
mlr_measures_classif.tn
,
mlr_measures_classif.tnr
,
mlr_measures_classif.tp
,
mlr_measures_classif.tpr
Measure to compare true observed labels with predicted labels in binary classification tasks.
This measure counts the true negatives, i.e. the number of predictions correctly indicating a negative class label. This is sometimes also called a "correct rejection".
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr()
:
mlr_measures$get("classif.tn") msr("classif.tn")
Empty ParamSet
Type: "binary"
Range:
Minimize: FALSE
Required prediction: response
The score function calls mlr3measures::tn()
from package mlr3measures.
If the measure is undefined for the input, NaN
is returned.
This can be customized by setting the field na_value
.
Dictionary of Measures: mlr_measures
as.data.table(mlr_measures)
for a complete table of all (also dynamically created) Measure implementations.
Other classification measures:
mlr_measures_classif.acc
,
mlr_measures_classif.auc
,
mlr_measures_classif.bacc
,
mlr_measures_classif.bbrier
,
mlr_measures_classif.ce
,
mlr_measures_classif.costs
,
mlr_measures_classif.dor
,
mlr_measures_classif.fbeta
,
mlr_measures_classif.fdr
,
mlr_measures_classif.fn
,
mlr_measures_classif.fnr
,
mlr_measures_classif.fomr
,
mlr_measures_classif.fp
,
mlr_measures_classif.fpr
,
mlr_measures_classif.logloss
,
mlr_measures_classif.mauc_au1p
,
mlr_measures_classif.mauc_au1u
,
mlr_measures_classif.mauc_aunp
,
mlr_measures_classif.mauc_aunu
,
mlr_measures_classif.mauc_mu
,
mlr_measures_classif.mbrier
,
mlr_measures_classif.mcc
,
mlr_measures_classif.npv
,
mlr_measures_classif.ppv
,
mlr_measures_classif.prauc
,
mlr_measures_classif.precision
,
mlr_measures_classif.recall
,
mlr_measures_classif.sensitivity
,
mlr_measures_classif.specificity
,
mlr_measures_classif.tnr
,
mlr_measures_classif.tp
,
mlr_measures_classif.tpr
Other binary classification measures:
mlr_measures_classif.auc
,
mlr_measures_classif.bbrier
,
mlr_measures_classif.dor
,
mlr_measures_classif.fbeta
,
mlr_measures_classif.fdr
,
mlr_measures_classif.fn
,
mlr_measures_classif.fnr
,
mlr_measures_classif.fomr
,
mlr_measures_classif.fp
,
mlr_measures_classif.fpr
,
mlr_measures_classif.npv
,
mlr_measures_classif.ppv
,
mlr_measures_classif.prauc
,
mlr_measures_classif.precision
,
mlr_measures_classif.recall
,
mlr_measures_classif.sensitivity
,
mlr_measures_classif.specificity
,
mlr_measures_classif.tnr
,
mlr_measures_classif.tp
,
mlr_measures_classif.tpr
Measure to compare true observed labels with predicted labels in binary classification tasks.
The True Negative Rate is defined as
Also know as "specificity" or "selectivity".
This measure is undefined if FP + TN = 0.
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr()
:
mlr_measures$get("classif.tnr") msr("classif.tnr")
Empty ParamSet
Type: "binary"
Range:
Minimize: FALSE
Required prediction: response
The score function calls mlr3measures::tnr()
from package mlr3measures.
If the measure is undefined for the input, NaN
is returned.
This can be customized by setting the field na_value
.
Dictionary of Measures: mlr_measures
as.data.table(mlr_measures)
for a complete table of all (also dynamically created) Measure implementations.
Other classification measures:
mlr_measures_classif.acc
,
mlr_measures_classif.auc
,
mlr_measures_classif.bacc
,
mlr_measures_classif.bbrier
,
mlr_measures_classif.ce
,
mlr_measures_classif.costs
,
mlr_measures_classif.dor
,
mlr_measures_classif.fbeta
,
mlr_measures_classif.fdr
,
mlr_measures_classif.fn
,
mlr_measures_classif.fnr
,
mlr_measures_classif.fomr
,
mlr_measures_classif.fp
,
mlr_measures_classif.fpr
,
mlr_measures_classif.logloss
,
mlr_measures_classif.mauc_au1p
,
mlr_measures_classif.mauc_au1u
,
mlr_measures_classif.mauc_aunp
,
mlr_measures_classif.mauc_aunu
,
mlr_measures_classif.mauc_mu
,
mlr_measures_classif.mbrier
,
mlr_measures_classif.mcc
,
mlr_measures_classif.npv
,
mlr_measures_classif.ppv
,
mlr_measures_classif.prauc
,
mlr_measures_classif.precision
,
mlr_measures_classif.recall
,
mlr_measures_classif.sensitivity
,
mlr_measures_classif.specificity
,
mlr_measures_classif.tn
,
mlr_measures_classif.tp
,
mlr_measures_classif.tpr
Other binary classification measures:
mlr_measures_classif.auc
,
mlr_measures_classif.bbrier
,
mlr_measures_classif.dor
,
mlr_measures_classif.fbeta
,
mlr_measures_classif.fdr
,
mlr_measures_classif.fn
,
mlr_measures_classif.fnr
,
mlr_measures_classif.fomr
,
mlr_measures_classif.fp
,
mlr_measures_classif.fpr
,
mlr_measures_classif.npv
,
mlr_measures_classif.ppv
,
mlr_measures_classif.prauc
,
mlr_measures_classif.precision
,
mlr_measures_classif.recall
,
mlr_measures_classif.sensitivity
,
mlr_measures_classif.specificity
,
mlr_measures_classif.tn
,
mlr_measures_classif.tp
,
mlr_measures_classif.tpr
Measure to compare true observed labels with predicted labels in binary classification tasks.
This measure counts the true positives, i.e. the number of predictions correctly indicating a positive class label. This is sometimes also called a "hit".
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr()
:
mlr_measures$get("classif.tp") msr("classif.tp")
Empty ParamSet
Type: "binary"
Range:
Minimize: FALSE
Required prediction: response
The score function calls mlr3measures::tp()
from package mlr3measures.
If the measure is undefined for the input, NaN
is returned.
This can be customized by setting the field na_value
.
Dictionary of Measures: mlr_measures
as.data.table(mlr_measures)
for a complete table of all (also dynamically created) Measure implementations.
Other classification measures:
mlr_measures_classif.acc
,
mlr_measures_classif.auc
,
mlr_measures_classif.bacc
,
mlr_measures_classif.bbrier
,
mlr_measures_classif.ce
,
mlr_measures_classif.costs
,
mlr_measures_classif.dor
,
mlr_measures_classif.fbeta
,
mlr_measures_classif.fdr
,
mlr_measures_classif.fn
,
mlr_measures_classif.fnr
,
mlr_measures_classif.fomr
,
mlr_measures_classif.fp
,
mlr_measures_classif.fpr
,
mlr_measures_classif.logloss
,
mlr_measures_classif.mauc_au1p
,
mlr_measures_classif.mauc_au1u
,
mlr_measures_classif.mauc_aunp
,
mlr_measures_classif.mauc_aunu
,
mlr_measures_classif.mauc_mu
,
mlr_measures_classif.mbrier
,
mlr_measures_classif.mcc
,
mlr_measures_classif.npv
,
mlr_measures_classif.ppv
,
mlr_measures_classif.prauc
,
mlr_measures_classif.precision
,
mlr_measures_classif.recall
,
mlr_measures_classif.sensitivity
,
mlr_measures_classif.specificity
,
mlr_measures_classif.tn
,
mlr_measures_classif.tnr
,
mlr_measures_classif.tpr
Other binary classification measures:
mlr_measures_classif.auc
,
mlr_measures_classif.bbrier
,
mlr_measures_classif.dor
,
mlr_measures_classif.fbeta
,
mlr_measures_classif.fdr
,
mlr_measures_classif.fn
,
mlr_measures_classif.fnr
,
mlr_measures_classif.fomr
,
mlr_measures_classif.fp
,
mlr_measures_classif.fpr
,
mlr_measures_classif.npv
,
mlr_measures_classif.ppv
,
mlr_measures_classif.prauc
,
mlr_measures_classif.precision
,
mlr_measures_classif.recall
,
mlr_measures_classif.sensitivity
,
mlr_measures_classif.specificity
,
mlr_measures_classif.tn
,
mlr_measures_classif.tnr
,
mlr_measures_classif.tpr
Measure to compare true observed labels with predicted labels in binary classification tasks.
The True Positive Rate is defined as
This is also know as "recall", "sensitivity", or "probability of detection".
This measure is undefined if TP + FN = 0.
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr()
:
mlr_measures$get("classif.tpr") msr("classif.tpr")
Empty ParamSet
Type: "binary"
Range:
Minimize: FALSE
Required prediction: response
The score function calls mlr3measures::tpr()
from package mlr3measures.
If the measure is undefined for the input, NaN
is returned.
This can be customized by setting the field na_value
.
Dictionary of Measures: mlr_measures
as.data.table(mlr_measures)
for a complete table of all (also dynamically created) Measure implementations.
Other classification measures:
mlr_measures_classif.acc
,
mlr_measures_classif.auc
,
mlr_measures_classif.bacc
,
mlr_measures_classif.bbrier
,
mlr_measures_classif.ce
,
mlr_measures_classif.costs
,
mlr_measures_classif.dor
,
mlr_measures_classif.fbeta
,
mlr_measures_classif.fdr
,
mlr_measures_classif.fn
,
mlr_measures_classif.fnr
,
mlr_measures_classif.fomr
,
mlr_measures_classif.fp
,
mlr_measures_classif.fpr
,
mlr_measures_classif.logloss
,
mlr_measures_classif.mauc_au1p
,
mlr_measures_classif.mauc_au1u
,
mlr_measures_classif.mauc_aunp
,
mlr_measures_classif.mauc_aunu
,
mlr_measures_classif.mauc_mu
,
mlr_measures_classif.mbrier
,
mlr_measures_classif.mcc
,
mlr_measures_classif.npv
,
mlr_measures_classif.ppv
,
mlr_measures_classif.prauc
,
mlr_measures_classif.precision
,
mlr_measures_classif.recall
,
mlr_measures_classif.sensitivity
,
mlr_measures_classif.specificity
,
mlr_measures_classif.tn
,
mlr_measures_classif.tnr
,
mlr_measures_classif.tp
Other binary classification measures:
mlr_measures_classif.auc
,
mlr_measures_classif.bbrier
,
mlr_measures_classif.dor
,
mlr_measures_classif.fbeta
,
mlr_measures_classif.fdr
,
mlr_measures_classif.fn
,
mlr_measures_classif.fnr
,
mlr_measures_classif.fomr
,
mlr_measures_classif.fp
,
mlr_measures_classif.fpr
,
mlr_measures_classif.npv
,
mlr_measures_classif.ppv
,
mlr_measures_classif.prauc
,
mlr_measures_classif.precision
,
mlr_measures_classif.recall
,
mlr_measures_classif.sensitivity
,
mlr_measures_classif.specificity
,
mlr_measures_classif.tn
,
mlr_measures_classif.tnr
,
mlr_measures_classif.tp
This measure returns the number of observations in the PredictionClassif object.
Its main purpose is debugging.
The parameter na_ratio
(numeric(1)
) controls the ratio of scores which randomly
are set to NA
, between 0 (default) and 1.
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr()
:
mlr_measures$get("debug_classif") msr("debug_classif")
Task type: “NA”
Range:
Minimize: NA
Average: macro
Required Prediction: “response”
Required Packages: mlr3
Id | Type | Default | Range |
na_ratio | numeric | - | |
mlr3::Measure
-> MeasureDebugClassif
new()
Creates a new instance of this R6 class.
MeasureDebugClassif$new()
clone()
The objects of this class are cloneable with this method.
MeasureDebugClassif$clone(deep = FALSE)
deep
Whether to make a deep clone.
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html#sec-eval
Package mlr3measures for the scoring functions.
Dictionary of Measures: mlr_measures
as.data.table(mlr_measures)
for a table of available Measures in the running session (depending on the loaded packages).
Extension packages for additional task types:
mlr3proba for probabilistic supervised regression and survival analysis.
mlr3cluster for unsupervised clustering.
Other Measure:
Measure
,
MeasureClassif
,
MeasureRegr
,
MeasureSimilarity
,
mlr_measures
,
mlr_measures_aic
,
mlr_measures_bic
,
mlr_measures_classif.costs
,
mlr_measures_elapsed_time
,
mlr_measures_internal_valid_score
,
mlr_measures_oob_error
,
mlr_measures_regr.rsq
,
mlr_measures_selected_features
task = tsk("wine") learner = lrn("classif.featureless") measure = msr("debug_classif", na_ratio = 0.5) rr = resample(task, learner, rsmp("cv", folds = 5)) rr$score(measure)
task = tsk("wine") learner = lrn("classif.featureless") measure = msr("debug_classif", na_ratio = 0.5) rr = resample(task, learner, rsmp("cv", folds = 5)) rr$score(measure)
Measures the elapsed time during train ("time_train"), predict ("time_predict"), or both ("time_both").
Aggregation of elapsed time defaults to mean but can be configured via the field aggregator
of the Measure.
When predictions for multiple predict sets were made during resample()
or benchmark()
, the predict time shows the cumulative duration of all predictions.
If learner$predict()
is called manually, the last predict time gets overwritten.
The elapsed time accounts only for the training duration of the primary learner, excluding the time required for training the fallback learner.
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr()
:
mlr_measures$get("time_train") msr("time_train")
Task type: “NA”
Range:
Minimize: TRUE
Average: macro
Required Prediction: “NA”
Required Packages: mlr3
Empty ParamSet
mlr3::Measure
-> MeasureElapsedTime
stages
(character()
)
Which stages of the learner to measure?
Usually set during construction.
new()
Creates a new instance of this R6 class.
MeasureElapsedTime$new(id = "elapsed_time", stages)
id
(character(1)
)
Identifier for the new instance.
stages
(character()
)
Subset of ("train", "predict")
.
The runtime of provided stages will be summed.
clone()
The objects of this class are cloneable with this method.
MeasureElapsedTime$clone(deep = FALSE)
deep
Whether to make a deep clone.
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html#sec-eval
Package mlr3measures for the scoring functions.
Dictionary of Measures: mlr_measures
as.data.table(mlr_measures)
for a table of available Measures in the running session (depending on the loaded packages).
Extension packages for additional task types:
mlr3proba for probabilistic supervised regression and survival analysis.
mlr3cluster for unsupervised clustering.
Other Measure:
Measure
,
MeasureClassif
,
MeasureRegr
,
MeasureSimilarity
,
mlr_measures
,
mlr_measures_aic
,
mlr_measures_bic
,
mlr_measures_classif.costs
,
mlr_measures_debug_classif
,
mlr_measures_internal_valid_score
,
mlr_measures_oob_error
,
mlr_measures_regr.rsq
,
mlr_measures_selected_features
Returns the selected internal validation score of the Learner for learners property "validation"
.
Returns NA
for unsupported learners, when no validation was done, or when the selected id was not found.
The id
of this measure is set to the value of select
if provided.
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr()
:
mlr_measures$get("internal_valid_score") msr("internal_valid_score")
Task type: “NA”
Range:
Minimize: NA
Average: macro
Required Prediction: “NA”
Required Packages: mlr3
Empty ParamSet
mlr3::Measure
-> MeasureInternalValidScore
new()
Creates a new instance of this R6 class.
MeasureInternalValidScore$new(select = NULL, minimize = NA)
select
(character(1)
)
Which of the internal validation scores to select.
Which scores are available depends on the learner and its configuration.
By default, the first score is chosen.
minimize
(logical(1)
)
Whether smaller values are better.
Must be set to use for tuning.
clone()
The objects of this class are cloneable with this method.
MeasureInternalValidScore$clone(deep = FALSE)
deep
Whether to make a deep clone.
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html#sec-eval
Package mlr3measures for the scoring functions.
Dictionary of Measures: mlr_measures
as.data.table(mlr_measures)
for a table of available Measures in the running session (depending on the loaded packages).
Extension packages for additional task types:
mlr3proba for probabilistic supervised regression and survival analysis.
mlr3cluster for unsupervised clustering.
Other Measure:
Measure
,
MeasureClassif
,
MeasureRegr
,
MeasureSimilarity
,
mlr_measures
,
mlr_measures_aic
,
mlr_measures_bic
,
mlr_measures_classif.costs
,
mlr_measures_debug_classif
,
mlr_measures_elapsed_time
,
mlr_measures_oob_error
,
mlr_measures_regr.rsq
,
mlr_measures_selected_features
rr = resample(tsk("iris"), lrn("classif.debug", validate = 0.3), rsmp("holdout")) rr$score(msr("internal_valid_score", select = "acc"))
rr = resample(tsk("iris"), lrn("classif.debug", validate = 0.3), rsmp("holdout")) rr$score(msr("internal_valid_score", select = "acc"))
Returns the out-of-bag error of the Learner for learners that support it
(learners with property "oob_error"
).
Returns NA
for unsupported learners.
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr()
:
mlr_measures$get("oob_error") msr("oob_error")
Task type: “NA”
Range:
Minimize: TRUE
Average: macro
Required Prediction: “NA”
Required Packages: mlr3
Empty ParamSet
mlr3::Measure
-> MeasureOOBError
new()
Creates a new instance of this R6 class.
MeasureOOBError$new()
clone()
The objects of this class are cloneable with this method.
MeasureOOBError$clone(deep = FALSE)
deep
Whether to make a deep clone.
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html#sec-eval
Package mlr3measures for the scoring functions.
Dictionary of Measures: mlr_measures
as.data.table(mlr_measures)
for a table of available Measures in the running session (depending on the loaded packages).
Extension packages for additional task types:
mlr3proba for probabilistic supervised regression and survival analysis.
mlr3cluster for unsupervised clustering.
Other Measure:
Measure
,
MeasureClassif
,
MeasureRegr
,
MeasureSimilarity
,
mlr_measures
,
mlr_measures_aic
,
mlr_measures_bic
,
mlr_measures_classif.costs
,
mlr_measures_debug_classif
,
mlr_measures_elapsed_time
,
mlr_measures_internal_valid_score
,
mlr_measures_regr.rsq
,
mlr_measures_selected_features
Measure to compare true observed response with predicted response in regression tasks.
The Bias is defined as
where are normalized sample weights.
Good predictions score close to 0.
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr()
:
mlr_measures$get("regr.bias") msr("regr.bias")
Empty ParamSet
Type: "regr"
Range:
Minimize: NA
Required prediction: response
The score function calls mlr3measures::bias()
from package mlr3measures.
If the measure is undefined for the input, NaN
is returned.
This can be customized by setting the field na_value
.
Dictionary of Measures: mlr_measures
as.data.table(mlr_measures)
for a complete table of all (also dynamically created) Measure implementations.
Other regression measures:
mlr_measures_regr.ktau
,
mlr_measures_regr.mae
,
mlr_measures_regr.mape
,
mlr_measures_regr.maxae
,
mlr_measures_regr.medae
,
mlr_measures_regr.medse
,
mlr_measures_regr.mse
,
mlr_measures_regr.msle
,
mlr_measures_regr.pbias
,
mlr_measures_regr.pinball
,
mlr_measures_regr.rae
,
mlr_measures_regr.rmse
,
mlr_measures_regr.rmsle
,
mlr_measures_regr.rrse
,
mlr_measures_regr.rse
,
mlr_measures_regr.sae
,
mlr_measures_regr.smape
,
mlr_measures_regr.srho
,
mlr_measures_regr.sse
Measure to compare true observed response with predicted response in regression tasks.
Kendall's tau is defined as Kendall's rank correlation coefficient between truth and response. It is defined as
Calls stats::cor()
with method
set to "kendall"
.
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr()
:
mlr_measures$get("regr.ktau") msr("regr.ktau")
Empty ParamSet
Type: "regr"
Range:
Minimize: FALSE
Required prediction: response
The score function calls mlr3measures::ktau()
from package mlr3measures.
If the measure is undefined for the input, NaN
is returned.
This can be customized by setting the field na_value
.
Dictionary of Measures: mlr_measures
as.data.table(mlr_measures)
for a complete table of all (also dynamically created) Measure implementations.
Other regression measures:
mlr_measures_regr.bias
,
mlr_measures_regr.mae
,
mlr_measures_regr.mape
,
mlr_measures_regr.maxae
,
mlr_measures_regr.medae
,
mlr_measures_regr.medse
,
mlr_measures_regr.mse
,
mlr_measures_regr.msle
,
mlr_measures_regr.pbias
,
mlr_measures_regr.pinball
,
mlr_measures_regr.rae
,
mlr_measures_regr.rmse
,
mlr_measures_regr.rmsle
,
mlr_measures_regr.rrse
,
mlr_measures_regr.rse
,
mlr_measures_regr.sae
,
mlr_measures_regr.smape
,
mlr_measures_regr.srho
,
mlr_measures_regr.sse
Measure to compare true observed response with predicted response in regression tasks.
The Mean Absolute Error is defined as
where are normalized sample weights.
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr()
:
mlr_measures$get("regr.mae") msr("regr.mae")
Empty ParamSet
Type: "regr"
Range:
Minimize: TRUE
Required prediction: response
The score function calls mlr3measures::mae()
from package mlr3measures.
If the measure is undefined for the input, NaN
is returned.
This can be customized by setting the field na_value
.
Dictionary of Measures: mlr_measures
as.data.table(mlr_measures)
for a complete table of all (also dynamically created) Measure implementations.
Other regression measures:
mlr_measures_regr.bias
,
mlr_measures_regr.ktau
,
mlr_measures_regr.mape
,
mlr_measures_regr.maxae
,
mlr_measures_regr.medae
,
mlr_measures_regr.medse
,
mlr_measures_regr.mse
,
mlr_measures_regr.msle
,
mlr_measures_regr.pbias
,
mlr_measures_regr.pinball
,
mlr_measures_regr.rae
,
mlr_measures_regr.rmse
,
mlr_measures_regr.rmsle
,
mlr_measures_regr.rrse
,
mlr_measures_regr.rse
,
mlr_measures_regr.sae
,
mlr_measures_regr.smape
,
mlr_measures_regr.srho
,
mlr_measures_regr.sse
Measure to compare true observed response with predicted response in regression tasks.
The Mean Absolute Percent Error is defined as
where are normalized sample weights.
This measure is undefined if any element of is
.
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr()
:
mlr_measures$get("regr.mape") msr("regr.mape")
Empty ParamSet
Type: "regr"
Range:
Minimize: TRUE
Required prediction: response
The score function calls mlr3measures::mape()
from package mlr3measures.
If the measure is undefined for the input, NaN
is returned.
This can be customized by setting the field na_value
.
Dictionary of Measures: mlr_measures
as.data.table(mlr_measures)
for a complete table of all (also dynamically created) Measure implementations.
Other regression measures:
mlr_measures_regr.bias
,
mlr_measures_regr.ktau
,
mlr_measures_regr.mae
,
mlr_measures_regr.maxae
,
mlr_measures_regr.medae
,
mlr_measures_regr.medse
,
mlr_measures_regr.mse
,
mlr_measures_regr.msle
,
mlr_measures_regr.pbias
,
mlr_measures_regr.pinball
,
mlr_measures_regr.rae
,
mlr_measures_regr.rmse
,
mlr_measures_regr.rmsle
,
mlr_measures_regr.rrse
,
mlr_measures_regr.rse
,
mlr_measures_regr.sae
,
mlr_measures_regr.smape
,
mlr_measures_regr.srho
,
mlr_measures_regr.sse
Measure to compare true observed response with predicted response in regression tasks.
The Max Absolute Error is defined as
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr()
:
mlr_measures$get("regr.maxae") msr("regr.maxae")
Empty ParamSet
Type: "regr"
Range:
Minimize: TRUE
Required prediction: response
The score function calls mlr3measures::maxae()
from package mlr3measures.
If the measure is undefined for the input, NaN
is returned.
This can be customized by setting the field na_value
.
Dictionary of Measures: mlr_measures
as.data.table(mlr_measures)
for a complete table of all (also dynamically created) Measure implementations.
Other regression measures:
mlr_measures_regr.bias
,
mlr_measures_regr.ktau
,
mlr_measures_regr.mae
,
mlr_measures_regr.mape
,
mlr_measures_regr.medae
,
mlr_measures_regr.medse
,
mlr_measures_regr.mse
,
mlr_measures_regr.msle
,
mlr_measures_regr.pbias
,
mlr_measures_regr.pinball
,
mlr_measures_regr.rae
,
mlr_measures_regr.rmse
,
mlr_measures_regr.rmsle
,
mlr_measures_regr.rrse
,
mlr_measures_regr.rse
,
mlr_measures_regr.sae
,
mlr_measures_regr.smape
,
mlr_measures_regr.srho
,
mlr_measures_regr.sse
Measure to compare true observed response with predicted response in regression tasks.
The Median Absolute Error is defined as
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr()
:
mlr_measures$get("regr.medae") msr("regr.medae")
Empty ParamSet
Type: "regr"
Range:
Minimize: TRUE
Required prediction: response
The score function calls mlr3measures::medae()
from package mlr3measures.
If the measure is undefined for the input, NaN
is returned.
This can be customized by setting the field na_value
.
Dictionary of Measures: mlr_measures
as.data.table(mlr_measures)
for a complete table of all (also dynamically created) Measure implementations.
Other regression measures:
mlr_measures_regr.bias
,
mlr_measures_regr.ktau
,
mlr_measures_regr.mae
,
mlr_measures_regr.mape
,
mlr_measures_regr.maxae
,
mlr_measures_regr.medse
,
mlr_measures_regr.mse
,
mlr_measures_regr.msle
,
mlr_measures_regr.pbias
,
mlr_measures_regr.pinball
,
mlr_measures_regr.rae
,
mlr_measures_regr.rmse
,
mlr_measures_regr.rmsle
,
mlr_measures_regr.rrse
,
mlr_measures_regr.rse
,
mlr_measures_regr.sae
,
mlr_measures_regr.smape
,
mlr_measures_regr.srho
,
mlr_measures_regr.sse
Measure to compare true observed response with predicted response in regression tasks.
The Median Squared Error is defined as
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr()
:
mlr_measures$get("regr.medse") msr("regr.medse")
Empty ParamSet
Type: "regr"
Range:
Minimize: TRUE
Required prediction: response
The score function calls mlr3measures::medse()
from package mlr3measures.
If the measure is undefined for the input, NaN
is returned.
This can be customized by setting the field na_value
.
Dictionary of Measures: mlr_measures
as.data.table(mlr_measures)
for a complete table of all (also dynamically created) Measure implementations.
Other regression measures:
mlr_measures_regr.bias
,
mlr_measures_regr.ktau
,
mlr_measures_regr.mae
,
mlr_measures_regr.mape
,
mlr_measures_regr.maxae
,
mlr_measures_regr.medae
,
mlr_measures_regr.mse
,
mlr_measures_regr.msle
,
mlr_measures_regr.pbias
,
mlr_measures_regr.pinball
,
mlr_measures_regr.rae
,
mlr_measures_regr.rmse
,
mlr_measures_regr.rmsle
,
mlr_measures_regr.rrse
,
mlr_measures_regr.rse
,
mlr_measures_regr.sae
,
mlr_measures_regr.smape
,
mlr_measures_regr.srho
,
mlr_measures_regr.sse
Measure to compare true observed response with predicted response in regression tasks.
The Mean Squared Error is defined as
where are normalized sample weights.
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr()
:
mlr_measures$get("regr.mse") msr("regr.mse")
Empty ParamSet
Type: "regr"
Range:
Minimize: TRUE
Required prediction: response
The score function calls mlr3measures::mse()
from package mlr3measures.
If the measure is undefined for the input, NaN
is returned.
This can be customized by setting the field na_value
.
Dictionary of Measures: mlr_measures
as.data.table(mlr_measures)
for a complete table of all (also dynamically created) Measure implementations.
Other regression measures:
mlr_measures_regr.bias
,
mlr_measures_regr.ktau
,
mlr_measures_regr.mae
,
mlr_measures_regr.mape
,
mlr_measures_regr.maxae
,
mlr_measures_regr.medae
,
mlr_measures_regr.medse
,
mlr_measures_regr.msle
,
mlr_measures_regr.pbias
,
mlr_measures_regr.pinball
,
mlr_measures_regr.rae
,
mlr_measures_regr.rmse
,
mlr_measures_regr.rmsle
,
mlr_measures_regr.rrse
,
mlr_measures_regr.rse
,
mlr_measures_regr.sae
,
mlr_measures_regr.smape
,
mlr_measures_regr.srho
,
mlr_measures_regr.sse
Measure to compare true observed response with predicted response in regression tasks.
The Mean Squared Log Error is defined as
where are normalized sample weights.
This measure is undefined if any element of
or
is less than or equal to
.
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr()
:
mlr_measures$get("regr.msle") msr("regr.msle")
Empty ParamSet
Type: "regr"
Range:
Minimize: TRUE
Required prediction: response
The score function calls mlr3measures::msle()
from package mlr3measures.
If the measure is undefined for the input, NaN
is returned.
This can be customized by setting the field na_value
.
Dictionary of Measures: mlr_measures
as.data.table(mlr_measures)
for a complete table of all (also dynamically created) Measure implementations.
Other regression measures:
mlr_measures_regr.bias
,
mlr_measures_regr.ktau
,
mlr_measures_regr.mae
,
mlr_measures_regr.mape
,
mlr_measures_regr.maxae
,
mlr_measures_regr.medae
,
mlr_measures_regr.medse
,
mlr_measures_regr.mse
,
mlr_measures_regr.pbias
,
mlr_measures_regr.pinball
,
mlr_measures_regr.rae
,
mlr_measures_regr.rmse
,
mlr_measures_regr.rmsle
,
mlr_measures_regr.rrse
,
mlr_measures_regr.rse
,
mlr_measures_regr.sae
,
mlr_measures_regr.smape
,
mlr_measures_regr.srho
,
mlr_measures_regr.sse
Measure to compare true observed response with predicted response in regression tasks.
The Percent Bias is defined as
where are normalized sample weights.
Good predictions score close to 0.
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr()
:
mlr_measures$get("regr.pbias") msr("regr.pbias")
Empty ParamSet
Type: "regr"
Range:
Minimize: NA
Required prediction: response
The score function calls mlr3measures::pbias()
from package mlr3measures.
If the measure is undefined for the input, NaN
is returned.
This can be customized by setting the field na_value
.
Dictionary of Measures: mlr_measures
as.data.table(mlr_measures)
for a complete table of all (also dynamically created) Measure implementations.
Other regression measures:
mlr_measures_regr.bias
,
mlr_measures_regr.ktau
,
mlr_measures_regr.mae
,
mlr_measures_regr.mape
,
mlr_measures_regr.maxae
,
mlr_measures_regr.medae
,
mlr_measures_regr.medse
,
mlr_measures_regr.mse
,
mlr_measures_regr.msle
,
mlr_measures_regr.pinball
,
mlr_measures_regr.rae
,
mlr_measures_regr.rmse
,
mlr_measures_regr.rmsle
,
mlr_measures_regr.rrse
,
mlr_measures_regr.rse
,
mlr_measures_regr.sae
,
mlr_measures_regr.smape
,
mlr_measures_regr.srho
,
mlr_measures_regr.sse
Measure to compare true observed response with predicted response in regression tasks.
The pinball loss for quantile regression is defined as
where is the quantile and
are normalized sample weights.
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr()
:
mlr_measures$get("regr.pinball") msr("regr.pinball")
Empty ParamSet
Type: "regr"
Range:
Minimize: TRUE
Required prediction: response
The score function calls mlr3measures::pinball()
from package mlr3measures.
If the measure is undefined for the input, NaN
is returned.
This can be customized by setting the field na_value
.
Dictionary of Measures: mlr_measures
as.data.table(mlr_measures)
for a complete table of all (also dynamically created) Measure implementations.
Other regression measures:
mlr_measures_regr.bias
,
mlr_measures_regr.ktau
,
mlr_measures_regr.mae
,
mlr_measures_regr.mape
,
mlr_measures_regr.maxae
,
mlr_measures_regr.medae
,
mlr_measures_regr.medse
,
mlr_measures_regr.mse
,
mlr_measures_regr.msle
,
mlr_measures_regr.pbias
,
mlr_measures_regr.rae
,
mlr_measures_regr.rmse
,
mlr_measures_regr.rmsle
,
mlr_measures_regr.rrse
,
mlr_measures_regr.rse
,
mlr_measures_regr.sae
,
mlr_measures_regr.smape
,
mlr_measures_regr.srho
,
mlr_measures_regr.sse
Measure to compare true observed response with predicted response in regression tasks.
The Relative Absolute Error is defined as
where .
This measure is undefined for constant
.
Can be interpreted as absolute error of the predictions relative to a naive model predicting the mean.
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr()
:
mlr_measures$get("regr.rae") msr("regr.rae")
Empty ParamSet
Type: "regr"
Range:
Minimize: TRUE
Required prediction: response
The score function calls mlr3measures::rae()
from package mlr3measures.
If the measure is undefined for the input, NaN
is returned.
This can be customized by setting the field na_value
.
Dictionary of Measures: mlr_measures
as.data.table(mlr_measures)
for a complete table of all (also dynamically created) Measure implementations.
Other regression measures:
mlr_measures_regr.bias
,
mlr_measures_regr.ktau
,
mlr_measures_regr.mae
,
mlr_measures_regr.mape
,
mlr_measures_regr.maxae
,
mlr_measures_regr.medae
,
mlr_measures_regr.medse
,
mlr_measures_regr.mse
,
mlr_measures_regr.msle
,
mlr_measures_regr.pbias
,
mlr_measures_regr.pinball
,
mlr_measures_regr.rmse
,
mlr_measures_regr.rmsle
,
mlr_measures_regr.rrse
,
mlr_measures_regr.rse
,
mlr_measures_regr.sae
,
mlr_measures_regr.smape
,
mlr_measures_regr.srho
,
mlr_measures_regr.sse
Measure to compare true observed response with predicted response in regression tasks.
The Root Mean Squared Error is defined as
where are normalized sample weights.
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr()
:
mlr_measures$get("regr.rmse") msr("regr.rmse")
Empty ParamSet
Type: "regr"
Range:
Minimize: TRUE
Required prediction: response
The score function calls mlr3measures::rmse()
from package mlr3measures.
If the measure is undefined for the input, NaN
is returned.
This can be customized by setting the field na_value
.
Dictionary of Measures: mlr_measures
as.data.table(mlr_measures)
for a complete table of all (also dynamically created) Measure implementations.
Other regression measures:
mlr_measures_regr.bias
,
mlr_measures_regr.ktau
,
mlr_measures_regr.mae
,
mlr_measures_regr.mape
,
mlr_measures_regr.maxae
,
mlr_measures_regr.medae
,
mlr_measures_regr.medse
,
mlr_measures_regr.mse
,
mlr_measures_regr.msle
,
mlr_measures_regr.pbias
,
mlr_measures_regr.pinball
,
mlr_measures_regr.rae
,
mlr_measures_regr.rmsle
,
mlr_measures_regr.rrse
,
mlr_measures_regr.rse
,
mlr_measures_regr.sae
,
mlr_measures_regr.smape
,
mlr_measures_regr.srho
,
mlr_measures_regr.sse
Measure to compare true observed response with predicted response in regression tasks.
The Root Mean Squared Log Error is defined as
where are normalized sample weights.
This measure is undefined if any element of or
is less than or equal to
.
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr()
:
mlr_measures$get("regr.rmsle") msr("regr.rmsle")
Empty ParamSet
Type: "regr"
Range:
Minimize: TRUE
Required prediction: response
The score function calls mlr3measures::rmsle()
from package mlr3measures.
If the measure is undefined for the input, NaN
is returned.
This can be customized by setting the field na_value
.
Dictionary of Measures: mlr_measures
as.data.table(mlr_measures)
for a complete table of all (also dynamically created) Measure implementations.
Other regression measures:
mlr_measures_regr.bias
,
mlr_measures_regr.ktau
,
mlr_measures_regr.mae
,
mlr_measures_regr.mape
,
mlr_measures_regr.maxae
,
mlr_measures_regr.medae
,
mlr_measures_regr.medse
,
mlr_measures_regr.mse
,
mlr_measures_regr.msle
,
mlr_measures_regr.pbias
,
mlr_measures_regr.pinball
,
mlr_measures_regr.rae
,
mlr_measures_regr.rmse
,
mlr_measures_regr.rrse
,
mlr_measures_regr.rse
,
mlr_measures_regr.sae
,
mlr_measures_regr.smape
,
mlr_measures_regr.srho
,
mlr_measures_regr.sse
Measure to compare true observed response with predicted response in regression tasks.
The Root Relative Squared Error is defined as
where .
Can be interpreted as root of the squared error of the predictions relative to a naive model predicting the mean.
This measure is undefined for constant .
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr()
:
mlr_measures$get("regr.rrse") msr("regr.rrse")
Empty ParamSet
Type: "regr"
Range:
Minimize: TRUE
Required prediction: response
The score function calls mlr3measures::rrse()
from package mlr3measures.
If the measure is undefined for the input, NaN
is returned.
This can be customized by setting the field na_value
.
Dictionary of Measures: mlr_measures
as.data.table(mlr_measures)
for a complete table of all (also dynamically created) Measure implementations.
Other regression measures:
mlr_measures_regr.bias
,
mlr_measures_regr.ktau
,
mlr_measures_regr.mae
,
mlr_measures_regr.mape
,
mlr_measures_regr.maxae
,
mlr_measures_regr.medae
,
mlr_measures_regr.medse
,
mlr_measures_regr.mse
,
mlr_measures_regr.msle
,
mlr_measures_regr.pbias
,
mlr_measures_regr.pinball
,
mlr_measures_regr.rae
,
mlr_measures_regr.rmse
,
mlr_measures_regr.rmsle
,
mlr_measures_regr.rse
,
mlr_measures_regr.sae
,
mlr_measures_regr.smape
,
mlr_measures_regr.srho
,
mlr_measures_regr.sse
Measure to compare true observed response with predicted response in regression tasks.
The Relative Squared Error is defined as
where .
Can be interpreted as squared error of the predictions relative to a naive model predicting the mean.
This measure is undefined for constant .
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr()
:
mlr_measures$get("regr.rse") msr("regr.rse")
Empty ParamSet
Type: "regr"
Range:
Minimize: TRUE
Required prediction: response
The score function calls mlr3measures::rse()
from package mlr3measures.
If the measure is undefined for the input, NaN
is returned.
This can be customized by setting the field na_value
.
Dictionary of Measures: mlr_measures
as.data.table(mlr_measures)
for a complete table of all (also dynamically created) Measure implementations.
Other regression measures:
mlr_measures_regr.bias
,
mlr_measures_regr.ktau
,
mlr_measures_regr.mae
,
mlr_measures_regr.mape
,
mlr_measures_regr.maxae
,
mlr_measures_regr.medae
,
mlr_measures_regr.medse
,
mlr_measures_regr.mse
,
mlr_measures_regr.msle
,
mlr_measures_regr.pbias
,
mlr_measures_regr.pinball
,
mlr_measures_regr.rae
,
mlr_measures_regr.rmse
,
mlr_measures_regr.rmsle
,
mlr_measures_regr.rrse
,
mlr_measures_regr.sae
,
mlr_measures_regr.smape
,
mlr_measures_regr.srho
,
mlr_measures_regr.sse
Measure to compare true observed response with predicted response in regression tasks.
R Squared is defined as
where .
Also known as coefficient of determination or explained variation.
Subtracts the mlr3measures::rse()
from 1, hence it compares the squared error of the predictions relative to a naive model predicting the mean.
This measure is undefined for constant .
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr()
:
mlr_measures$get("regr.rsq") msr("regr.rsq")
Task type: “regr”
Range:
Minimize: FALSE
Average: macro
Required Prediction: “response”
Required Packages: mlr3
Empty ParamSet
mlr3::Measure
-> mlr3::MeasureRegr
-> MeasureRSQ
new()
Creates a new instance of this R6 class.
MeasureRegrRSQ$new(pred_set_mean = TRUE)
pred_set_mean
logical(1)
If TRUE
, the mean of the true values is calculated on the prediction set.
If FALSE
, the mean of the true values is calculated on the training set.
clone()
The objects of this class are cloneable with this method.
MeasureRegrRSQ$clone(deep = FALSE)
deep
Whether to make a deep clone.
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html#sec-eval
Package mlr3measures for the scoring functions.
Dictionary of Measures: mlr_measures
as.data.table(mlr_measures)
for a table of available Measures in the running session (depending on the loaded packages).
Extension packages for additional task types:
mlr3proba for probabilistic supervised regression and survival analysis.
mlr3cluster for unsupervised clustering.
Other Measure:
Measure
,
MeasureClassif
,
MeasureRegr
,
MeasureSimilarity
,
mlr_measures
,
mlr_measures_aic
,
mlr_measures_bic
,
mlr_measures_classif.costs
,
mlr_measures_debug_classif
,
mlr_measures_elapsed_time
,
mlr_measures_internal_valid_score
,
mlr_measures_oob_error
,
mlr_measures_selected_features
Measure to compare true observed response with predicted response in regression tasks.
The Sum of Absolute Errors is defined as
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr()
:
mlr_measures$get("regr.sae") msr("regr.sae")
Empty ParamSet
Type: "regr"
Range:
Minimize: TRUE
Required prediction: response
The score function calls mlr3measures::sae()
from package mlr3measures.
If the measure is undefined for the input, NaN
is returned.
This can be customized by setting the field na_value
.
Dictionary of Measures: mlr_measures
as.data.table(mlr_measures)
for a complete table of all (also dynamically created) Measure implementations.
Other regression measures:
mlr_measures_regr.bias
,
mlr_measures_regr.ktau
,
mlr_measures_regr.mae
,
mlr_measures_regr.mape
,
mlr_measures_regr.maxae
,
mlr_measures_regr.medae
,
mlr_measures_regr.medse
,
mlr_measures_regr.mse
,
mlr_measures_regr.msle
,
mlr_measures_regr.pbias
,
mlr_measures_regr.pinball
,
mlr_measures_regr.rae
,
mlr_measures_regr.rmse
,
mlr_measures_regr.rmsle
,
mlr_measures_regr.rrse
,
mlr_measures_regr.rse
,
mlr_measures_regr.smape
,
mlr_measures_regr.srho
,
mlr_measures_regr.sse
Measure to compare true observed response with predicted response in regression tasks.
The Symmetric Mean Absolute Percent Error is defined as
This measure is undefined if if any is equal to
.
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr()
:
mlr_measures$get("regr.smape") msr("regr.smape")
Empty ParamSet
Type: "regr"
Range:
Minimize: TRUE
Required prediction: response
The score function calls mlr3measures::smape()
from package mlr3measures.
If the measure is undefined for the input, NaN
is returned.
This can be customized by setting the field na_value
.
Dictionary of Measures: mlr_measures
as.data.table(mlr_measures)
for a complete table of all (also dynamically created) Measure implementations.
Other regression measures:
mlr_measures_regr.bias
,
mlr_measures_regr.ktau
,
mlr_measures_regr.mae
,
mlr_measures_regr.mape
,
mlr_measures_regr.maxae
,
mlr_measures_regr.medae
,
mlr_measures_regr.medse
,
mlr_measures_regr.mse
,
mlr_measures_regr.msle
,
mlr_measures_regr.pbias
,
mlr_measures_regr.pinball
,
mlr_measures_regr.rae
,
mlr_measures_regr.rmse
,
mlr_measures_regr.rmsle
,
mlr_measures_regr.rrse
,
mlr_measures_regr.rse
,
mlr_measures_regr.sae
,
mlr_measures_regr.srho
,
mlr_measures_regr.sse
Measure to compare true observed response with predicted response in regression tasks.
Spearman's rho is defined as Spearman's rank correlation coefficient between truth and response.
Calls stats::cor()
with method
set to "spearman"
.
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr()
:
mlr_measures$get("regr.srho") msr("regr.srho")
Empty ParamSet
Type: "regr"
Range:
Minimize: FALSE
Required prediction: response
The score function calls mlr3measures::srho()
from package mlr3measures.
If the measure is undefined for the input, NaN
is returned.
This can be customized by setting the field na_value
.
Dictionary of Measures: mlr_measures
as.data.table(mlr_measures)
for a complete table of all (also dynamically created) Measure implementations.
Other regression measures:
mlr_measures_regr.bias
,
mlr_measures_regr.ktau
,
mlr_measures_regr.mae
,
mlr_measures_regr.mape
,
mlr_measures_regr.maxae
,
mlr_measures_regr.medae
,
mlr_measures_regr.medse
,
mlr_measures_regr.mse
,
mlr_measures_regr.msle
,
mlr_measures_regr.pbias
,
mlr_measures_regr.pinball
,
mlr_measures_regr.rae
,
mlr_measures_regr.rmse
,
mlr_measures_regr.rmsle
,
mlr_measures_regr.rrse
,
mlr_measures_regr.rse
,
mlr_measures_regr.sae
,
mlr_measures_regr.smape
,
mlr_measures_regr.sse
Measure to compare true observed response with predicted response in regression tasks.
The Sum of Squared Errors is defined as
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr()
:
mlr_measures$get("regr.sse") msr("regr.sse")
Empty ParamSet
Type: "regr"
Range:
Minimize: TRUE
Required prediction: response
The score function calls mlr3measures::sse()
from package mlr3measures.
If the measure is undefined for the input, NaN
is returned.
This can be customized by setting the field na_value
.
Dictionary of Measures: mlr_measures
as.data.table(mlr_measures)
for a complete table of all (also dynamically created) Measure implementations.
Other regression measures:
mlr_measures_regr.bias
,
mlr_measures_regr.ktau
,
mlr_measures_regr.mae
,
mlr_measures_regr.mape
,
mlr_measures_regr.maxae
,
mlr_measures_regr.medae
,
mlr_measures_regr.medse
,
mlr_measures_regr.mse
,
mlr_measures_regr.msle
,
mlr_measures_regr.pbias
,
mlr_measures_regr.pinball
,
mlr_measures_regr.rae
,
mlr_measures_regr.rmse
,
mlr_measures_regr.rmsle
,
mlr_measures_regr.rrse
,
mlr_measures_regr.rse
,
mlr_measures_regr.sae
,
mlr_measures_regr.smape
,
mlr_measures_regr.srho
Measures the number of selected features by extracting it from learners with property "selected_features"
.
If parameter normalize
is set to TRUE
, the relative number of features instead of the absolute
number of features is returned.
Note that the models must be stored to be able to extract this information.
If the learner does not support the extraction of used features, NA
is returned.
This measure requires the Task and the Learner for scoring.
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr()
:
mlr_measures$get("selected_features") msr("selected_features")
Task type: “NA”
Range:
Minimize: TRUE
Average: macro
Required Prediction: “NA”
Required Packages: mlr3
Id | Type | Default | Levels |
normalize | logical | - | TRUE, FALSE |
mlr3::Measure
-> MeasureSelectedFeatures
new()
Creates a new instance of this R6 class.
MeasureSelectedFeatures$new()
clone()
The objects of this class are cloneable with this method.
MeasureSelectedFeatures$clone(deep = FALSE)
deep
Whether to make a deep clone.
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html#sec-eval
Package mlr3measures for the scoring functions.
Dictionary of Measures: mlr_measures
as.data.table(mlr_measures)
for a table of available Measures in the running session (depending on the loaded packages).
Extension packages for additional task types:
mlr3proba for probabilistic supervised regression and survival analysis.
mlr3cluster for unsupervised clustering.
Other Measure:
Measure
,
MeasureClassif
,
MeasureRegr
,
MeasureSimilarity
,
mlr_measures
,
mlr_measures_aic
,
mlr_measures_bic
,
mlr_measures_classif.costs
,
mlr_measures_debug_classif
,
mlr_measures_elapsed_time
,
mlr_measures_internal_valid_score
,
mlr_measures_oob_error
,
mlr_measures_regr.rsq
task = tsk("german_credit") learner = lrn("classif.rpart") rr = resample(task, learner, rsmp("cv", folds = 3), store_models = TRUE) scores = rr$score(msr("selected_features")) scores[, c("iteration", "selected_features")]
task = tsk("german_credit") learner = lrn("classif.rpart") rr = resample(task, learner, rsmp("cv", folds = 3), store_models = TRUE) scores = rr$score(msr("selected_features")) scores[, c("iteration", "selected_features")]
Measure to compare two or more sets w.r.t. their similarity.
For two sets and
, the Jaccard Index is defined as
If more than two sets are provided, the mean of all pairwise scores is calculated.
This measure is undefined if two or more sets are empty.
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr()
:
mlr_measures$get("sim.jaccard") msr("sim.jaccard")
Type: "similarity"
Range:
Minimize: FALSE
This measure requires learners with property "selected_features"
.
The extracted feature sets are passed to mlr3measures::jaccard()
from
package mlr3measures.
If the measure is undefined for the input, NaN
is returned.
This can be customized by setting the field na_value
.
Dictionary of Measures: mlr_measures
as.data.table(mlr_measures)
for a complete table of all (also dynamically created) Measure implementations.
Other similarity measures:
mlr_measures_sim.phi
Measure to compare two or more sets w.r.t. their similarity.
The Phi Coefficient is defined as the Pearson correlation between the binary
representation of two sets and
.
The binary representation for
is a logical vector of
length
with the i-th element being 1 if the corresponding
element is in
, and 0 otherwise.
If more than two sets are provided, the mean of all pairwise scores is calculated.
This measure is undefined if one set contains none or all possible elements.
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr()
:
mlr_measures$get("sim.phi") msr("sim.phi")
Type: "similarity"
Range:
Minimize: FALSE
This measure requires learners with property "selected_features"
.
The extracted feature sets are passed to mlr3measures::phi()
from
package mlr3measures.
If the measure is undefined for the input, NaN
is returned.
This can be customized by setting the field na_value
.
Dictionary of Measures: mlr_measures
as.data.table(mlr_measures)
for a complete table of all (also dynamically created) Measure implementations.
Other similarity measures:
mlr_measures_sim.jaccard
A simple mlr3misc::Dictionary storing objects of class Resampling.
Each resampling has an associated help page, see mlr_resamplings_[id]
.
This dictionary can get populated with additional resampling strategies by add-on packages.
For a more convenient way to retrieve and construct resampling strategies, see rsmp()
/rsmps()
.
R6::R6Class object inheriting from mlr3misc::Dictionary.
See mlr3misc::Dictionary.
as.data.table(dict, ..., objects = FALSE)
mlr3misc::Dictionary -> data.table::data.table()
Returns a data.table::data.table()
with columns "key", "label", "params", and "iters".
If objects
is set to TRUE
, the constructed objects are returned in the list column named object
.
Sugar functions: rsmp()
, rsmps()
Other Dictionary:
mlr_learners
,
mlr_measures
,
mlr_task_generators
,
mlr_tasks
Other Resampling:
Resampling
,
mlr_resamplings_bootstrap
,
mlr_resamplings_custom
,
mlr_resamplings_custom_cv
,
mlr_resamplings_cv
,
mlr_resamplings_holdout
,
mlr_resamplings_insample
,
mlr_resamplings_loo
,
mlr_resamplings_repeated_cv
,
mlr_resamplings_subsampling
as.data.table(mlr_resamplings) mlr_resamplings$get("cv") rsmp("subsampling")
as.data.table(mlr_resamplings) mlr_resamplings$get("cv") rsmp("subsampling")
Splits data into bootstrap samples (sampling with replacement).
Hyperparameters are the number of bootstrap iterations (repeats
, default: 30)
and the ratio of observations to draw per iteration (ratio
, default: 1) for the training set.
This Resampling can be instantiated via the dictionary mlr_resamplings or with the associated sugar function rsmp()
:
mlr_resamplings$get("bootstrap") rsmp("bootstrap")
repeats
(integer(1)
)
Number of repetitions.
ratio
(numeric(1)
)
Ratio of observations to put into the training set.
mlr3::Resampling
-> ResamplingBootstrap
iters
(integer(1)
)
Returns the number of resampling iterations, depending on the values stored in the param_set
.
new()
Creates a new instance of this R6 class.
ResamplingBootstrap$new()
clone()
The objects of this class are cloneable with this method.
ResamplingBootstrap$clone(deep = FALSE)
deep
Whether to make a deep clone.
Bischl B, Mersmann O, Trautmann H, Weihs C (2012). “Resampling Methods for Meta-Model Validation with Recommendations for Evolutionary Computation.” Evolutionary Computation, 20(2), 249–275. doi:10.1162/evco_a_00069.
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter3/evaluation_and_benchmarking.html#sec-resampling
Package mlr3spatiotempcv for spatio-temporal resamplings.
as.data.table(mlr_resamplings)
for a table of available Resamplings in the running session (depending on the loaded packages).
mlr3spatiotempcv for additional Resamplings for spatio-temporal tasks.
Other Resampling:
Resampling
,
mlr_resamplings
,
mlr_resamplings_custom
,
mlr_resamplings_custom_cv
,
mlr_resamplings_cv
,
mlr_resamplings_holdout
,
mlr_resamplings_insample
,
mlr_resamplings_loo
,
mlr_resamplings_repeated_cv
,
mlr_resamplings_subsampling
# Create a task with 10 observations task = tsk("penguins") task$filter(1:10) # Instantiate Resampling bootstrap = rsmp("bootstrap", repeats = 2, ratio = 1) bootstrap$instantiate(task) # Individual sets: bootstrap$train_set(1) bootstrap$test_set(1) # Disjunct sets: intersect(bootstrap$train_set(1), bootstrap$test_set(1)) # Internal storage: bootstrap$instance$M # Matrix of counts
# Create a task with 10 observations task = tsk("penguins") task$filter(1:10) # Instantiate Resampling bootstrap = rsmp("bootstrap", repeats = 2, ratio = 1) bootstrap$instantiate(task) # Individual sets: bootstrap$train_set(1) bootstrap$test_set(1) # Disjunct sets: intersect(bootstrap$train_set(1), bootstrap$test_set(1)) # Internal storage: bootstrap$instance$M # Matrix of counts
Splits data into training and test sets using manually provided indices.
This Resampling can be instantiated via the dictionary mlr_resamplings or with the associated sugar function rsmp()
:
mlr_resamplings$get("custom") rsmp("custom")
mlr3::Resampling
-> ResamplingCustom
iters
(integer(1)
)
Returns the number of resampling iterations, depending on the values stored in the param_set
.
new()
Creates a new instance of this R6 class.
ResamplingCustom$new()
instantiate()
Instantiate this Resampling with custom splits into training and test set.
ResamplingCustom$instantiate(task, train_sets, test_sets)
task
Task
Mainly used to check if train_sets
and test_sets
are feasible.
train_sets
(list of integer()
)
List with row ids for training, one list element per iteration.
Must have the same length as test_sets
.
test_sets
(list of integer()
)
List with row ids for testing, one list element per iteration.
Must have the same length as train_sets
.
clone()
The objects of this class are cloneable with this method.
ResamplingCustom$clone(deep = FALSE)
deep
Whether to make a deep clone.
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter3/evaluation_and_benchmarking.html#sec-resampling
Package mlr3spatiotempcv for spatio-temporal resamplings.
as.data.table(mlr_resamplings)
for a table of available Resamplings in the running session (depending on the loaded packages).
mlr3spatiotempcv for additional Resamplings for spatio-temporal tasks.
Other Resampling:
Resampling
,
mlr_resamplings
,
mlr_resamplings_bootstrap
,
mlr_resamplings_custom_cv
,
mlr_resamplings_cv
,
mlr_resamplings_holdout
,
mlr_resamplings_insample
,
mlr_resamplings_loo
,
mlr_resamplings_repeated_cv
,
mlr_resamplings_subsampling
# Create a task with 10 observations task = tsk("penguins") task$filter(1:10) # Instantiate Resampling custom = rsmp("custom") train_sets = list(1:5, 5:10) test_sets = list(5:10, 1:5) custom$instantiate(task, train_sets, test_sets) custom$train_set(1) custom$test_set(1)
# Create a task with 10 observations task = tsk("penguins") task$filter(1:10) # Instantiate Resampling custom = rsmp("custom") train_sets = list(1:5, 5:10) test_sets = list(5:10, 1:5) custom$instantiate(task, train_sets, test_sets) custom$train_set(1) custom$test_set(1)
Splits data into training and test sets in a cross-validation fashion based
on a user-provided categorical vector.
This vector can be passed during instantiation either via an arbitrary factor f
with the same length as task$nrow
, or via a single string col
referring to a
column in the task.
An alternative but equivalent approach using leave-one-out resampling is showcased in the examples of mlr_resamplings_loo.
This Resampling can be instantiated via the dictionary mlr_resamplings or with the associated sugar function rsmp()
:
mlr_resamplings$get("custom_cv") rsmp("custom_cv")
mlr3::Resampling
-> ResamplingCustomCV
iters
(integer(1)
)
Returns the number of resampling iterations, depending on the values stored in the param_set
.
new()
Creates a new instance of this R6 class.
ResamplingCustomCV$new()
instantiate()
Instantiate this Resampling as cross-validation with custom splits.
ResamplingCustomCV$instantiate(task, f = NULL, col = NULL)
task
Task
Used to extract row ids.
f
(factor()
| character()
)
Vector of type factor or character with the same length as task$nrow
.
Row ids are split on this vector, each distinct value results in a fold.
Empty factor levels are dropped and row ids corresponding to missing values are removed,
c.f. split()
.
col
(character(1)
)
Name of the task column to use for splitting.
Alternative and mutually exclusive to providing the factor levels as a vector via
parameter f
.
clone()
The objects of this class are cloneable with this method.
ResamplingCustomCV$clone(deep = FALSE)
deep
Whether to make a deep clone.
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter3/evaluation_and_benchmarking.html#sec-resampling
Package mlr3spatiotempcv for spatio-temporal resamplings.
as.data.table(mlr_resamplings)
for a table of available Resamplings in the running session (depending on the loaded packages).
mlr3spatiotempcv for additional Resamplings for spatio-temporal tasks.
Other Resampling:
Resampling
,
mlr_resamplings
,
mlr_resamplings_bootstrap
,
mlr_resamplings_custom
,
mlr_resamplings_cv
,
mlr_resamplings_holdout
,
mlr_resamplings_insample
,
mlr_resamplings_loo
,
mlr_resamplings_repeated_cv
,
mlr_resamplings_subsampling
# Create a task with 10 observations task = tsk("penguins") task$filter(1:10) # Instantiate Resampling: custom_cv = rsmp("custom_cv") f = factor(c(rep(letters[1:3], each = 3), NA)) custom_cv$instantiate(task, f = f) custom_cv$iters # 3 folds # Individual sets: custom_cv$train_set(1) custom_cv$test_set(1) # Disjunct sets: intersect(custom_cv$train_set(1), custom_cv$test_set(1))
# Create a task with 10 observations task = tsk("penguins") task$filter(1:10) # Instantiate Resampling: custom_cv = rsmp("custom_cv") f = factor(c(rep(letters[1:3], each = 3), NA)) custom_cv$instantiate(task, f = f) custom_cv$iters # 3 folds # Individual sets: custom_cv$train_set(1) custom_cv$test_set(1) # Disjunct sets: intersect(custom_cv$train_set(1), custom_cv$test_set(1))
Splits data using a folds
-folds (default: 10 folds) cross-validation.
This Resampling can be instantiated via the dictionary mlr_resamplings or with the associated sugar function rsmp()
:
mlr_resamplings$get("cv") rsmp("cv")
folds
(integer(1)
)
Number of folds.
mlr3::Resampling
-> ResamplingCV
iters
(integer(1)
)
Returns the number of resampling iterations, depending on the values stored in the param_set
.
new()
Creates a new instance of this R6 class.
ResamplingCV$new()
clone()
The objects of this class are cloneable with this method.
ResamplingCV$clone(deep = FALSE)
deep
Whether to make a deep clone.
Bischl B, Mersmann O, Trautmann H, Weihs C (2012). “Resampling Methods for Meta-Model Validation with Recommendations for Evolutionary Computation.” Evolutionary Computation, 20(2), 249–275. doi:10.1162/evco_a_00069.
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter3/evaluation_and_benchmarking.html#sec-resampling
Package mlr3spatiotempcv for spatio-temporal resamplings.
as.data.table(mlr_resamplings)
for a table of available Resamplings in the running session (depending on the loaded packages).
mlr3spatiotempcv for additional Resamplings for spatio-temporal tasks.
Other Resampling:
Resampling
,
mlr_resamplings
,
mlr_resamplings_bootstrap
,
mlr_resamplings_custom
,
mlr_resamplings_custom_cv
,
mlr_resamplings_holdout
,
mlr_resamplings_insample
,
mlr_resamplings_loo
,
mlr_resamplings_repeated_cv
,
mlr_resamplings_subsampling
# Create a task with 10 observations task = tsk("penguins") task$filter(1:10) # Instantiate Resampling cv = rsmp("cv", folds = 3) cv$instantiate(task) # Individual sets: cv$train_set(1) cv$test_set(1) # Disjunct sets: intersect(cv$train_set(1), cv$test_set(1)) # Internal storage: cv$instance # table
# Create a task with 10 observations task = tsk("penguins") task$filter(1:10) # Instantiate Resampling cv = rsmp("cv", folds = 3) cv$instantiate(task) # Individual sets: cv$train_set(1) cv$test_set(1) # Disjunct sets: intersect(cv$train_set(1), cv$test_set(1)) # Internal storage: cv$instance # table
Splits data into a training set and a test set.
Parameter ratio
determines the ratio of observation going into the training set (default: 2/3).
This Resampling can be instantiated via the dictionary mlr_resamplings or with the associated sugar function rsmp()
:
mlr_resamplings$get("holdout") rsmp("holdout")
ratio
(numeric(1)
)
Ratio of observations to put into the training set.
mlr3::Resampling
-> ResamplingHoldout
iters
(integer(1)
)
Returns the number of resampling iterations, depending on the values stored in the param_set
.
new()
Creates a new instance of this R6 class.
ResamplingHoldout$new()
clone()
The objects of this class are cloneable with this method.
ResamplingHoldout$clone(deep = FALSE)
deep
Whether to make a deep clone.
Bischl B, Mersmann O, Trautmann H, Weihs C (2012). “Resampling Methods for Meta-Model Validation with Recommendations for Evolutionary Computation.” Evolutionary Computation, 20(2), 249–275. doi:10.1162/evco_a_00069.
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter3/evaluation_and_benchmarking.html#sec-resampling
Package mlr3spatiotempcv for spatio-temporal resamplings.
as.data.table(mlr_resamplings)
for a table of available Resamplings in the running session (depending on the loaded packages).
mlr3spatiotempcv for additional Resamplings for spatio-temporal tasks.
Other Resampling:
Resampling
,
mlr_resamplings
,
mlr_resamplings_bootstrap
,
mlr_resamplings_custom
,
mlr_resamplings_custom_cv
,
mlr_resamplings_cv
,
mlr_resamplings_insample
,
mlr_resamplings_loo
,
mlr_resamplings_repeated_cv
,
mlr_resamplings_subsampling
# Create a task with 10 observations task = tsk("penguins") task$filter(1:10) # Instantiate Resampling holdout = rsmp("holdout", ratio = 0.5) holdout$instantiate(task) # Individual sets: holdout$train_set(1) holdout$test_set(1) # Disjunct sets: intersect(holdout$train_set(1), holdout$test_set(1)) # Internal storage: holdout$instance # simple list
# Create a task with 10 observations task = tsk("penguins") task$filter(1:10) # Instantiate Resampling holdout = rsmp("holdout", ratio = 0.5) holdout$instantiate(task) # Individual sets: holdout$train_set(1) holdout$test_set(1) # Disjunct sets: intersect(holdout$train_set(1), holdout$test_set(1)) # Internal storage: holdout$instance # simple list
Uses all observations as training and as test set.
This Resampling can be instantiated via the dictionary mlr_resamplings or with the associated sugar function rsmp()
:
mlr_resamplings$get("insample") rsmp("insample")
mlr3::Resampling
-> ResamplingInsample
iters
(integer(1)
)
Returns the number of resampling iterations, depending on the values stored in the param_set
.
new()
Creates a new instance of this R6 class.
ResamplingInsample$new()
clone()
The objects of this class are cloneable with this method.
ResamplingInsample$clone(deep = FALSE)
deep
Whether to make a deep clone.
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter3/evaluation_and_benchmarking.html#sec-resampling
Package mlr3spatiotempcv for spatio-temporal resamplings.
as.data.table(mlr_resamplings)
for a table of available Resamplings in the running session (depending on the loaded packages).
mlr3spatiotempcv for additional Resamplings for spatio-temporal tasks.
Other Resampling:
Resampling
,
mlr_resamplings
,
mlr_resamplings_bootstrap
,
mlr_resamplings_custom
,
mlr_resamplings_custom_cv
,
mlr_resamplings_cv
,
mlr_resamplings_holdout
,
mlr_resamplings_loo
,
mlr_resamplings_repeated_cv
,
mlr_resamplings_subsampling
# Create a task with 10 observations task = tsk("penguins") task$filter(1:10) # Instantiate Resampling insample = rsmp("insample") insample$instantiate(task) # Train set equal to test set: setequal(insample$train_set(1), insample$test_set(1)) # Internal storage: insample$instance # just row ids
# Create a task with 10 observations task = tsk("penguins") task$filter(1:10) # Instantiate Resampling insample = rsmp("insample") insample$instantiate(task) # Train set equal to test set: setequal(insample$train_set(1), insample$test_set(1)) # Internal storage: insample$instance # just row ids
Splits data using leave-one-observation-out. This is identical to cross-validation with the number of folds set to the number of observations.
If this resampling is combined with the grouping features of tasks, it is possible to create custom splits based on an arbitrary factor variable, see the examples.
This Resampling can be instantiated via the dictionary mlr_resamplings or with the associated sugar function rsmp()
:
mlr_resamplings$get("loo") rsmp("loo")
mlr3::Resampling
-> ResamplingLOO
iters
(integer(1)
)
Returns the number of resampling iterations which is the number of rows of the task
provided to instantiate. Is NA
if the resampling has not been instantiated.
new()
Creates a new instance of this R6 class.
ResamplingLOO$new()
clone()
The objects of this class are cloneable with this method.
ResamplingLOO$clone(deep = FALSE)
deep
Whether to make a deep clone.
Bischl B, Mersmann O, Trautmann H, Weihs C (2012). “Resampling Methods for Meta-Model Validation with Recommendations for Evolutionary Computation.” Evolutionary Computation, 20(2), 249–275. doi:10.1162/evco_a_00069.
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter3/evaluation_and_benchmarking.html#sec-resampling
Package mlr3spatiotempcv for spatio-temporal resamplings.
as.data.table(mlr_resamplings)
for a table of available Resamplings in the running session (depending on the loaded packages).
mlr3spatiotempcv for additional Resamplings for spatio-temporal tasks.
Other Resampling:
Resampling
,
mlr_resamplings
,
mlr_resamplings_bootstrap
,
mlr_resamplings_custom
,
mlr_resamplings_custom_cv
,
mlr_resamplings_cv
,
mlr_resamplings_holdout
,
mlr_resamplings_insample
,
mlr_resamplings_repeated_cv
,
mlr_resamplings_subsampling
# Create a task with 10 observations task = tsk("penguins") task$filter(1:10) # Instantiate Resampling loo = rsmp("loo") loo$instantiate(task) # Individual sets: loo$train_set(1) loo$test_set(1) # Disjunct sets: intersect(loo$train_set(1), loo$test_set(1)) # Internal storage: loo$instance # vector # Combine with group feature of tasks: task = tsk("penguins") task$set_col_roles("island", add_to = "group") loo$instantiate(task) loo$iters # one fold for each level of "island"
# Create a task with 10 observations task = tsk("penguins") task$filter(1:10) # Instantiate Resampling loo = rsmp("loo") loo$instantiate(task) # Individual sets: loo$train_set(1) loo$test_set(1) # Disjunct sets: intersect(loo$train_set(1), loo$test_set(1)) # Internal storage: loo$instance # vector # Combine with group feature of tasks: task = tsk("penguins") task$set_col_roles("island", add_to = "group") loo$instantiate(task) loo$iters # one fold for each level of "island"
Splits data repeats
(default: 10) times using a folds
-fold (default: 10) cross-validation.
The iteration counter translates to repeats
blocks of folds
cross-validations, i.e., the first folds
iterations belong to
a single cross-validation.
Iteration numbers can be translated into folds or repeats with provided methods.
This Resampling can be instantiated via the dictionary mlr_resamplings or with the associated sugar function rsmp()
:
mlr_resamplings$get("repeated_cv") rsmp("repeated_cv")
repeats
(integer(1)
)
Number of repetitions.
folds
(integer(1)
)
Number of folds.
mlr3::Resampling
-> ResamplingRepeatedCV
iters
(integer(1)
)
Returns the number of resampling iterations, depending on the values stored in the param_set
.
new()
Creates a new instance of this R6 class.
ResamplingRepeatedCV$new()
folds()
Translates iteration numbers to fold numbers.
ResamplingRepeatedCV$folds(iters)
iters
(integer()
)
Iteration number.
integer()
of fold numbers.
repeats()
Translates iteration numbers to repetition numbers.
ResamplingRepeatedCV$repeats(iters)
iters
(integer()
)
Iteration number.
integer()
of repetition numbers.
clone()
The objects of this class are cloneable with this method.
ResamplingRepeatedCV$clone(deep = FALSE)
deep
Whether to make a deep clone.
Bischl B, Mersmann O, Trautmann H, Weihs C (2012). “Resampling Methods for Meta-Model Validation with Recommendations for Evolutionary Computation.” Evolutionary Computation, 20(2), 249–275. doi:10.1162/evco_a_00069.
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter3/evaluation_and_benchmarking.html#sec-resampling
Package mlr3spatiotempcv for spatio-temporal resamplings.
as.data.table(mlr_resamplings)
for a table of available Resamplings in the running session (depending on the loaded packages).
mlr3spatiotempcv for additional Resamplings for spatio-temporal tasks.
Other Resampling:
Resampling
,
mlr_resamplings
,
mlr_resamplings_bootstrap
,
mlr_resamplings_custom
,
mlr_resamplings_custom_cv
,
mlr_resamplings_cv
,
mlr_resamplings_holdout
,
mlr_resamplings_insample
,
mlr_resamplings_loo
,
mlr_resamplings_subsampling
# Create a task with 10 observations task = tsk("penguins") task$filter(1:10) # Instantiate Resampling repeated_cv = rsmp("repeated_cv", repeats = 2, folds = 3) repeated_cv$instantiate(task) repeated_cv$iters repeated_cv$folds(1:6) repeated_cv$repeats(1:6) # Individual sets: repeated_cv$train_set(1) repeated_cv$test_set(1) # Disjunct sets: intersect(repeated_cv$train_set(1), repeated_cv$test_set(1)) # Internal storage: repeated_cv$instance # table
# Create a task with 10 observations task = tsk("penguins") task$filter(1:10) # Instantiate Resampling repeated_cv = rsmp("repeated_cv", repeats = 2, folds = 3) repeated_cv$instantiate(task) repeated_cv$iters repeated_cv$folds(1:6) repeated_cv$repeats(1:6) # Individual sets: repeated_cv$train_set(1) repeated_cv$test_set(1) # Disjunct sets: intersect(repeated_cv$train_set(1), repeated_cv$test_set(1)) # Internal storage: repeated_cv$instance # table
Splits data repeats
(default: 30) times into training and test set
with a ratio of ratio
(default: 2/3) observations going into the training set.
This Resampling can be instantiated via the dictionary mlr_resamplings or with the associated sugar function rsmp()
:
mlr_resamplings$get("subsampling") rsmp("subsampling")
repeats
(integer(1)
)
Number of repetitions.
ratio
(numeric(1)
)
Ratio of observations to put into the training set.
mlr3::Resampling
-> ResamplingSubsampling
iters
(integer(1)
)
Returns the number of resampling iterations, depending on the values stored in the param_set
.
new()
Creates a new instance of this R6 class.
ResamplingSubsampling$new()
clone()
The objects of this class are cloneable with this method.
ResamplingSubsampling$clone(deep = FALSE)
deep
Whether to make a deep clone.
Bischl B, Mersmann O, Trautmann H, Weihs C (2012). “Resampling Methods for Meta-Model Validation with Recommendations for Evolutionary Computation.” Evolutionary Computation, 20(2), 249–275. doi:10.1162/evco_a_00069.
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter3/evaluation_and_benchmarking.html#sec-resampling
Package mlr3spatiotempcv for spatio-temporal resamplings.
as.data.table(mlr_resamplings)
for a table of available Resamplings in the running session (depending on the loaded packages).
mlr3spatiotempcv for additional Resamplings for spatio-temporal tasks.
Other Resampling:
Resampling
,
mlr_resamplings
,
mlr_resamplings_bootstrap
,
mlr_resamplings_custom
,
mlr_resamplings_custom_cv
,
mlr_resamplings_cv
,
mlr_resamplings_holdout
,
mlr_resamplings_insample
,
mlr_resamplings_loo
,
mlr_resamplings_repeated_cv
# Create a task with 10 observations task = tsk("penguins") task$filter(1:10) # Instantiate Resampling subsampling = rsmp("subsampling", repeats = 2, ratio = 0.5) subsampling$instantiate(task) # Individual sets: subsampling$train_set(1) subsampling$test_set(1) # Disjunct sets: intersect(subsampling$train_set(1), subsampling$test_set(1)) # Internal storage: subsampling$instance$train # list of index vectors
# Create a task with 10 observations task = tsk("penguins") task$filter(1:10) # Instantiate Resampling subsampling = rsmp("subsampling", repeats = 2, ratio = 0.5) subsampling$instantiate(task) # Individual sets: subsampling$train_set(1) subsampling$test_set(1) # Disjunct sets: intersect(subsampling$train_set(1), subsampling$test_set(1)) # Internal storage: subsampling$instance$train # list of index vectors
Functions to retrieve objects, set hyperparameters and assign to fields in one go.
Relies on mlr3misc::dictionary_sugar_get()
to extract objects from the respective mlr3misc::Dictionary:
tgen()
for a TaskGenerator from mlr_task_generators.
tgens()
for a list of TaskGenerators from mlr_task_generators.
lrn()
for a Learner from mlr_learners.
lrns()
for a list of Learners from mlr_learners.
rsmp()
for a Resampling from mlr_resamplings.
rsmps()
for a list of Resamplings from mlr_resamplings.
msr()
for a Measure from mlr_measures.
msrs()
for a list of Measures from mlr_measures.
Helper function to configure the $validate
field(s) of a Learner
.
This is especially useful for learners such as AutoTuner
of mlr3tuning or GraphLearner
of mlr3pipelines which have multiple levels of $validate
fields.,
where the $validate
fields need to be configured on multiple levels.
tsk(.key, ...) tsks(.keys, ...) tgen(.key, ...) tgens(.keys, ...) lrn(.key, ...) lrns(.keys, ...) rsmp(.key, ...) rsmps(.keys, ...) msr(.key, ...) msrs(.keys, ...) set_validate(learner, validate, ...)
tsk(.key, ...) tsks(.keys, ...) tgen(.key, ...) tgens(.keys, ...) lrn(.key, ...) lrns(.keys, ...) rsmp(.key, ...) rsmps(.keys, ...) msr(.key, ...) msrs(.keys, ...) set_validate(learner, validate, ...)
.key |
( |
... |
(any) |
.keys |
( |
learner |
(any) |
validate |
( |
R6::R6Class object of the respective type, or a list of R6::R6Class objects for the plural versions.
Modified Learner
# penguins task with new id tsk("penguins", id = "penguins2") # classification tree with different hyperparameters # and predict type set to predict probabilities lrn("classif.rpart", cp = 0.1, predict_type = "prob") # multiple learners with predict type 'prob' lrns(c("classif.featureless", "classif.rpart"), predict_type = "prob") learner = lrn("classif.debug") set_validate(learner, 0.2) learner$validate
# penguins task with new id tsk("penguins", id = "penguins2") # classification tree with different hyperparameters # and predict type set to predict probabilities lrn("classif.rpart", cp = 0.1, predict_type = "prob") # multiple learners with predict type 'prob' lrns(c("classif.featureless", "classif.rpart"), predict_type = "prob") learner = lrn("classif.debug") set_validate(learner, 0.2) learner$validate
A simple mlr3misc::Dictionary storing objects of class TaskGenerator.
Each task generator has an associated help page, see mlr_task_generators_[id]
.
This dictionary can get populated with additional task generators by add-on packages.
For a more convenient way to retrieve and construct task generators, see tgen()
/tgens()
.
R6::R6Class object inheriting from mlr3misc::Dictionary.
See mlr3misc::Dictionary.
as.data.table(dict, ..., objects = FALSE)
mlr3misc::Dictionary -> data.table::data.table()
Returns a data.table::data.table()
with fields "key", "label", "task_type", "params", and "packages" as columns.
If objects
is set to TRUE
, the constructed objects are returned in the list column named object
.
Sugar functions: tgen()
, tgens()
Other Dictionary:
mlr_learners
,
mlr_measures
,
mlr_resamplings
,
mlr_tasks
Other TaskGenerator:
TaskGenerator
,
mlr_task_generators_2dnormals
,
mlr_task_generators_cassini
,
mlr_task_generators_circle
,
mlr_task_generators_friedman1
,
mlr_task_generators_moons
,
mlr_task_generators_simplex
,
mlr_task_generators_smiley
,
mlr_task_generators_spirals
,
mlr_task_generators_xor
mlr_task_generators$get("smiley") tgen("2dnormals")
mlr_task_generators$get("smiley") tgen("2dnormals")
A TaskGenerator for the 2d normals task in mlbench::mlbench.2dnormals()
.
This TaskGenerator can be instantiated via the dictionary mlr_task_generators or with the associated sugar function tgen()
:
mlr_task_generators$get("2dnormals") tgen("2dnormals")
Id | Type | Default | Range |
cl | integer | - | |
r | numeric | - | |
sd | numeric | - | |
mlr3::TaskGenerator
-> TaskGenerator2DNormals
new()
Creates a new instance of this R6 class.
TaskGenerator2DNormals$new()
plot()
Creates a simple plot of generated data.
TaskGenerator2DNormals$plot(n = 200L, pch = 19L, ...)
clone()
The objects of this class are cloneable with this method.
TaskGenerator2DNormals$clone(deep = FALSE)
deep
Whether to make a deep clone.
as.data.table(mlr_task_generators)
for a table of available TaskGenerators in the running session (depending on the loaded packages).
Extension packages for additional task types:
mlr3proba for probabilistic supervised regression and survival analysis.
mlr3cluster for unsupervised clustering.
Other TaskGenerator:
TaskGenerator
,
mlr_task_generators
,
mlr_task_generators_cassini
,
mlr_task_generators_circle
,
mlr_task_generators_friedman1
,
mlr_task_generators_moons
,
mlr_task_generators_simplex
,
mlr_task_generators_smiley
,
mlr_task_generators_spirals
,
mlr_task_generators_xor
generator = tgen("2dnormals") plot(generator, n = 200) task = generator$generate(200) str(task$data())
generator = tgen("2dnormals") plot(generator, n = 200) task = generator$generate(200) str(task$data())
A TaskGenerator for the cassini task in mlbench::mlbench.cassini()
.
This TaskGenerator can be instantiated via the dictionary mlr_task_generators or with the associated sugar function tgen()
:
mlr_task_generators$get("cassini") tgen("cassini")
Id | Type | Default | Range |
relsize1 | integer | 2 | |
relsize2 | integer | 2 | |
relsize3 | integer | 1 | |
mlr3::TaskGenerator
-> TaskGeneratorCassini
new()
Creates a new instance of this R6 class.
TaskGeneratorCassini$new()
plot()
Creates a simple plot of generated data.
TaskGeneratorCassini$plot(n = 200L, pch = 19L, ...)
clone()
The objects of this class are cloneable with this method.
TaskGeneratorCassini$clone(deep = FALSE)
deep
Whether to make a deep clone.
as.data.table(mlr_task_generators)
for a table of available TaskGenerators in the running session (depending on the loaded packages).
Extension packages for additional task types:
mlr3proba for probabilistic supervised regression and survival analysis.
mlr3cluster for unsupervised clustering.
Other TaskGenerator:
TaskGenerator
,
mlr_task_generators
,
mlr_task_generators_2dnormals
,
mlr_task_generators_circle
,
mlr_task_generators_friedman1
,
mlr_task_generators_moons
,
mlr_task_generators_simplex
,
mlr_task_generators_smiley
,
mlr_task_generators_spirals
,
mlr_task_generators_xor
generator = tgen("cassini") plot(generator, n = 200) task = generator$generate(200) str(task$data())
generator = tgen("cassini") plot(generator, n = 200) task = generator$generate(200) str(task$data())
A TaskGenerator for the circle binary classification task in mlbench::mlbench.circle()
.
Creates a large circle containing a smaller circle.
This TaskGenerator can be instantiated via the dictionary mlr_task_generators or with the associated sugar function tgen()
:
mlr_task_generators$get("circle") tgen("circle")
Id | Type | Default | Range |
d | integer | 2 | |
mlr3::TaskGenerator
-> TaskGeneratorCircle
new()
Creates a new instance of this R6 class.
TaskGeneratorCircle$new()
plot()
Creates a simple plot of generated data.
TaskGeneratorCircle$plot(n = 200L, pch = 19L, ...)
clone()
The objects of this class are cloneable with this method.
TaskGeneratorCircle$clone(deep = FALSE)
deep
Whether to make a deep clone.
as.data.table(mlr_task_generators)
for a table of available TaskGenerators in the running session (depending on the loaded packages).
Extension packages for additional task types:
mlr3proba for probabilistic supervised regression and survival analysis.
mlr3cluster for unsupervised clustering.
Other TaskGenerator:
TaskGenerator
,
mlr_task_generators
,
mlr_task_generators_2dnormals
,
mlr_task_generators_cassini
,
mlr_task_generators_friedman1
,
mlr_task_generators_moons
,
mlr_task_generators_simplex
,
mlr_task_generators_smiley
,
mlr_task_generators_spirals
,
mlr_task_generators_xor
generator = tgen("circle") plot(generator, n = 200) task = generator$generate(200) str(task$data())
generator = tgen("circle") plot(generator, n = 200) task = generator$generate(200) str(task$data())
A TaskGenerator for the friedman1 task in mlbench::mlbench.friedman1()
.
This TaskGenerator can be instantiated via the dictionary mlr_task_generators or with the associated sugar function tgen()
:
mlr_task_generators$get("friedman1") tgen("friedman1")
Id | Type | Default | Range |
sd | numeric | 1 | |
mlr3::TaskGenerator
-> TaskGeneratorFriedman1
new()
Creates a new instance of this R6 class.
TaskGeneratorFriedman1$new()
clone()
The objects of this class are cloneable with this method.
TaskGeneratorFriedman1$clone(deep = FALSE)
deep
Whether to make a deep clone.
as.data.table(mlr_task_generators)
for a table of available TaskGenerators in the running session (depending on the loaded packages).
Extension packages for additional task types:
mlr3proba for probabilistic supervised regression and survival analysis.
mlr3cluster for unsupervised clustering.
Other TaskGenerator:
TaskGenerator
,
mlr_task_generators
,
mlr_task_generators_2dnormals
,
mlr_task_generators_cassini
,
mlr_task_generators_circle
,
mlr_task_generators_moons
,
mlr_task_generators_simplex
,
mlr_task_generators_smiley
,
mlr_task_generators_spirals
,
mlr_task_generators_xor
generator = tgen("friedman1") task = generator$generate(200) str(task$data())
generator = tgen("friedman1") task = generator$generate(200) str(task$data())
A TaskGenerator creating two interleaving half circles ("moons") as binary classification problem.
This TaskGenerator can be instantiated via the dictionary mlr_task_generators or with the associated sugar function tgen()
:
mlr_task_generators$get("moons") tgen("moons")
Id | Type | Default | Range |
sigma | numeric | - | |
mlr3::TaskGenerator
-> TaskGeneratorMoons
new()
Creates a new instance of this R6 class.
TaskGeneratorMoons$new()
plot()
Creates a simple plot of generated data.
TaskGeneratorMoons$plot(n = 200L, pch = 19L, ...)
clone()
The objects of this class are cloneable with this method.
TaskGeneratorMoons$clone(deep = FALSE)
deep
Whether to make a deep clone.
as.data.table(mlr_task_generators)
for a table of available TaskGenerators in the running session (depending on the loaded packages).
Extension packages for additional task types:
mlr3proba for probabilistic supervised regression and survival analysis.
mlr3cluster for unsupervised clustering.
Other TaskGenerator:
TaskGenerator
,
mlr_task_generators
,
mlr_task_generators_2dnormals
,
mlr_task_generators_cassini
,
mlr_task_generators_circle
,
mlr_task_generators_friedman1
,
mlr_task_generators_simplex
,
mlr_task_generators_smiley
,
mlr_task_generators_spirals
,
mlr_task_generators_xor
generator = tgen("moons") plot(generator, n = 200) task = generator$generate(200) str(task$data())
generator = tgen("moons") plot(generator, n = 200) task = generator$generate(200) str(task$data())
A TaskGenerator for the simplex task in mlbench::mlbench.simplex()
.
Note that the generator implemented in mlbench returns fewer samples than requested.
This TaskGenerator can be instantiated via the dictionary mlr_task_generators or with the associated sugar function tgen()
:
mlr_task_generators$get("simplex") tgen("simplex")
Id | Type | Default | Levels | Range |
center | logical | TRUE | TRUE, FALSE | - |
d | integer | 3 | |
|
sd | numeric | 0.1 | |
|
sides | integer | 1 | |
|
mlr3::TaskGenerator
-> TaskGeneratorSimplex
new()
Creates a new instance of this R6 class.
TaskGeneratorSimplex$new()
plot()
Creates a simple plot of generated data.
TaskGeneratorSimplex$plot(n = 200L, pch = 19L, ...)
clone()
The objects of this class are cloneable with this method.
TaskGeneratorSimplex$clone(deep = FALSE)
deep
Whether to make a deep clone.
as.data.table(mlr_task_generators)
for a table of available TaskGenerators in the running session (depending on the loaded packages).
Extension packages for additional task types:
mlr3proba for probabilistic supervised regression and survival analysis.
mlr3cluster for unsupervised clustering.
Other TaskGenerator:
TaskGenerator
,
mlr_task_generators
,
mlr_task_generators_2dnormals
,
mlr_task_generators_cassini
,
mlr_task_generators_circle
,
mlr_task_generators_friedman1
,
mlr_task_generators_moons
,
mlr_task_generators_smiley
,
mlr_task_generators_spirals
,
mlr_task_generators_xor
generator = tgen("simplex") plot(generator, n = 200) task = generator$generate(200) str(task$data())
generator = tgen("simplex") plot(generator, n = 200) task = generator$generate(200) str(task$data())
A TaskGenerator for the smiley task in mlbench::mlbench.smiley()
.
This TaskGenerator can be instantiated via the dictionary mlr_task_generators or with the associated sugar function tgen()
:
mlr_task_generators$get("smiley") tgen("smiley")
Id | Type | Default | Range |
sd1 | numeric | - | |
sd2 | numeric | - | |
mlr3::TaskGenerator
-> TaskGeneratorSmiley
new()
Creates a new instance of this R6 class.
TaskGeneratorSmiley$new()
plot()
Creates a simple plot of generated data.
TaskGeneratorSmiley$plot(n = 200L, pch = 19L, ...)
clone()
The objects of this class are cloneable with this method.
TaskGeneratorSmiley$clone(deep = FALSE)
deep
Whether to make a deep clone.
as.data.table(mlr_task_generators)
for a table of available TaskGenerators in the running session (depending on the loaded packages).
Extension packages for additional task types:
mlr3proba for probabilistic supervised regression and survival analysis.
mlr3cluster for unsupervised clustering.
Other TaskGenerator:
TaskGenerator
,
mlr_task_generators
,
mlr_task_generators_2dnormals
,
mlr_task_generators_cassini
,
mlr_task_generators_circle
,
mlr_task_generators_friedman1
,
mlr_task_generators_moons
,
mlr_task_generators_simplex
,
mlr_task_generators_spirals
,
mlr_task_generators_xor
generator = tgen("smiley") plot(generator, n = 200) task = generator$generate(200) str(task$data())
generator = tgen("smiley") plot(generator, n = 200) task = generator$generate(200) str(task$data())
A TaskGenerator for the spirals task in mlbench::mlbench.spirals()
.
This TaskGenerator can be instantiated via the dictionary mlr_task_generators or with the associated sugar function tgen()
:
mlr_task_generators$get("spirals") tgen("spirals")
Id | Type | Default | Range |
cycles | integer | 1 | |
sd | numeric | 0 | |
mlr3::TaskGenerator
-> TaskGeneratorSpirals
new()
Creates a new instance of this R6 class.
TaskGeneratorSpirals$new()
plot()
Creates a simple plot of generated data.
TaskGeneratorSpirals$plot(n = 200L, pch = 19L, ...)
clone()
The objects of this class are cloneable with this method.
TaskGeneratorSpirals$clone(deep = FALSE)
deep
Whether to make a deep clone.
as.data.table(mlr_task_generators)
for a table of available TaskGenerators in the running session (depending on the loaded packages).
Extension packages for additional task types:
mlr3proba for probabilistic supervised regression and survival analysis.
mlr3cluster for unsupervised clustering.
Other TaskGenerator:
TaskGenerator
,
mlr_task_generators
,
mlr_task_generators_2dnormals
,
mlr_task_generators_cassini
,
mlr_task_generators_circle
,
mlr_task_generators_friedman1
,
mlr_task_generators_moons
,
mlr_task_generators_simplex
,
mlr_task_generators_smiley
,
mlr_task_generators_xor
generator = tgen("spirals") plot(generator, n = 200) task = generator$generate(200) str(task$data())
generator = tgen("spirals") plot(generator, n = 200) task = generator$generate(200) str(task$data())
A TaskGenerator for the xor task in mlbench::mlbench.xor()
.
This TaskGenerator can be instantiated via the dictionary mlr_task_generators or with the associated sugar function tgen()
:
mlr_task_generators$get("xor") tgen("xor")
Id | Type | Default | Range |
d | integer | 1 | |
mlr3::TaskGenerator
-> TaskGeneratorXor
new()
Creates a new instance of this R6 class.
TaskGeneratorXor$new()
plot()
Creates a simple plot of generated data.
TaskGeneratorXor$plot(n = 200L, pch = 19L, ...)
clone()
The objects of this class are cloneable with this method.
TaskGeneratorXor$clone(deep = FALSE)
deep
Whether to make a deep clone.
as.data.table(mlr_task_generators)
for a table of available TaskGenerators in the running session (depending on the loaded packages).
Extension packages for additional task types:
mlr3proba for probabilistic supervised regression and survival analysis.
mlr3cluster for unsupervised clustering.
Other TaskGenerator:
TaskGenerator
,
mlr_task_generators
,
mlr_task_generators_2dnormals
,
mlr_task_generators_cassini
,
mlr_task_generators_circle
,
mlr_task_generators_friedman1
,
mlr_task_generators_moons
,
mlr_task_generators_simplex
,
mlr_task_generators_smiley
,
mlr_task_generators_spirals
generator = tgen("xor") plot(generator, n = 200) task = generator$generate(200) str(task$data())
generator = tgen("xor") plot(generator, n = 200) task = generator$generate(200) str(task$data())
A simple mlr3misc::Dictionary storing objects of class Task.
Each task has an associated help page, see mlr_tasks_[id]
.
This dictionary can get populated with additional tasks by add-on packages, e.g. mlr3data, mlr3proba or mlr3cluster. mlr3oml allows to interact with OpenML.
For a more convenient way to retrieve and construct tasks, see tsk()
/tsks()
.
R6::R6Class object inheriting from mlr3misc::Dictionary.
See mlr3misc::Dictionary.
as.data.table(dict, ..., objects = FALSE)
mlr3misc::Dictionary -> data.table::data.table()
Returns a data.table::data.table()
with columns "key", "label", "task_type", "nrow", "ncol", "properties",
and the number of features of type "lgl", "int", "dbl", "chr", "fct" and "ord", respectively.
If objects
is set to TRUE
, the constructed objects are returned in the list column named object
.
Sugar functions: tsk()
, tsks()
Extension Packages: mlr3data
Other Dictionary:
mlr_learners
,
mlr_measures
,
mlr_resamplings
,
mlr_task_generators
Other Task:
Task
,
TaskClassif
,
TaskRegr
,
TaskSupervised
,
TaskUnsupervised
,
california_housing
,
mlr_tasks_breast_cancer
,
mlr_tasks_german_credit
,
mlr_tasks_iris
,
mlr_tasks_mtcars
,
mlr_tasks_penguins
,
mlr_tasks_pima
,
mlr_tasks_sonar
,
mlr_tasks_spam
,
mlr_tasks_wine
,
mlr_tasks_zoo
as.data.table(mlr_tasks) task = mlr_tasks$get("penguins") # same as tsk("penguins") head(task$data()) # Add a new task, based on a subset of penguins: data = palmerpenguins::penguins data$species = factor(ifelse(data$species == "Adelie", "1", "0")) task = TaskClassif$new("penguins.binary", data, target = "species", positive = "1") # add to dictionary mlr_tasks$add("penguins.binary", task) # list available tasks mlr_tasks$keys() # retrieve from dictionary mlr_tasks$get("penguins.binary") # remove task again mlr_tasks$remove("penguins.binary")
as.data.table(mlr_tasks) task = mlr_tasks$get("penguins") # same as tsk("penguins") head(task$data()) # Add a new task, based on a subset of penguins: data = palmerpenguins::penguins data$species = factor(ifelse(data$species == "Adelie", "1", "0")) task = TaskClassif$new("penguins.binary", data, target = "species", positive = "1") # add to dictionary mlr_tasks$add("penguins.binary", task) # list available tasks mlr_tasks$keys() # retrieve from dictionary mlr_tasks$get("penguins.binary") # remove task again mlr_tasks$remove("penguins.binary")
A classification task for the mlbench::BreastCancer data set.
Column "Id"
has been removed.
Column names have been converted to snake_case
.
Positive class is set to "malignant"
.
16 incomplete cases have been removed from the data set.
All factor features have been converted to ordered factors.
R6::R6Class inheriting from TaskClassif.
This Task can be instantiated via the dictionary mlr_tasks or with the associated sugar function tsk()
:
mlr_tasks$get("breast_cancer") tsk("breast_cancer")
Task type: “classif”
Dimensions: 683x10
Properties: “twoclass”
Has Missings: FALSE
Target: “class”
Features: “bare_nuclei”, “bl_cromatin”, “cell_shape”, “cell_size”, “cl_thickness”, “epith_c_size”, “marg_adhesion”, “mitoses”, “normal_nucleoli”
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html
Package mlr3data for more toy tasks.
Package mlr3oml for downloading tasks from https://www.openml.org.
Package mlr3viz for some generic visualizations.
Dictionary of Tasks: mlr_tasks
as.data.table(mlr_tasks)
for a table of available Tasks in the running session (depending on the loaded packages).
mlr3fselect and mlr3filters for feature selection and feature filtering.
Extension packages for additional task types:
Unsupervised clustering: mlr3cluster
Probabilistic supervised regression and survival analysis: https://mlr3proba.mlr-org.com/.
Other Task:
Task
,
TaskClassif
,
TaskRegr
,
TaskSupervised
,
TaskUnsupervised
,
california_housing
,
mlr_tasks
,
mlr_tasks_german_credit
,
mlr_tasks_iris
,
mlr_tasks_mtcars
,
mlr_tasks_penguins
,
mlr_tasks_pima
,
mlr_tasks_sonar
,
mlr_tasks_spam
,
mlr_tasks_wine
,
mlr_tasks_zoo
A classification task for the German credit data set. The aim is to predict creditworthiness, labeled as "good" and "bad". Positive class is set to label "good".
See example for the creation of a MeasureClassifCosts as described misclassification costs.
R6::R6Class inheriting from TaskClassif.
This Task can be instantiated via the dictionary mlr_tasks or with the associated sugar function tsk()
:
mlr_tasks$get("german_credit") tsk("german_credit")
Task type: “classif”
Dimensions: 1000x21
Properties: “twoclass”
Has Missings: FALSE
Target: “credit_risk”
Features: “age”, “amount”, “credit_history”, “duration”, “employment_duration”, “foreign_worker”, “housing”, “installment_rate”, “job”, “number_credits”, “other_debtors”, “other_installment_plans”, “people_liable”, “personal_status_sex”, “present_residence”, “property”, “purpose”, “savings”, “status”, “telephone”
Data set originally published on UCI. This is the preprocessed version taken from package rchallenge with factors instead of dummy variables, and corrected as proposed by Ulrike Grömping.
Donor:
Professor Dr. Hans Hofmann
Institut für Statistik und Ökonometrie
Universität Hamburg
FB Wirtschaftswissenschaften
Von-Melle-Park 5
2000 Hamburg 13
Grömping U (2019). “South German Credit Data: Correcting a Widely Used Data Set.” Reports in Mathematics, Physics and Chemistry 4, Department II, Beuth University of Applied Sciences Berlin.
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html
Package mlr3data for more toy tasks.
Package mlr3oml for downloading tasks from https://www.openml.org.
Package mlr3viz for some generic visualizations.
Dictionary of Tasks: mlr_tasks
as.data.table(mlr_tasks)
for a table of available Tasks in the running session (depending on the loaded packages).
mlr3fselect and mlr3filters for feature selection and feature filtering.
Extension packages for additional task types:
Unsupervised clustering: mlr3cluster
Probabilistic supervised regression and survival analysis: https://mlr3proba.mlr-org.com/.
Other Task:
Task
,
TaskClassif
,
TaskRegr
,
TaskSupervised
,
TaskUnsupervised
,
california_housing
,
mlr_tasks
,
mlr_tasks_breast_cancer
,
mlr_tasks_iris
,
mlr_tasks_mtcars
,
mlr_tasks_penguins
,
mlr_tasks_pima
,
mlr_tasks_sonar
,
mlr_tasks_spam
,
mlr_tasks_wine
,
mlr_tasks_zoo
task = tsk("german_credit") costs = matrix(c(0, 1, 5, 0), nrow = 2) dimnames(costs) = list(predicted = task$class_names, truth = task$class_names) measure = msr("classif.costs", id = "german_credit_costs", costs = costs) print(measure)
task = tsk("german_credit") costs = matrix(c(0, 1, 5, 0), nrow = 2) dimnames(costs) = list(predicted = task$class_names, truth = task$class_names) measure = msr("classif.costs", id = "german_credit_costs", costs = costs) print(measure)
A classification task for the popular datasets::iris data set.
R6::R6Class inheriting from TaskClassif.
This Task can be instantiated via the dictionary mlr_tasks or with the associated sugar function tsk()
:
mlr_tasks$get("iris") tsk("iris")
Task type: “classif”
Dimensions: 150x5
Properties: “multiclass”
Has Missings: FALSE
Target: “Species”
Features: “Petal.Length”, “Petal.Width”, “Sepal.Length”, “Sepal.Width”
https://en.wikipedia.org/wiki/Iris_flower_data_set
Anderson E (1936). “The Species Problem in Iris.” Annals of the Missouri Botanical Garden, 23(3), 457. doi:10.2307/2394164.
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html
Package mlr3data for more toy tasks.
Package mlr3oml for downloading tasks from https://www.openml.org.
Package mlr3viz for some generic visualizations.
Dictionary of Tasks: mlr_tasks
as.data.table(mlr_tasks)
for a table of available Tasks in the running session (depending on the loaded packages).
mlr3fselect and mlr3filters for feature selection and feature filtering.
Extension packages for additional task types:
Unsupervised clustering: mlr3cluster
Probabilistic supervised regression and survival analysis: https://mlr3proba.mlr-org.com/.
Other Task:
Task
,
TaskClassif
,
TaskRegr
,
TaskSupervised
,
TaskUnsupervised
,
california_housing
,
mlr_tasks
,
mlr_tasks_breast_cancer
,
mlr_tasks_german_credit
,
mlr_tasks_mtcars
,
mlr_tasks_penguins
,
mlr_tasks_pima
,
mlr_tasks_sonar
,
mlr_tasks_spam
,
mlr_tasks_wine
,
mlr_tasks_zoo
A regression task for the datasets::mtcars data set.
Target variable is mpg
(Miles/(US) gallon).
Rownames are stored as variable "..rownames
with column role "model"
.
R6::R6Class inheriting from TaskRegr.
mlr_tasks$get("mtcars") tsk("mtcars")
Task type: “regr”
Dimensions: 32x11
Properties: -
Has Missings: FALSE
Target: “mpg”
Features: “am”, “carb”, “cyl”, “disp”, “drat”, “gear”, “hp”, “qsec”, “vs”, “wt”
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html
Package mlr3data for more toy tasks.
Package mlr3oml for downloading tasks from https://www.openml.org.
Package mlr3viz for some generic visualizations.
Dictionary of Tasks: mlr_tasks
as.data.table(mlr_tasks)
for a table of available Tasks in the running session (depending on the loaded packages).
mlr3fselect and mlr3filters for feature selection and feature filtering.
Extension packages for additional task types:
Unsupervised clustering: mlr3cluster
Probabilistic supervised regression and survival analysis: https://mlr3proba.mlr-org.com/.
Other Task:
Task
,
TaskClassif
,
TaskRegr
,
TaskSupervised
,
TaskUnsupervised
,
california_housing
,
mlr_tasks
,
mlr_tasks_breast_cancer
,
mlr_tasks_german_credit
,
mlr_tasks_iris
,
mlr_tasks_penguins
,
mlr_tasks_pima
,
mlr_tasks_sonar
,
mlr_tasks_spam
,
mlr_tasks_wine
,
mlr_tasks_zoo
Classification data to predict the species of penguins from the palmerpenguins package, see palmerpenguins::penguins. A better alternative to the iris data set.
R6::R6Class inheriting from TaskClassif.
This Task can be instantiated via the dictionary mlr_tasks or with the associated sugar function tsk()
:
mlr_tasks$get("penguins") tsk("penguins")
Task type: “classif”
Dimensions: 344x8
Properties: “multiclass”
Has Missings: TRUE
Target: “species”
Features: “bill_depth”, “bill_length”, “body_mass”, “flipper_length”, “island”, “sex”, “year”
The unit of measurement have been removed from the column names. Lengths are given in millimeters (mm), weight in gram (g).
Gorman KB, Williams TD, Fraser WR (2014). “Ecological Sexual Dimorphism and Environmental Variability within a Community of Antarctic Penguins (Genus Pygoscelis).” PLoS ONE, 9(3), e90081. doi:10.1371/journal.pone.0090081.
https://github.com/allisonhorst/palmerpenguins
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html
Package mlr3data for more toy tasks.
Package mlr3oml for downloading tasks from https://www.openml.org.
Package mlr3viz for some generic visualizations.
Dictionary of Tasks: mlr_tasks
as.data.table(mlr_tasks)
for a table of available Tasks in the running session (depending on the loaded packages).
mlr3fselect and mlr3filters for feature selection and feature filtering.
Extension packages for additional task types:
Unsupervised clustering: mlr3cluster
Probabilistic supervised regression and survival analysis: https://mlr3proba.mlr-org.com/.
Other Task:
Task
,
TaskClassif
,
TaskRegr
,
TaskSupervised
,
TaskUnsupervised
,
california_housing
,
mlr_tasks
,
mlr_tasks_breast_cancer
,
mlr_tasks_german_credit
,
mlr_tasks_iris
,
mlr_tasks_mtcars
,
mlr_tasks_pima
,
mlr_tasks_sonar
,
mlr_tasks_spam
,
mlr_tasks_wine
,
mlr_tasks_zoo
A classification task for the mlbench::PimaIndiansDiabetes2 data set.
Positive class is set to "pos"
.
R6::R6Class inheriting from TaskClassif.
This Task can be instantiated via the dictionary mlr_tasks or with the associated sugar function tsk()
:
mlr_tasks$get("pima") tsk("pima")
Task type: “classif”
Dimensions: 768x9
Properties: “twoclass”
Has Missings: TRUE
Target: “diabetes”
Features: “age”, “glucose”, “insulin”, “mass”, “pedigree”, “pregnant”, “pressure”, “triceps”
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html
Package mlr3data for more toy tasks.
Package mlr3oml for downloading tasks from https://www.openml.org.
Package mlr3viz for some generic visualizations.
Dictionary of Tasks: mlr_tasks
as.data.table(mlr_tasks)
for a table of available Tasks in the running session (depending on the loaded packages).
mlr3fselect and mlr3filters for feature selection and feature filtering.
Extension packages for additional task types:
Unsupervised clustering: mlr3cluster
Probabilistic supervised regression and survival analysis: https://mlr3proba.mlr-org.com/.
Other Task:
Task
,
TaskClassif
,
TaskRegr
,
TaskSupervised
,
TaskUnsupervised
,
california_housing
,
mlr_tasks
,
mlr_tasks_breast_cancer
,
mlr_tasks_german_credit
,
mlr_tasks_iris
,
mlr_tasks_mtcars
,
mlr_tasks_penguins
,
mlr_tasks_sonar
,
mlr_tasks_spam
,
mlr_tasks_wine
,
mlr_tasks_zoo
A classification task for the mlbench::Sonar data set. Positive class is set to "M" (Mine).
R6::R6Class inheriting from TaskClassif.
This Task can be instantiated via the dictionary mlr_tasks or with the associated sugar function tsk()
:
mlr_tasks$get("sonar") tsk("sonar")
Task type: “classif”
Dimensions: 208x61
Properties: “twoclass”
Has Missings: FALSE
Target: “Class”
Features: “V1”, “V10”, “V11”, “V12”, “V13”, “V14”, “V15”, “V16”, “V17”, “V18”, “V19”, “V2”, “V20”, “V21”, “V22”, “V23”, “V24”, “V25”, “V26”, “V27”, “V28”, “V29”, “V3”, “V30”, “V31”, “V32”, “V33”, “V34”, “V35”, “V36”, “V37”, “V38”, “V39”, “V4”, “V40”, “V41”, “V42”, “V43”, “V44”, “V45”, “V46”, “V47”, “V48”, “V49”, “V5”, “V50”, “V51”, “V52”, “V53”, “V54”, “V55”, “V56”, “V57”, “V58”, “V59”, “V6”, “V60”, “V7”, “V8”, “V9”
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html
Package mlr3data for more toy tasks.
Package mlr3oml for downloading tasks from https://www.openml.org.
Package mlr3viz for some generic visualizations.
Dictionary of Tasks: mlr_tasks
as.data.table(mlr_tasks)
for a table of available Tasks in the running session (depending on the loaded packages).
mlr3fselect and mlr3filters for feature selection and feature filtering.
Extension packages for additional task types:
Unsupervised clustering: mlr3cluster
Probabilistic supervised regression and survival analysis: https://mlr3proba.mlr-org.com/.
Other Task:
Task
,
TaskClassif
,
TaskRegr
,
TaskSupervised
,
TaskUnsupervised
,
california_housing
,
mlr_tasks
,
mlr_tasks_breast_cancer
,
mlr_tasks_german_credit
,
mlr_tasks_iris
,
mlr_tasks_mtcars
,
mlr_tasks_penguins
,
mlr_tasks_pima
,
mlr_tasks_spam
,
mlr_tasks_wine
,
mlr_tasks_zoo
Spam data set from the UCI machine learning repository (http://archive.ics.uci.edu/dataset/94/spambase). Data set collected at Hewlett-Packard Labs to classify emails as spam or non-spam. 57 variables indicate the frequency of certain words and characters in the e-mail. The positive class is set to "spam".
R6::R6Class inheriting from TaskClassif.
This Task can be instantiated via the dictionary mlr_tasks or with the associated sugar function tsk()
:
mlr_tasks$get("spam") tsk("spam")
Task type: “classif”
Dimensions: 4601x58
Properties: “twoclass”
Has Missings: FALSE
Target: “type”
Features: “address”, “addresses”, “all”, “business”, “capitalAve”, “capitalLong”, “capitalTotal”, “charDollar”, “charExclamation”, “charHash”, “charRoundbracket”, “charSemicolon”, “charSquarebracket”, “conference”, “credit”, “cs”, “data”, “direct”, “edu”, “email”, “font”, “free”, “george”, “hp”, “hpl”, “internet”, “lab”, “labs”, “mail”, “make”, “meeting”, “money”, “num000”, “num1999”, “num3d”, “num415”, “num650”, “num85”, “num857”, “order”, “original”, “our”, “over”, “parts”, “people”, “pm”, “project”, “re”, “receive”, “remove”, “report”, “table”, “technology”, “telnet”, “will”, “you”, “your”
Creators: Mark Hopkins, Erik Reeber, George Forman, Jaap Suermondt. Hewlett-Packard Labs, 1501 Page Mill Rd., Palo Alto, CA 94304
Donor: George Forman (gforman at nospam hpl.hp.com) 650-857-7835
Preprocessing: Columns have been renamed. Preprocessed data taken from the kernlab package.
Dua, Dheeru, Graff, Casey (2017). “UCI Machine Learning Repository.” http://archive.ics.uci.edu/datasets.
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html
Package mlr3data for more toy tasks.
Package mlr3oml for downloading tasks from https://www.openml.org.
Package mlr3viz for some generic visualizations.
Dictionary of Tasks: mlr_tasks
as.data.table(mlr_tasks)
for a table of available Tasks in the running session (depending on the loaded packages).
mlr3fselect and mlr3filters for feature selection and feature filtering.
Extension packages for additional task types:
Unsupervised clustering: mlr3cluster
Probabilistic supervised regression and survival analysis: https://mlr3proba.mlr-org.com/.
Other Task:
Task
,
TaskClassif
,
TaskRegr
,
TaskSupervised
,
TaskUnsupervised
,
california_housing
,
mlr_tasks
,
mlr_tasks_breast_cancer
,
mlr_tasks_german_credit
,
mlr_tasks_iris
,
mlr_tasks_mtcars
,
mlr_tasks_penguins
,
mlr_tasks_pima
,
mlr_tasks_sonar
,
mlr_tasks_wine
,
mlr_tasks_zoo
Wine data set from the UCI machine learning repository (http://archive.ics.uci.edu/dataset/109/wine). Results of a chemical analysis of three types of wines grown in the same region in Italy but derived from three different cultivars.
R6::R6Class inheriting from TaskClassif.
This Task can be instantiated via the dictionary mlr_tasks or with the associated sugar function tsk()
:
mlr_tasks$get("wine") tsk("wine")
Task type: “classif”
Dimensions: 178x14
Properties: “multiclass”
Has Missings: FALSE
Target: “type”
Features: “alcalinity”, “alcohol”, “ash”, “color”, “dilution”, “flavanoids”, “hue”, “magnesium”, “malic”, “nonflavanoids”, “phenols”, “proanthocyanins”, “proline”
Original owners: Forina, M. et al, PARVUS - An Extendible Package for Data Exploration, Classification and Correlation. Institute of Pharmaceutical and Food Analysis and Technologies, Via Brigata Salerno, 16147 Genoa, Italy.
Donor: Stefan Aeberhard, email: [email protected]
Dua, Dheeru, Graff, Casey (2017). “UCI Machine Learning Repository.” http://archive.ics.uci.edu/datasets.
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html
Package mlr3data for more toy tasks.
Package mlr3oml for downloading tasks from https://www.openml.org.
Package mlr3viz for some generic visualizations.
Dictionary of Tasks: mlr_tasks
as.data.table(mlr_tasks)
for a table of available Tasks in the running session (depending on the loaded packages).
mlr3fselect and mlr3filters for feature selection and feature filtering.
Extension packages for additional task types:
Unsupervised clustering: mlr3cluster
Probabilistic supervised regression and survival analysis: https://mlr3proba.mlr-org.com/.
Other Task:
Task
,
TaskClassif
,
TaskRegr
,
TaskSupervised
,
TaskUnsupervised
,
california_housing
,
mlr_tasks
,
mlr_tasks_breast_cancer
,
mlr_tasks_german_credit
,
mlr_tasks_iris
,
mlr_tasks_mtcars
,
mlr_tasks_penguins
,
mlr_tasks_pima
,
mlr_tasks_sonar
,
mlr_tasks_spam
,
mlr_tasks_zoo
A classification task for the mlbench::Zoo data set.
Rownames are stored as variable "..rownames"
with column role "name"
.
R6::R6Class inheriting from TaskClassif.
This Task can be instantiated via the dictionary mlr_tasks or with the associated sugar function tsk()
:
mlr_tasks$get("zoo") tsk("zoo")
Task type: “classif”
Dimensions: 101x17
Properties: “multiclass”
Has Missings: FALSE
Target: “type”
Features: “airborne”, “aquatic”, “backbone”, “breathes”, “catsize”, “domestic”, “eggs”, “feathers”, “fins”, “hair”, “legs”, “milk”, “predator”, “tail”, “toothed”, “venomous”
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html
Package mlr3data for more toy tasks.
Package mlr3oml for downloading tasks from https://www.openml.org.
Package mlr3viz for some generic visualizations.
Dictionary of Tasks: mlr_tasks
as.data.table(mlr_tasks)
for a table of available Tasks in the running session (depending on the loaded packages).
mlr3fselect and mlr3filters for feature selection and feature filtering.
Extension packages for additional task types:
Unsupervised clustering: mlr3cluster
Probabilistic supervised regression and survival analysis: https://mlr3proba.mlr-org.com/.
Other Task:
Task
,
TaskClassif
,
TaskRegr
,
TaskSupervised
,
TaskUnsupervised
,
california_housing
,
mlr_tasks
,
mlr_tasks_breast_cancer
,
mlr_tasks_german_credit
,
mlr_tasks_iris
,
mlr_tasks_mtcars
,
mlr_tasks_penguins
,
mlr_tasks_pima
,
mlr_tasks_sonar
,
mlr_tasks_spam
,
mlr_tasks_wine
The mlr3 package contains various helper functions to test the validity of objects such as learners.
These functions are not contained in the mlr3 namespaces and are instead located in the inst/testthat
directory of the source package or the testthat
directory of the installed package.
These files can be sourced with the following line of code:
lapply(list.files(system.file("testthat", package = "mlr3"), pattern = "^helper.*\\.[rR]", full.names = TRUE), source)
Other extension packages such as mlr3proba
have similar files that can be sourced accordingly.
This manual page documents the most important helper functions that are relevant when users implement their own custom learners.
This function runs a Learner's automatic test suite.
During the autotests, multiple tasks are generated depending on the properties of the learner.
The run_autotest()
function then trains the learner on each task and predicts with all supported predict types.
(see argument predict_types
).
To debug, simply run result = run_autotest(learner)
and proceed with investigating
the task, learner and prediction of the returned result
.
For example usages you can look at the autotests in various mlr3 source repositories such as mlr3learners.
More information can be found in the inst/testthat/autotest.R
file.
Parameters:
learner
(Learner
)
The learner to check.
N
(integer(1)
)
The number of rows of the generated tasks.
exclude
(character()
)
Each task on which the learner is trained has an id.
If for some reason, one or more such tests ought to be disabled, this argument takes in a regular expression
that disables all tasks whose id matches the regular expression.
predict_types
(character()
)
The predict types of the learner to check.
Defaults to all predict typpes of the learner.
check_replicable
(logical(1)
)
Whether to check that running the learner twice with the same seed should result in identical predictions.
Default is TRUE
.
configure_learner
(function(learner, task)
)
Before running a learner
on a task
, this function allows to change its parameter values depending on the input task.
Description:
Checks parameters of mlr3 Learners against parameters defined in the upstream functions of the respective learner.
The goal is to detect if parameters have been dropped or added in the upstream implementation.
Some learners do not have all of their parameters stored within the learner function that is called during training.
Sometimes learners come with a "control" function, e.g. glmnet.control()
from package glmnet.
Such learners need to be checked as well since they make up the full ParamSet of the respective learner.
To work nicely with the defined ParamSet, certain parameters need to be
excluded because these are only present in either the "control" object or the
actual top-level function call. Such exclusions should go into argument
exclude
with a comment for the reason of the exclusion. See examples for
more information.
For example usages you can look at the parameter tests in various mlr3 source repositories such as mlr3learners.
Parameters:
learner
(Learner
)
The learner whose parameter set is being checked.
fun
(function()
or list of functions()
s)
The function(s) containing the parameters that must be implemented by the learner.
exclude
(character()
)
Argument names that specified through this argument are exempt from checking.
This can be used when parameters that are available in the fun
function(s) are not implemented in the learner,
or when the learner implements additional parameters that are not available in the fun
function(s).
tag
(character(1)
)
Only parameters that are tagged with this tag are being checked.
If NULL
(default), all parameters are checked.
Checks various properties that learners have to satisfy. Used for testing learner implementations, especially if all methods and fields are implement as document.
Parameters
lrn
:: (Learner
)
The learner whose properties are being verified.
tsk
:: (Task
)
Optional argument (default is NULL
).
If provided, some additional checks are being run that check the compatibility of the learner and task.
check_man
:: (logical(1)
)
Whether to check if the learner has a man page.
Creates a split of the row ids of a Task into a training and a test set, and optionally a validation set.
partition(task, ratio = 0.67)
partition(task, ratio = 0.67)
task |
(Task) |
ratio |
( |
# regression task partitioned into training and test set task = tsk("california_housing") split = partition(task, ratio = 0.5) data = data.frame( y = c(task$truth(split$train), task$truth(split$test)), split = rep(c("train", "predict"), lengths(split[c("train", "test")])) ) boxplot(y ~ split, data = data) # classification task partitioned into training, test and validation set task = tsk("pima") split = partition(task, c(0.66, 0.14))
# regression task partitioned into training and test set task = tsk("california_housing") split = partition(task, ratio = 0.5) data = data.frame( y = c(task$truth(split$train), task$truth(split$test)), split = rep(c("train", "predict"), lengths(split[c("train", "test")])) ) boxplot(y ~ split, data = data) # classification task partitioned into training, test and validation set task = tsk("pima") split = partition(task, c(0.66, 0.14))
Extends the generic stats::predict()
with a method for Learner.
Note that this function is intended as glue code to be used in third party packages.
We recommend to work with the Learner directly, i.e. calling learner$predict()
or learner$predict_newdata()
directly.
Performs the following steps:
Sets additional hyperparameters passed to this function.
Creates a Prediction object by calling learner$predict_newdata()
.
Returns (subset of) Prediction.
## S3 method for class 'Learner' predict(object, newdata, predict_type = NULL, ...)
## S3 method for class 'Learner' predict(object, newdata, predict_type = NULL, ...)
object |
|
newdata |
( |
predict_type |
( |
... |
(any) |
task = tsk("spam") learner = lrn("classif.rpart", predict_type = "prob") learner$train(task) predict(learner, task$data(1:3), predict_type = "response") predict(learner, task$data(1:3), predict_type = "prob") predict(learner, task$data(1:3), predict_type = "<Prediction>")
task = tsk("spam") learner = lrn("classif.rpart", predict_type = "prob") learner$train(task) predict(learner, task$data(1:3), predict_type = "response") predict(learner, task$data(1:3), predict_type = "prob") predict(learner, task$data(1:3), predict_type = "<Prediction>")
This is the abstract base class for task objects like PredictionClassif or PredictionRegr.
Prediction objects store the following information:
The row ids of the test set
The corresponding true (observed) response.
The corresponding predicted response.
Additional predictions based on the class and predict_type
.
E.g., the class probabilities for classification or the estimated standard error for regression.
Note that this object is usually constructed via a derived classes, e.g. PredictionClassif or PredictionRegr.
as.data.table(rr)
Prediction -> data.table::data.table()
Converts the data to a data.table::data.table()
.
c(..., keep_duplicates = TRUE)
(Prediction, Prediction, ...) -> Prediction
Combines multiple Prediction
s to a single Prediction
.
If keep_duplicates
is FALSE
and there are duplicated row ids,
the data of the former passed objects get overwritten by the data of the later passed objects.
data
(named list()
)
Internal data structure.
task_type
(character(1)
)
Required type of the Task.
task_properties
(character()
)
Required properties of the Task.
predict_types
(character()
)
Set of predict types this object stores.
man
(character(1)
)
String in the format [pkg]::[topic]
pointing to a manual page for this object.
Defaults to NA
, but can be set by child classes.
row_ids
(integer()
)
Vector of row ids for which predictions are stored.
truth
(any)
True (observed) outcome.
missing
(integer()
)
Returns row_ids
for which the predictions are missing or incomplete.
format()
Helper for print outputs.
Prediction$format(...)
...
(ignored).
print()
Printer.
Prediction$print(...)
...
(ignored).
help()
Opens the corresponding help page referenced by field $man
.
Prediction$help()
score()
Calculates the performance for all provided measures
Task and Learner may be NULL
for most measures, but some measures need to extract information
from these objects.
Note that the predict_sets
of the measures
are ignored by this method,
instead all predictions are used.
Prediction$score( measures = NULL, task = NULL, learner = NULL, train_set = NULL )
obs_loss()
Calculates the observation-wise loss via the loss function set in the
Measure's field obs_loss
.
Returns a data.table()
with the columns row_ids
, truth
, response
and
one additional numeric column for each measure, named with the respective measure id.
If there is no observation-wise loss function for the measure, the column is filled with
NA
values.
Note that some measures such as RMSE, do have an $obs_loss
, but they require an
additional transformation after aggregation, in this example taking the square-root.
Prediction$obs_loss(measures = NULL)
filter()
Filters the Prediction, keeping only predictions for the provided row_ids. This changes the object in-place, you need to create a clone to preserve the original Prediction.
Prediction$filter(row_ids)
row_ids
integer()
Row indices.
self
, modified.
clone()
The objects of this class are cloneable with this method.
Prediction$clone(deep = FALSE)
deep
Whether to make a deep clone.
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html
Package mlr3viz for some generic visualizations.
Extension packages for additional task types:
mlr3proba for probabilistic supervised regression and survival analysis.
mlr3cluster for unsupervised clustering.
Other Prediction:
PredictionClassif
,
PredictionRegr
This object wraps the predictions returned by a learner of class LearnerClassif, i.e. the predicted response and class probabilities.
If the response is not provided during construction, but class probabilities are, the response is calculated from the probabilities: the class label with the highest probability is chosen. In case of ties, a label is selected randomly.
If probabilities are stored, it is possible to change the threshold which determines the predicted class label. Usually, the label of the class with the highest predicted probability is selected. For binary classification problems, such an threshold defaults to 0.5. For cost-sensitive or imbalanced classification problems, manually adjusting the threshold can increase the predictive performance.
For binary problems only a single threshold value can be set. If the probability exceeds the threshold, the positive class is predicted. If the probability equals the threshold, the label is selected randomly.
For binary and multi-class problems, a named numeric vector of thresholds can be set. The length and names must correspond to the number of classes and class names, respectively. To determine the class label, the probabilities are divided by the threshold. This results in a ratio > 1 if the probability exceeds the threshold, and a ratio < 1 otherwise. Note that it is possible that either none or multiple ratios are greater than 1 at the same time. Anyway, the class label with maximum ratio is selected. In case of ties in the ratio, one of the tied class labels is selected randomly.
Note that there are the following edge cases for threshold equal to 0
which are handled specially:
With threshold 0 the resulting ratio gets Inf
and thus gets always selected.
If there are multiple ratios with value Inf
, one is selected according to ties_method
(randomly per default).
If additionally the predicted probability is also 0, the ratio 0/0
results in NaN
values.
These are simply replaced by 0
and thus will never get selected.
mlr3::Prediction
-> PredictionClassif
response
(factor()
)
Access to the stored predicted class labels.
prob
(matrix()
)
Access to the stored probabilities.
confusion
(matrix()
)
Confusion matrix, as resulting from the comparison of truth and response.
Truth is in columns, predicted response is in rows.
new()
Creates a new instance of this R6 class.
PredictionClassif$new( task = NULL, row_ids = task$row_ids, truth = task$truth(), response = NULL, prob = NULL, check = TRUE )
task
(TaskClassif)
Task, used to extract defaults for row_ids
and truth
.
row_ids
(integer()
)
Row ids of the predicted observations, i.e. the row ids of the test set.
truth
(factor()
)
True (observed) labels. See the note on manual construction.
response
(character()
| factor()
)
Vector of predicted class labels.
One element for each observation in the test set.
Character vectors are automatically converted to factors.
See the note on manual construction.
prob
(matrix()
)
Numeric matrix of posterior class probabilities with one column for each class
and one row for each observation in the test set.
Columns must be named with class labels, row names are automatically removed.
If prob
is provided, but response
is not, the class labels are calculated from
the probabilities using max.col()
with ties.method
set to "random"
.
check
(logical(1)
)
If TRUE
, performs some argument checks and predict type conversions.
set_threshold()
Sets the prediction response based on the provided threshold. See the section on thresholding for more information.
PredictionClassif$set_threshold(threshold, ties_method = "random")
threshold
(numeric()
).
ties_method
(character(1)
)
One of "random"
, "first"
or "last"
(c.f. max.col()
) to determine how to deal with
tied probabilities.
Returns the object itself, but modified by reference.
You need to explicitly $clone()
the object beforehand if you want to keeps
the object in its previous state.
clone()
The objects of this class are cloneable with this method.
PredictionClassif$clone(deep = FALSE)
deep
Whether to make a deep clone.
If this object is constructed manually, make sure that the factor levels for truth
have the same levels as the task, in the same order.
In case of binary classification tasks, the positive class label must be the first level.
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html
Package mlr3viz for some generic visualizations.
Extension packages for additional task types:
mlr3proba for probabilistic supervised regression and survival analysis.
mlr3cluster for unsupervised clustering.
Other Prediction:
Prediction
,
PredictionRegr
task = tsk("penguins") learner = lrn("classif.rpart", predict_type = "prob") learner$train(task) p = learner$predict(task) p$predict_types head(as.data.table(p)) # confusion matrix p$confusion # change threshold th = c(0.05, 0.9, 0.05) names(th) = task$class_names # new predictions p$set_threshold(th)$response p$score(measures = msr("classif.ce"))
task = tsk("penguins") learner = lrn("classif.rpart", predict_type = "prob") learner$train(task) p = learner$predict(task) p$predict_types head(as.data.table(p)) # confusion matrix p$confusion # change threshold th = c(0.05, 0.9, 0.05) names(th) = task$class_names # new predictions p$set_threshold(th)$response p$score(measures = msr("classif.ce"))
Objects of type PredictionData
serve as a intermediate representation for objects of type Prediction.
It is an internal data structure, implemented to optimize runtime and solve some issues emerging while serializing R6 objects.
End-users typically do not need to worry about the details, package developers are advised to continue reading for some technical information.
Unlike most other mlr3 objects, PredictionData
relies on the S3 class system.
The following operations must be supported to extend mlr3 for new task types:
as_prediction_data()
converts objects to class PredictionData
, e.g. objects of type Prediction.
as_prediction()
converts objects to class Prediction, e.g. objects of type PredictionData
.
check_prediction_data()
is called on the return value of the predict method of a Learner to perform assertions and type conversions.
Returns an update object of class PredictionData
.
is_missing_prediction_data()
is used for the fallback learner (see Learner) to impute missing predictions. Returns vector with row ids which need imputation.
create_empty_prediction_data(task, learner) check_prediction_data(pdata, ...) is_missing_prediction_data(pdata, ...) filter_prediction_data(pdata, row_ids, ...) ## S3 method for class 'PredictionDataClassif' check_prediction_data(pdata, train_task, ...) ## S3 method for class 'PredictionDataClassif' is_missing_prediction_data(pdata, ...) ## S3 method for class 'PredictionDataClassif' c(..., keep_duplicates = TRUE) ## S3 method for class 'PredictionDataRegr' check_prediction_data(pdata, ...) ## S3 method for class 'PredictionDataRegr' is_missing_prediction_data(pdata, ...) ## S3 method for class 'PredictionDataRegr' c(..., keep_duplicates = TRUE)
create_empty_prediction_data(task, learner) check_prediction_data(pdata, ...) is_missing_prediction_data(pdata, ...) filter_prediction_data(pdata, row_ids, ...) ## S3 method for class 'PredictionDataClassif' check_prediction_data(pdata, train_task, ...) ## S3 method for class 'PredictionDataClassif' is_missing_prediction_data(pdata, ...) ## S3 method for class 'PredictionDataClassif' c(..., keep_duplicates = TRUE) ## S3 method for class 'PredictionDataRegr' check_prediction_data(pdata, ...) ## S3 method for class 'PredictionDataRegr' is_missing_prediction_data(pdata, ...) ## S3 method for class 'PredictionDataRegr' c(..., keep_duplicates = TRUE)
task |
(Task). |
learner |
(Learner). |
pdata |
(PredictionData) |
... |
(one or more PredictionData objects). |
row_ids |
|
train_task |
(Task) |
keep_duplicates |
( |
This object wraps the predictions returned by a learner of class LearnerRegr, i.e.
the predicted response and standard error.
Additionally, probability distributions implemented in package distr6
are supported.
mlr3::Prediction
-> PredictionRegr
response
(numeric()
)
Access the stored predicted response.
se
(numeric()
)
Access the stored standard error.
quantiles
(matrix()
)
Matrix of predicted quantiles. Observations are in rows, quantile (in ascending order) in columns.
distr
(VectorDistribution
)
Access the stored vector distribution.
Requires package distr6
(in repository https://raphaels1.r-universe.dev) .
new()
Creates a new instance of this R6 class.
PredictionRegr$new( task = NULL, row_ids = task$row_ids, truth = task$truth(), response = NULL, se = NULL, quantiles = NULL, distr = NULL, check = TRUE )
task
(TaskRegr)
Task, used to extract defaults for row_ids
and truth
.
row_ids
(integer()
)
Row ids of the predicted observations, i.e. the row ids of the test set.
truth
(numeric()
)
True (observed) response.
response
(numeric()
)
Vector of numeric response values.
One element for each observation in the test set.
se
(numeric()
)
Numeric vector of predicted standard errors.
One element for each observation in the test set.
quantiles
(matrix()
)
Numeric matrix of predicted quantiles. One row per observation, one column per quantile.
distr
(VectorDistribution
)VectorDistribution
from package distr6 (in repository https://raphaels1.r-universe.dev).
Each individual distribution in the vector represents the random variable 'survival time'
for an individual observation.
check
(logical(1)
)
If TRUE
, performs some argument checks and predict type conversions.
clone()
The objects of this class are cloneable with this method.
PredictionRegr$clone(deep = FALSE)
deep
Whether to make a deep clone.
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html
Package mlr3viz for some generic visualizations.
Extension packages for additional task types:
mlr3proba for probabilistic supervised regression and survival analysis.
mlr3cluster for unsupervised clustering.
Other Prediction:
Prediction
,
PredictionClassif
task = tsk("california_housing") learner = lrn("regr.featureless", predict_type = "se") p = learner$train(task)$predict(task) p$predict_types head(as.data.table(p))
task = tsk("california_housing") learner = lrn("regr.featureless", predict_type = "se") p = learner$train(task)$predict(task) p$predict_types head(as.data.table(p))
Runs a resampling (possibly in parallel):
Repeatedly apply Learner learner
on a training set of Task task
to train a model,
then use the trained model to predict observations of a test set.
Training and test sets are defined by the Resampling resampling
.
resample( task, learner, resampling, store_models = FALSE, store_backends = TRUE, encapsulate = NA_character_, allow_hotstart = FALSE, clone = c("task", "learner", "resampling"), unmarshal = TRUE )
resample( task, learner, resampling, store_models = FALSE, store_backends = TRUE, encapsulate = NA_character_, allow_hotstart = FALSE, clone = c("task", "learner", "resampling"), unmarshal = TRUE )
task |
(Task). |
learner |
(Learner). |
resampling |
(Resampling). |
store_models |
( |
store_backends |
( |
encapsulate |
( |
allow_hotstart |
( |
clone |
( |
unmarshal |
|
If you want to compare the performance of a learner on the training with the performance
on the test set, you have to configure the Learner to predict on multiple sets by
setting the field predict_sets
to c("train", "test")
(default is "test"
).
Each set yields a separate Prediction object during resampling.
In the next step, you have to configure the measures to operate on the respective Prediction object:
m1 = msr("classif.ce", id = "ce.train", predict_sets = "train") m2 = msr("classif.ce", id = "ce.test", predict_sets = "test")
The (list of) created measures can finally be passed to $aggregate()
or $score()
.
This function can be parallelized with the future package.
One job is one resampling iteration, and all jobs are send to an apply function
from future.apply in a single batch.
To select a parallel backend, use future::plan()
.
More on parallelization can be found in the book:
https://mlr3book.mlr-org.com/chapters/chapter10/advanced_technical_aspects_of_mlr3.html
This function supports progress bars via the package progressr.
Simply wrap the function call in progressr::with_progress()
to enable them.
Alternatively, call progressr::handlers()
with global = TRUE
to enable progress bars
globally.
We recommend the progress package as backend which can be enabled with
progressr::handlers("progress")
.
The mlr3 uses the lgr package for logging.
lgr supports multiple log levels which can be queried with
getOption("lgr.log_levels")
.
To suppress output and reduce verbosity, you can lower the log from the
default level "info"
to "warn"
:
lgr::get_logger("mlr3")$set_threshold("warn")
To get additional log output for debugging, increase the log level to "debug"
or "trace"
:
lgr::get_logger("mlr3")$set_threshold("debug")
To log to a file or a data base, see the documentation of lgr::lgr-package.
The fitted models are discarded after the predictions have been computed in order to reduce memory consumption.
If you need access to the models for later analysis, set store_models
to TRUE
.
as_benchmark_result()
to convert to a BenchmarkResult.
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter3/evaluation_and_benchmarking.html#sec-resampling
Package mlr3viz for some generic visualizations.
Other resample:
ResampleResult
task = tsk("penguins") learner = lrn("classif.rpart") resampling = rsmp("cv") # Explicitly instantiate the resampling for this task for reproduciblity set.seed(123) resampling$instantiate(task) rr = resample(task, learner, resampling) print(rr) # Retrieve performance rr$score(msr("classif.ce")) rr$aggregate(msr("classif.ce")) # merged prediction objects of all resampling iterations pred = rr$prediction() pred$confusion # Repeat resampling with featureless learner rr_featureless = resample(task, lrn("classif.featureless"), resampling) # Convert results to BenchmarkResult, then combine them bmr1 = as_benchmark_result(rr) bmr2 = as_benchmark_result(rr_featureless) print(bmr1$combine(bmr2))
task = tsk("penguins") learner = lrn("classif.rpart") resampling = rsmp("cv") # Explicitly instantiate the resampling for this task for reproduciblity set.seed(123) resampling$instantiate(task) rr = resample(task, learner, resampling) print(rr) # Retrieve performance rr$score(msr("classif.ce")) rr$aggregate(msr("classif.ce")) # merged prediction objects of all resampling iterations pred = rr$prediction() pred$confusion # Repeat resampling with featureless learner rr_featureless = resample(task, lrn("classif.featureless"), resampling) # Convert results to BenchmarkResult, then combine them bmr1 = as_benchmark_result(rr) bmr2 = as_benchmark_result(rr_featureless) print(bmr1$combine(bmr2))
resample()
This is the result container object returned by resample()
.
Note that all stored objects are accessed by reference. Do not modify any object without cloning it first.
ResampleResults can be visualized via mlr3viz's autoplot()
function.
as.data.table(rr, reassemble_learners = TRUE, convert_predictions = TRUE, predict_sets = "test")
ResampleResult -> data.table::data.table()
Returns a tabular view of the internal data.
c(...)
(ResampleResult, ...) -> BenchmarkResult
Combines multiple objects convertible to BenchmarkResult into a new BenchmarkResult.
task_type
(character(1)
)
Task type of objects in the ResampleResult
, e.g. "classif"
or "regr"
.
This is NA
for empty ResampleResults.
uhash
(character(1)
)
Unique hash for this object.
iters
(integer(1)
)
Number of resampling iterations stored in the ResampleResult
.
task
(Task)
The task resample()
operated on.
learner
(Learner)
Learner prototype resample()
operated on.
For a list of trained learners, see methods $learners()
.
resampling
(Resampling)
Instantiated Resampling object which stores the splits into training and test.
learners
(list of Learner)
List of trained learners, sorted by resampling iteration.
warnings
(data.table::data.table()
)
A table with all warning messages.
Column names are "iteration"
and "msg"
.
Note that there can be multiple rows per resampling iteration if multiple warnings have been recorded.
errors
(data.table::data.table()
)
A table with all error messages.
Column names are "iteration"
and "msg"
.
Note that there can be multiple rows per resampling iteration if multiple errors have been recorded.
new()
Creates a new instance of this R6 class.
An alternative construction method is provided by as_resample_result()
.
ResampleResult$new(data = ResultData$new(), view = NULL)
data
(ResultData | data.table()
)
An object of type ResultData, either extracted from another ResampleResult, another
BenchmarkResult, or manually constructed with as_result_data()
.
view
(character()
)
Single uhash
of the ResultData to operate on.
Used internally for optimizations.
format()
Helper for print outputs.
ResampleResult$format(...)
...
(ignored).
print()
Printer.
ResampleResult$print(...)
...
(ignored).
help()
Opens the corresponding help page referenced by field $man
.
ResampleResult$help()
prediction()
Combined Prediction of all individual resampling iterations, and all provided predict sets. Note that, per default, most performance measures do not operate on this object directly, but instead on the prediction objects from the resampling iterations separately, and then combine the performance scores with the aggregate function of the respective Measure (macro averaging).
If you calculate the performance on this prediction object directly, this is called micro averaging.
ResampleResult$prediction(predict_sets = "test")
predict_sets
(character()
)
Subset of {"train", "test"}
.
Prediction or empty list()
if no predictions are available.
predictions()
List of prediction objects, sorted by resampling iteration. If multiple sets are given, these are combined to a single one for each iteration.
If you evaluate the performance on all of the returned prediction objects and then average them, this
is called macro averaging. For micro averaging, operate on the combined prediction object as returned by
$prediction()
.
ResampleResult$predictions(predict_sets = "test")
predict_sets
(character()
)
Subset of {"train", "test", "internal_valid"}
.
List of Prediction objects, one per element in predict_sets
.
Or list of empty list()
s if no predictions are available.
score()
Returns a table with one row for each resampling iteration, including all involved objects:
Task, Learner, Resampling, iteration number (integer(1)
), and (if enabled)
one Prediction for each predict set of the Learner.
Additionally, a column with the individual (per resampling iteration) performance is added
for each Measure in measures
, named with the id of the respective measure id.
If measures
is NULL
, measures
defaults to the return value of default_measures()
.
ResampleResult$score( measures = NULL, ids = TRUE, conditions = FALSE, predictions = TRUE )
measures
ids
(logical(1)
)
If ids
is TRUE
, extra columns with the ids of objects ("task_id"
, "learner_id"
, "resampling_id"
)
are added to the returned table.
These allow to subset more conveniently.
conditions
(logical(1)
)
Adds condition messages ("warnings"
, "errors"
) as extra
list columns of character vectors to the returned table
predictions
(logical(1)
)
Additionally return prediction objects, one column for each predict_set
of the learner.
Columns are named "prediction_train"
, "prediction_test"
and "prediction_internal_valid"
,
if present.
obs_loss()
Calculates the observation-wise loss via the loss function set in the
Measure's field obs_loss
.
Returns a data.table()
with the columns of the matching Prediction object plus
one additional numeric column for each measure, named with the respective measure id.
If there is no observation-wise loss function for the measure, the column is filled with
NA
values.
Note that some measures such as RMSE, do have an $obs_loss
, but they require an
additional transformation after aggregation, in this example taking the square-root.
ResampleResult$obs_loss(measures = NULL, predict_sets = "test")
aggregate()
Calculates and aggregates performance values for all provided measures, according to the
respective aggregation function in Measure.
If measures
is NULL
, measures
defaults to the return value of default_measures()
.
ResampleResult$aggregate(measures = NULL)
Named numeric()
.
filter()
Subsets the ResampleResult, reducing it to only keep the iterations specified in iters
.
ResampleResult$filter(iters)
iters
(integer()
)
Resampling iterations to keep.
Returns the object itself, but modified by reference.
You need to explicitly $clone()
the object beforehand if you want to keeps
the object in its previous state.
discard()
Shrinks the ResampleResult by discarding parts of the internally stored data. Note that certain operations might stop work, e.g. extracting importance values from learners or calculating measures requiring the task's data.
ResampleResult$discard(backends = FALSE, models = FALSE)
backends
(logical(1)
)
If TRUE
, the DataBackend is removed from all stored Tasks.
models
(logical(1)
)
If TRUE
, the stored model is removed from all Learners.
Returns the object itself, but modified by reference.
You need to explicitly $clone()
the object beforehand if you want to keeps
the object in its previous state.
marshal()
Marshals all stored models.
ResampleResult$marshal(...)
...
(any)
Additional arguments passed to marshal_model()
.
unmarshal()
Unmarshals all stored models.
ResampleResult$unmarshal(...)
...
(any)
Additional arguments passed to unmarshal_model()
.
clone()
The objects of this class are cloneable with this method.
ResampleResult$clone(deep = FALSE)
deep
Whether to make a deep clone.
as_benchmark_result()
to convert to a BenchmarkResult.
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter3/evaluation_and_benchmarking.html#sec-resampling
Package mlr3viz for some generic visualizations.
Other resample:
resample()
task = tsk("penguins") learner = lrn("classif.rpart") resampling = rsmp("cv", folds = 3) rr = resample(task, learner, resampling) print(rr) # combined predictions and predictions for each fold separately rr$prediction() rr$predictions() # folds scored separately, then aggregated (macro) rr$aggregate(msr("classif.acc")) # predictions first combined, then scored (micro) rr$prediction()$score(msr("classif.acc")) # check for warnings and errors rr$warnings rr$errors
task = tsk("penguins") learner = lrn("classif.rpart") resampling = rsmp("cv", folds = 3) rr = resample(task, learner, resampling) print(rr) # combined predictions and predictions for each fold separately rr$prediction() rr$predictions() # folds scored separately, then aggregated (macro) rr$aggregate(msr("classif.acc")) # predictions first combined, then scored (micro) rr$prediction()$score(msr("classif.acc")) # check for warnings and errors rr$warnings rr$errors
This is the abstract base class for resampling objects like ResamplingCV and ResamplingBootstrap.
The objects of this class define how a task is partitioned for resampling (e.g., in resample()
or benchmark()
),
using a set of hyperparameters such as the number of folds in cross-validation.
Resampling objects can be instantiated on a Task, which applies the strategy on the task and manifests in a
fixed partition of row_ids
of the Task.
Predefined resamplings are stored in the dictionary mlr_resamplings,
e.g. cv
or bootstrap
.
All derived classes support stratified sampling.
The stratification variables are assumed to be discrete and must be stored in the Task with column role "stratum"
.
In case of multiple stratification variables, each combination of the values of the stratification variables forms a strata.
First, the observations are divided into subpopulations based one or multiple stratification variables (assumed to be discrete), c.f. task$strata
.
Second, the sampling is performed in each of the k
subpopulations separately.
Each subgroup is divided into iter
training sets and iter
test sets by the derived Resampling
.
These sets are merged based on their iteration number:
all training sets from all subpopulations with iteration 1 are combined, then all training sets with iteration 2, and so on.
Same is done for all test sets.
The merged sets can be accessed via $train_set(i)
and $test_set(i)
, respectively.
Note that this procedure can lead to set sizes that are slightly different from those
without stratification.
All derived classes support grouping of observations.
The grouping variable is assumed to be discrete and must be stored in the Task with column role "group"
.
Observations in the same group are treated like a "block" of observations which must be kept together. These observations either all go together into the training set or together into the test set.
The sampling is performed by the derived Resampling on the grouping variable.
Next, the grouping information is replaced with the respective row ids to generate training and test sets.
The sets can be accessed via $train_set(i)
and $test_set(i)
, respectively.
label
(character(1)
)
Label for this object.
Can be used in tables, plot and text output instead of the ID.
param_set
(paradox::ParamSet)
Set of hyperparameters.
instance
(any)
During instantiate()
, the instance is stored in this slot in an arbitrary format.
Note that if a grouping variable is present in the Task, a Resampling may operate on the
group ids internally instead of the row ids (which may lead to confusion).
It is advised to not work directly with the instance
, but instead only use the getters
$train_set()
and $test_set()
.
task_hash
(character(1)
)
The hash of the Task which was passed to r$instantiate()
.
task_nrow
(integer(1)
)
The number of observations of the Task which was passed to r$instantiate()
.
duplicated_ids
(logical(1)
)
If TRUE
, duplicated rows can occur within a single training set or within a single test set.
E.g., this is TRUE
for Bootstrap, and FALSE
for cross-validation.
Only used internally.
man
(character(1)
)
String in the format [pkg]::[topic]
pointing to a manual page for this object.
Defaults to NA
, but can be set by child classes.
id
(character(1)
)
Identifier of the object.
Used in tables, plot and text output.
is_instantiated
(logical(1)
)
Is TRUE
if the resampling has been instantiated.
hash
(character(1)
)
Hash (unique identifier) for this object.
If the object has not been instantiated yet, NA_character_
is returned.
The hash is calculated based on the class name, the id, the parameter set, and the instance.
new()
Creates a new instance of this R6 class.
Resampling$new( id, param_set = ps(), duplicated_ids = FALSE, label = NA_character_, man = NA_character_ )
id
(character(1)
)
Identifier for the new instance.
param_set
(paradox::ParamSet)
Set of hyperparameters.
duplicated_ids
(logical(1)
)
Set to TRUE
if this resampling strategy may have duplicated row ids in a single training set or test set.
Note that this object is typically constructed via a derived classes, e.g. ResamplingCV or ResamplingHoldout.
label
(character(1)
)
Label for the new instance.
man
(character(1)
)
String in the format [pkg]::[topic]
pointing to a manual page for this object.
The referenced help package can be opened via method $help()
.
format()
Helper for print outputs.
Resampling$format(...)
...
(ignored).
print()
Printer.
Resampling$print(...)
...
(ignored).
help()
Opens the corresponding help page referenced by field $man
.
Resampling$help()
instantiate()
Materializes fixed training and test splits for a given task and stores them in r$instance
in an arbitrary format.
Resampling$instantiate(task)
task
(Task)
Task used for instantiation.
Returns the object itself, but modified by reference.
You need to explicitly $clone()
the object beforehand if you want to keeps
the object in its previous state.
train_set()
Returns the row ids of the i-th training set.
Resampling$train_set(i)
i
(integer(1)
)
Iteration.
(integer()
) of row ids.
test_set()
Returns the row ids of the i-th test set.
Resampling$test_set(i)
i
(integer(1)
)
Iteration.
(integer()
) of row ids.
clone()
The objects of this class are cloneable with this method.
Resampling$clone(deep = FALSE)
deep
Whether to make a deep clone.
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter3/evaluation_and_benchmarking.html#sec-resampling
Package mlr3spatiotempcv for spatio-temporal resamplings.
as.data.table(mlr_resamplings)
for a table of available Resamplings in the running session (depending on the loaded packages).
mlr3spatiotempcv for additional Resamplings for spatio-temporal tasks.
Other Resampling:
mlr_resamplings
,
mlr_resamplings_bootstrap
,
mlr_resamplings_custom
,
mlr_resamplings_custom_cv
,
mlr_resamplings_cv
,
mlr_resamplings_holdout
,
mlr_resamplings_insample
,
mlr_resamplings_loo
,
mlr_resamplings_repeated_cv
,
mlr_resamplings_subsampling
r = rsmp("subsampling") # Default parametrization r$param_set$values # Do only 3 repeats on 10% of the data r$param_set$values = list(ratio = 0.1, repeats = 3) r$param_set$values # Instantiate on penguins task task = tsk("penguins") r$instantiate(task) # Extract train/test sets train_set = r$train_set(1) print(train_set) intersect(train_set, r$test_set(1)) # Another example: 10-fold CV r = rsmp("cv")$instantiate(task) r$train_set(1) # Stratification task = tsk("pima") prop.table(table(task$truth())) # moderately unbalanced task$col_roles$stratum = task$target_names r = rsmp("subsampling") r$instantiate(task) prop.table(table(task$truth(r$train_set(1)))) # roughly same proportion
r = rsmp("subsampling") # Default parametrization r$param_set$values # Do only 3 repeats on 10% of the data r$param_set$values = list(ratio = 0.1, repeats = 3) r$param_set$values # Instantiate on penguins task task = tsk("penguins") r$instantiate(task) # Extract train/test sets train_set = r$train_set(1) print(train_set) intersect(train_set, r$test_set(1)) # Another example: 10-fold CV r = rsmp("cv")$instantiate(task) r$train_set(1) # Stratification task = tsk("pima") prop.table(table(task$truth())) # moderately unbalanced task$col_roles$stratum = task$target_names r = rsmp("subsampling") r$instantiate(task) prop.table(table(task$truth(r$train_set(1)))) # roughly same proportion
Control the parallelism via threading while calling external packages from mlr3.
For example, the random forest implementation in package ranger (connected
via mlr3learners) supports threading via OpenMP.
The number of threads to use can be set via hyperparameter num.threads
, and
defaults to 1. By calling set_threads(x, 4)
with x
being a ranger learner, the
hyperparameter is changed so that 4 cores are used.
If the object x
does not support threading, x
is returned as-is.
If applied to a list, recurses through all list elements.
Note that threading is incompatible with other parallelization techniques such as forking via the future::plan future::multicore. For this reason all learners connected to mlr3 have threading disabled in their defaults.
set_threads(x, n = availableCores(), ...) ## Default S3 method: set_threads(x, n = availableCores(), ...) ## S3 method for class 'R6' set_threads(x, n = availableCores(), ...) ## S3 method for class 'list' set_threads(x, n = availableCores(), ...)
set_threads(x, n = availableCores(), ...) ## Default S3 method: set_threads(x, n = availableCores(), ...) ## S3 method for class 'R6' set_threads(x, n = availableCores(), ...) ## S3 method for class 'list' set_threads(x, n = availableCores(), ...)
x |
(any) |
n |
( |
... |
(any) |
Same object as input x
(changed in-place),
with possibly updated parameter values.
This is the abstract base class for TaskSupervised and TaskUnsupervised. TaskClassif and TaskRegr inherit from TaskSupervised. More supervised tasks are implemented in mlr3proba, unsupervised cluster tasks in package mlr3cluster.
Tasks serve two purposes:
Tasks wrap a DataBackend, an object to transparently interface different data storage types.
Tasks store meta-information, such as the role of the individual columns in the DataBackend. For example, for a classification task a single column must be marked as target column, and others as features.
Predefined (toy) tasks are stored in the dictionary mlr_tasks,
e.g. penguins
or california_housing
.
More toy tasks can be found in the dictionary after loading mlr3data.
as.data.table(t)
Task -> data.table::data.table()
Returns the complete data as data.table::data.table()
.
head(t)
Calls head()
on the task's data.
summary(t)
Calls summary()
on the task's data.
The following methods change the task in-place:
Any modification of the lists $col_roles
or $row_roles
.
This provides a different "view" on the data without altering the data itself.
This may affects, e.g., $data
, $nrow
, $ncol
, n_features
, row_ids
, and $feature_names
.
Altering $col_roles
may affect, e.g., $data
, $ncol
, $n_features
, and $feature_names
.
Altering $row_roles
may affect, e.g., $data
, $nrow
, and $row_ids
.
Modification of column or row roles via $set_col_roles()
or $set_row_roles()
, respectively.
They are an alternative to directly accessing $col_roles
or $row_roles
, with the same side effects.
$select()
and $filter()
subset the set of active features or rows in $col_roles
or $row_roles
, respectively.
$cbind()
and $rbind()
change the task in-place by binding new columns or rows to the data.
$rename()
changes column names.
$set_levels()
and $droplevels()
update the field $col_info()
to automatically repair factor levels while querying data with $data()
.
label
(character(1)
)
Label for this object.
Can be used in tables, plot and text output instead of the ID.
task_type
(character(1)
)
Task type, e.g. "classif"
or "regr"
.
For a complete list of possible task types (depending on the loaded packages),
see mlr_reflections$task_types$type
.
backend
(DataBackend)
Abstract interface to the data of the task.
col_info
(data.table::data.table()
)
Table with with 4 columns, mainly for internal purposes:
"id"
(character()
) stores the name of the column.
"type"
(character()
) holds the storage type of the variable, e.g. integer
, numeric
or character
.
See mlr_reflections$task_feature_types for a complete list of allowed types.
"levels"
(list()
) stores a vector of distinct values (levels) for ordered and unordered factor variables.
"label"
(character()
) stores a vector of prettier, formated column names.
"fix_factor_levels"
(logical()
) stores flags which determine if the levels of the respective variable
need to be reordered after querying the data from the DataBackend.
Note that all columns of the DataBackend, also columns which are not selected or have any role, are listed in this table.
man
(character(1)
)
String in the format [pkg]::[topic]
pointing to a manual page for this object.
Defaults to NA
, but can be set by child classes.
extra_args
(named list()
)
Additional arguments set during construction.
Required for convert_task()
.
mlr3_version
(package_version
)
Package version of mlr3
used to create the task.
id
(character(1)
)
Identifier of the object.
Used in tables, plot and text output.
internal_valid_task
(Task
or integer()
or NULL
)
Optional validation task that can, e.g., be used for early stopping with learners such as XGBoost.
See also the $validate
field of Learner
.
If integers are assigned they are removed from the primary task and an internal validation task
with those ids is created from the primary task using only those ids.
When assigning a new task, it is always cloned.
hash
(character(1)
)
Hash (unique identifier) for this object.
The hash is calculated based on the complete task object and $row_ids
.
If an internal validation task is set, the hash is recalculated.
row_ids
(positive integer()
)
Returns the row ids of the DataBackend for observations with role "use".
row_names
(data.table::data.table()
)
Returns a table with two columns:
"row_id"
(integer()
), and
"row_name"
(character()
).
feature_names
(character()
)
Returns all column names with role == "feature"
.
Note that this vector determines the default order of columns for task$data(cols = NULL, ...)
.
However, it is recommended to not rely on the order of columns, but instead always
address columns by their name. The default order is not well defined after some
operations, e.g. after task$cbind()
or after processing via mlr3pipelines.
target_names
(character()
)
Returns all column names with role "target".
properties
(character()
)
Set of task properties.
Possible properties are are stored in mlr_reflections$task_properties.
The following properties are currently standardized and understood by tasks in mlr3:
"strata"
: The task is resampled using one or more stratification variables (role "stratum"
).
"groups"
: The task comes with grouping/blocking information (role "group"
).
"weights"
: The task comes with observation weights (role "weight"
).
Note that above listed properties are calculated from the $col_roles
and may not be set explicitly.
row_roles
(named list()
)
Each row (observation) can have an arbitrary number of roles in the learning task:
"use"
: Use in train / predict / resampling.
row_roles
is a named list whose elements are named by row role and each element is an integer()
vector of row ids.
To alter the roles, just modify the list, e.g. with R's set functions (intersect()
, setdiff()
, union()
, ...).
col_roles
(named list()
)
Each column can be in one or more of the following groups to fulfill different roles:
"feature"
: Regular feature used in the model fitting process.
"target"
: Target variable. Most tasks only accept a single target column.
"name"
: Row names / observation labels. To be used in plots. Can be queried with $row_names
.
Not more than a single column can be associated with this role.
"order"
: Data returned by $data()
is ordered by this column (or these columns).
Columns must be sortable with order()
.
"group"
: During resampling, observations with the same value of the variable with role "group" are marked as "belonging together".
For each resampling iteration, observations of the same group will be exclusively assigned to be either in the training set or in the test set.
Not more than a single column can be associated with this role.
"stratum"
: Stratification variables. Multiple discrete columns may have this role.
"weight"
: Observation weights. Not more than one numeric column may have this role.
col_roles
is a named list whose elements are named by column role and each element is a character()
vector of column names.
To alter the roles, just modify the list, e.g. with R's set functions (intersect()
, setdiff()
, union()
, ...).
The method $set_col_roles
provides a convenient alternative to assign columns to roles.
nrow
(integer(1)
)
Returns the total number of rows with role "use".
ncol
(integer(1)
)
Returns the total number of columns with role "target" or "feature".
n_features
(integer(1)
)
Returns the total number of columns with role "feature" (i.e. the number of "active" features in the task).
feature_types
(data.table::data.table()
)
Returns a table with columns id
and type
where id
are the column names of "active"
features of the task and type
is the storage type.
data_formats
(character()
)
Supported data format. Always "data.table"
..
This is deprecated and will be removed in the future.
strata
(data.table::data.table()
)
If the task has columns designated with role "stratum"
, returns a table with one subpopulation per row and two columns:
N
(integer()
) with the number of observations in the subpopulation, and
row_id
(list of integer()
) as list column with the row ids in the respective subpopulation.
Returns NULL
if there are is no stratification variable.
See Resampling for more information on stratification.
groups
(data.table::data.table()
)
If the task has a column with designated role "group"
, a table with two columns:
row_id
(integer()
), and
grouping variable group
(vector()
).
Returns NULL
if there are is no grouping column.
See Resampling for more information on grouping.
order
(data.table::data.table()
)
If the task has at least one column with designated role "order"
, a table with two columns:
row_id
(integer()
), and
ordering vector order
(integer()
).
Returns NULL
if there are is no order column.
weights
(data.table::data.table()
)
If the task has a column with designated role "weight"
, a table with two columns:
row_id
(integer()
), and
observation weights weight
(numeric()
).
Returns NULL
if there are is no weight column.
labels
(named character()
)
Retrieve labels
(prettier formated names) from columns.
Internally queries the column label
of the table in field col_info
.
Columns ids referenced by the name of the vector, the labels are the actual string values.
Assigning to this column update the task by reference.
You have to provide a character vector of labels, named with column ids.
To remove a label, set it to NA
.
Alternatively, you can provide a data.frame()
with the two columns
"id"
and "label"
.
col_hashes
(named character
)
Hash (unique identifier) for all columns except the primary_key
: A character
vector, named by the columns that each element refers to.
Columns of different Task
s or DataBackend
s that have agreeing col_hashes
always represent the same data, given that the same row
s are selected.
The reverse is not necessarily true: There can be columns with the same content that have different col_hashes
.
characteristics
(list()
)
List of characteristics of the task, e.g. list(n = 5, p = 7)
.
new()
Creates a new instance of this R6 class.
Note that this object is typically constructed via a derived classes, e.g. TaskClassif or TaskRegr.
Task$new(id, task_type, backend, label = NA_character_, extra_args = list())
id
(character(1)
)
Identifier for the new instance.
task_type
(character(1)
)
Type of task, e.g. "regr"
or "classif"
.
Must be an element of mlr_reflections$task_types$type.
backend
(DataBackend)
Either a DataBackend, or any object which is convertible to a DataBackend with as_data_backend()
.
E.g., a data.frame()
will be converted to a DataBackendDataTable.
label
(character(1)
)
Label for the new instance.
extra_args
(named list()
)
Named list of constructor arguments, required for converting task types
via convert_task()
.
divide()
Deprecated.
Task$divide(ratio = NULL, ids = NULL, remove = TRUE)
ratio
(numeric(1)
)
The proportion of datapoints to use as validation data.
ids
(integer()
)
The row ids to use as validation data.
remove
(logical(1)
)
If TRUE
(default), the row_ids
are removed from the primary task's active "use"
rows, ensuring a
disjoint split between the train and validation data.
Modified Self
.
help()
Opens the corresponding help page referenced by field $man
.
Task$help()
format()
Helper for print outputs.
Task$format(...)
...
(ignored).
print()
Printer.
Task$print(...)
...
(ignored).
data()
Returns a slice of the data from the DataBackend as a data.table
.
Rows default to observations with role "use"
, and
columns default to features with roles "target"
or "feature"
.
If rows
or cols
are specified which do not exist in the DataBackend,
an exception is raised.
Rows and columns are returned in the order specified via the arguments rows
and cols
.
If rows
is NULL
, rows are returned in the order of task$row_ids
.
If cols
is NULL
, the column order defaults to
c(task$target_names, task$feature_names)
.
Note that it is recommended to not rely on the order of columns, and instead always
address columns with their respective column name.
Task$data(rows = NULL, cols = NULL, data_format, ordered = FALSE)
rows
(positive integer()
)
Vector or row indices.
Always refers to the complete data set, even after filtering.
cols
(character()
)
Vector of column names.
data_format
(character(1)
)
Deprecated. Ignored, and will be removed in the future.
ordered
(logical(1)
)
If TRUE
, data is ordered according to the columns with column role "order"
.
Depending on the DataBackend, but usually a data.table::data.table()
.
formula()
Constructs a formula()
, e.g. [target] ~ [feature_1] + [feature_2] + ... + [feature_k]
,
using the features provided in argument rhs
(defaults to all columns with role "feature"
, symbolized by "."
).
Note that it is currently not possible to change the formula.
However, mlr3pipelines provides a pipe operator interfacing stats::model.matrix()
for this purpose: "modelmatrix"
.
Task$formula(rhs = ".")
rhs
(character(1)
)
Right hand side of the formula. Defaults to "."
(all features of the task).
head()
Get the first n
observations with role "use"
of all columns with role "target"
or "feature"
.
Task$head(n = 6L)
n
(integer(1)
).
data.table::data.table()
with n
rows.
levels()
Returns the distinct values for columns referenced in cols
with storage type "factor" or "ordered".
Argument cols
defaults to all such columns with role "target"
or "feature"
.
Note that this function ignores the row roles, it returns all levels available in the DataBackend.
To update the stored level information, e.g. after subsetting a task with $filter()
, call $droplevels()
.
Task$levels(cols = NULL)
cols
(character()
)
Vector of column names.
named list()
.
missings()
Returns the number of missing observations for columns referenced in cols
.
Considers only active rows with row role "use"
.
Argument cols
defaults to all columns with role "target" or "feature".
Task$missings(cols = NULL)
cols
(character()
)
Vector of column names.
Named integer()
.
filter()
Subsets the task, keeping only the rows specified via row ids rows
.
This operation mutates the task in-place. See the section on task mutators for more information.
Task$filter(rows)
rows
(positive integer()
)
Vector or row indices.
Always refers to the complete data set, even after filtering.
Returns the object itself, but modified by reference.
You need to explicitly $clone()
the object beforehand if you want to keeps
the object in its previous state.
select()
Subsets the task, keeping only the features specified via column names cols
.
Note that you cannot deselect the target column, for obvious reasons.
This operation mutates the task in-place. See the section on task mutators for more information.
Task$select(cols)
cols
(character()
)
Vector of column names.
Returns the object itself, but modified by reference.
You need to explicitly $clone()
the object beforehand if you want to keeps
the object in its previous state.
rbind()
Adds additional rows to the DataBackend stored in $backend
.
New row ids are automatically created, unless data
has a column whose name matches
the primary key of the DataBackend (task$backend$primary_key
).
In case of name clashes of row ids, rows in data
have higher precedence
and virtually overwrite the rows in the DataBackend.
All columns with the roles "target"
, "feature"
, "weight"
, "group"
, "stratum"
,
and "order"
must be present in data
.
Columns only present in data
but not in the DataBackend of task
will be discarded.
This operation mutates the task in-place. See the section on task mutators for more information.
Task$rbind(data)
data
(data.frame()
).
Returns the object itself, but modified by reference.
You need to explicitly $clone()
the object beforehand if you want to keeps
the object in its previous state.
cbind()
Adds additional columns to the DataBackend stored in $backend
.
The row ids must be provided as column in data
(with column name matching the primary key name of the DataBackend).
If this column is missing, it is assumed that the rows are exactly in the order of $row_ids
.
In case of name clashes of column names in data
and DataBackend, columns in data
have higher precedence
and virtually overwrite the columns in the DataBackend.
This operation mutates the task in-place. See the section on task mutators for more information.
Task$cbind(data)
data
(data.frame()
).
rename()
Renames columns by mapping column names in old
to new column names in new
(element-wise).
This operation mutates the task in-place. See the section on task mutators for more information.
Task$rename(old, new)
old
(character()
)
Old names.
new
(character()
)
New names.
Returns the object itself, but modified by reference.
You need to explicitly $clone()
the object beforehand if you want to keeps
the object in its previous state.
set_row_roles()
Modifies the roles in $row_roles
in-place.
Task$set_row_roles(rows, roles = NULL, add_to = NULL, remove_from = NULL)
rows
(integer()
)
Row ids for which to change the roles for.
roles
(character()
)
Exclusively set rows to the specified roles
(remove from other roles).
add_to
(character()
)
Add rows with row ids rows
to roles specified in add_to
.
Rows keep their previous roles.
remove_from
(character()
)
Remove rows with row ids rows
from roles specified in remove_from
.
Other row roles are preserved.
Roles are first set exclusively (argument roles
), then added (argument add_to
) and finally
removed (argument remove_from
) from different roles.
Duplicated row ids are explicitly allowed, so you can add replicate an observation by repeating its
row_id
.
Returns the object itself, but modified by reference.
You need to explicitly $clone()
the object beforehand if you want to keeps
the object in its previous state.
set_col_roles()
Modifies the roles in $col_roles
in-place.
See $col_roles
for a list of possible roles.
Task$set_col_roles(cols, roles = NULL, add_to = NULL, remove_from = NULL)
cols
(character()
)
Column names for which to change the roles for.
roles
(character()
)
Exclusively set columns to the specified roles
(remove from other roles).
add_to
(character()
)
Add columns with column names cols
to roles specified in add_to
.
Columns keep their previous roles.
remove_from
(character()
)
Remove columns with columns names cols
from roles specified in remove_from
.
Other column roles are preserved.
Roles are first set exclusively (argument roles
), then added (argument add_to
) and finally removed (argument remove_from
) from different roles.
Duplicated columns are removed from the same role.
For tasks that only allow one target, the target column cannot be set with $set_col_roles()
.
Use the $col_roles
field to swap the target column.
Returns the object itself, but modified by reference.
You need to explicitly $clone()
the object beforehand if you want to keeps
the object in its previous state.
set_levels()
Set levels for columns of type factor
and ordered
in field col_info
.
You can add, remove or reorder the levels, affecting the data returned by
$data()
and $levels()
.
If you just want to remove unused levels, use $droplevels()
instead.
Note that factor levels which are present in the data but not listed in the task as valid levels are converted to missing values.
Task$set_levels(levels)
levels
(named list()
of character()
)
List of character vectors of new levels, named by column names.
Modified self
.
droplevels()
Updates the cache of stored factor levels, removing all levels not present in the current set of active rows.
cols
defaults to all columns with storage type "factor" or "ordered".
Task$droplevels(cols = NULL)
cols
(character()
)
Vector of column names.
Modified self
.
add_strata()
Cuts numeric variables into new factors columns which are added to the task with role
"stratum"
.
This ensures that all training and test splits contain observations from all bins.
The columns are named "..stratum_[col_name]"
.
Task$add_strata(cols, bins = 3L)
cols
(character()
)
Names of columns to operate on.
bins
(integer()
)
Number of bins to cut into (passed to cut()
as breaks
).
Replicated to have the same length as cols
.
self (invisibly).
clone()
The objects of this class are cloneable with this method.
Task$clone(deep = FALSE)
deep
Whether to make a deep clone.
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html
Package mlr3data for more toy tasks.
Package mlr3oml for downloading tasks from https://www.openml.org.
Package mlr3viz for some generic visualizations.
Dictionary of Tasks: mlr_tasks
as.data.table(mlr_tasks)
for a table of available Tasks in the running session (depending on the loaded packages).
mlr3fselect and mlr3filters for feature selection and feature filtering.
Extension packages for additional task types:
Unsupervised clustering: mlr3cluster
Probabilistic supervised regression and survival analysis: https://mlr3proba.mlr-org.com/.
Other Task:
TaskClassif
,
TaskRegr
,
TaskSupervised
,
TaskUnsupervised
,
california_housing
,
mlr_tasks
,
mlr_tasks_breast_cancer
,
mlr_tasks_german_credit
,
mlr_tasks_iris
,
mlr_tasks_mtcars
,
mlr_tasks_penguins
,
mlr_tasks_pima
,
mlr_tasks_sonar
,
mlr_tasks_spam
,
mlr_tasks_wine
,
mlr_tasks_zoo
# We use the inherited class TaskClassif here, # because the base class `Task` is not intended for direct use task = TaskClassif$new("penguings", palmerpenguins::penguins, target = "species") task$nrow task$ncol task$feature_names task$formula() # de-select "year" task$select(setdiff(task$feature_names, "year")) task$feature_names # Add new column "foo" task$cbind(data.frame(foo = 1:344)) head(task)
# We use the inherited class TaskClassif here, # because the base class `Task` is not intended for direct use task = TaskClassif$new("penguings", palmerpenguins::penguins, target = "species") task$nrow task$ncol task$feature_names task$formula() # de-select "year" task$select(setdiff(task$feature_names, "year")) task$feature_names # Add new column "foo" task$cbind(data.frame(foo = 1:344)) head(task)
This task specializes Task and TaskSupervised for classification problems.
The target column is assumed to be a factor or ordered factor.
The task_type
is set to "classif"
.
Additional task properties include:
"twoclass"
: The task is a binary classification problem.
"multiclass"
: The task is a multiclass classification problem.
It is recommended to use as_task_classif()
for construction.
Predefined tasks are stored in the dictionary mlr_tasks.
mlr3::Task
-> mlr3::TaskSupervised
-> TaskClassif
class_names
(character()
)
Returns all class labels of the target column.
positive
(character(1)
)
Stores the positive class for binary classification tasks, and NA
for multiclass tasks.
To switch the positive class, assign a level to this field.
negative
(character(1)
)
Stores the negative class for binary classification tasks, and NA
for multiclass tasks.
mlr3::Task$add_strata()
mlr3::Task$cbind()
mlr3::Task$data()
mlr3::Task$divide()
mlr3::Task$filter()
mlr3::Task$format()
mlr3::Task$formula()
mlr3::Task$head()
mlr3::Task$help()
mlr3::Task$levels()
mlr3::Task$missings()
mlr3::Task$print()
mlr3::Task$rbind()
mlr3::Task$rename()
mlr3::Task$select()
mlr3::Task$set_col_roles()
mlr3::Task$set_levels()
mlr3::Task$set_row_roles()
new()
Creates a new instance of this R6 class.
The function as_task_classif()
provides an alternative way to construct classification tasks.
TaskClassif$new( id, backend, target, positive = NULL, label = NA_character_, extra_args = list() )
id
(character(1)
)
Identifier for the new instance.
backend
(DataBackend)
Either a DataBackend, or any object which is convertible to a DataBackend with as_data_backend()
.
E.g., a data.frame()
will be converted to a DataBackendDataTable.
target
(character(1)
)
Name of the target column.
positive
(character(1)
)
Only for binary classification: Name of the positive class.
The levels of the target columns are reordered accordingly, so that the first element of $class_names
is the
positive class, and the second element is the negative class.
label
(character(1)
)
Label for the new instance.
extra_args
(named list()
)
Named list of constructor arguments, required for converting task types
via convert_task()
.
truth()
True response for specified row_ids
. Format depends on the task type.
Defaults to all rows with role "use"
.
TaskClassif$truth(rows = NULL)
rows
(positive integer()
)
Vector or row indices.
Always refers to the complete data set, even after filtering.
factor()
.
droplevels()
Updates the cache of stored factor levels, removing all levels not present in the current set of active rows.
cols
defaults to all columns with storage type "factor" or "ordered".
Also updates the task property "twoclass"
/"multiclass"
.
TaskClassif$droplevels(cols = NULL)
cols
(character()
)
Vector of column names.
Modified self
.
clone()
The objects of this class are cloneable with this method.
TaskClassif$clone(deep = FALSE)
deep
Whether to make a deep clone.
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html
Package mlr3data for more toy tasks.
Package mlr3oml for downloading tasks from https://www.openml.org.
Package mlr3viz for some generic visualizations.
Dictionary of Tasks: mlr_tasks
as.data.table(mlr_tasks)
for a table of available Tasks in the running session (depending on the loaded packages).
mlr3fselect and mlr3filters for feature selection and feature filtering.
Extension packages for additional task types:
Unsupervised clustering: mlr3cluster
Probabilistic supervised regression and survival analysis: https://mlr3proba.mlr-org.com/.
Other Task:
Task
,
TaskRegr
,
TaskSupervised
,
TaskUnsupervised
,
california_housing
,
mlr_tasks
,
mlr_tasks_breast_cancer
,
mlr_tasks_german_credit
,
mlr_tasks_iris
,
mlr_tasks_mtcars
,
mlr_tasks_penguins
,
mlr_tasks_pima
,
mlr_tasks_sonar
,
mlr_tasks_spam
,
mlr_tasks_wine
,
mlr_tasks_zoo
data("Sonar", package = "mlbench") task = as_task_classif(Sonar, target = "Class", positive = "M") task$task_type task$formula() task$truth() task$class_names task$positive task$data(rows = 1:3, cols = task$feature_names[1:2])
data("Sonar", package = "mlbench") task = as_task_classif(Sonar, target = "Class", positive = "M") task$task_type task$formula() task$truth() task$class_names task$positive task$data(rows = 1:3, cols = task$feature_names[1:2])
Creates a Task of arbitrary size.
Predefined task generators are stored in the dictionary mlr_task_generators,
e.g. xor
.
id
(character(1)
)
Identifier of the object.
Used in tables, plot and text output.
label
(character(1)
)
Label for this object.
Can be used in tables, plot and text output instead of the ID.
task_type
(character(1)
)
Task type, e.g. "classif"
or "regr"
.
For a complete list of possible task types (depending on the loaded packages),
see mlr_reflections$task_types$type
.
param_set
(paradox::ParamSet)
Set of hyperparameters.
packages
(character(1)
)
Set of required packages.
These packages are loaded, but not attached.
man
(character(1)
)
String in the format [pkg]::[topic]
pointing to a manual page for this object.
Defaults to NA
, but can be set by child classes.
new()
Creates a new instance of this R6 class.
TaskGenerator$new( id, task_type, packages = character(), param_set = ps(), label = NA_character_, man = NA_character_ )
id
(character(1)
)
Identifier for the new instance.
task_type
(character(1)
)
Type of task, e.g. "regr"
or "classif"
.
Must be an element of mlr_reflections$task_types$type.
packages
(character()
)
Set of required packages.
A warning is signaled by the constructor if at least one of the packages is not installed,
but loaded (not attached) later on-demand via requireNamespace()
.
param_set
(paradox::ParamSet)
Set of hyperparameters.
label
(character(1)
)
Label for the new instance.
man
(character(1)
)
String in the format [pkg]::[topic]
pointing to a manual page for this object.
The referenced help package can be opened via method $help()
.
format()
Helper for print outputs.
TaskGenerator$format(...)
...
(ignored).
print()
Printer.
TaskGenerator$print(...)
...
(ignored).
generate()
Creates a task of type task_type
with n
observations, possibly using additional settings stored in param_set
.
TaskGenerator$generate(n)
n
(integer(1)
)
Number of rows to generate.
Task.
clone()
The objects of this class are cloneable with this method.
TaskGenerator$clone(deep = FALSE)
deep
Whether to make a deep clone.
as.data.table(mlr_task_generators)
for a table of available TaskGenerators in the running session (depending on the loaded packages).
Extension packages for additional task types:
mlr3proba for probabilistic supervised regression and survival analysis.
mlr3cluster for unsupervised clustering.
Other TaskGenerator:
mlr_task_generators
,
mlr_task_generators_2dnormals
,
mlr_task_generators_cassini
,
mlr_task_generators_circle
,
mlr_task_generators_friedman1
,
mlr_task_generators_moons
,
mlr_task_generators_simplex
,
mlr_task_generators_smiley
,
mlr_task_generators_spirals
,
mlr_task_generators_xor
This task specializes Task and TaskSupervised for regression problems.
The target column is assumed to be numeric.
The task_type
is set to "regr"
.
It is recommended to use as_task_regr()
for construction.
Predefined tasks are stored in the dictionary mlr_tasks.
mlr3::Task
-> mlr3::TaskSupervised
-> TaskRegr
mlr3::Task$add_strata()
mlr3::Task$cbind()
mlr3::Task$data()
mlr3::Task$divide()
mlr3::Task$droplevels()
mlr3::Task$filter()
mlr3::Task$format()
mlr3::Task$formula()
mlr3::Task$head()
mlr3::Task$help()
mlr3::Task$levels()
mlr3::Task$missings()
mlr3::Task$print()
mlr3::Task$rbind()
mlr3::Task$rename()
mlr3::Task$select()
mlr3::Task$set_col_roles()
mlr3::Task$set_levels()
mlr3::Task$set_row_roles()
new()
Creates a new instance of this R6 class.
The function as_task_regr()
provides an alternative way to construct regression tasks.
TaskRegr$new(id, backend, target, label = NA_character_, extra_args = list())
id
(character(1)
)
Identifier for the new instance.
backend
(DataBackend)
Either a DataBackend, or any object which is convertible to a DataBackend with as_data_backend()
.
E.g., a data.frame()
will be converted to a DataBackendDataTable.
target
(character(1)
)
Name of the target column.
label
(character(1)
)
Label for the new instance.
extra_args
(named list()
)
Named list of constructor arguments, required for converting task types
via convert_task()
.
truth()
True response for specified row_ids
. Format depends on the task type.
Defaults to all rows with role "use".
TaskRegr$truth(rows = NULL)
rows
(positive integer()
)
Vector or row indices.
Always refers to the complete data set, even after filtering.
numeric()
.
clone()
The objects of this class are cloneable with this method.
TaskRegr$clone(deep = FALSE)
deep
Whether to make a deep clone.
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html
Package mlr3data for more toy tasks.
Package mlr3oml for downloading tasks from https://www.openml.org.
Package mlr3viz for some generic visualizations.
Dictionary of Tasks: mlr_tasks
as.data.table(mlr_tasks)
for a table of available Tasks in the running session (depending on the loaded packages).
mlr3fselect and mlr3filters for feature selection and feature filtering.
Extension packages for additional task types:
Unsupervised clustering: mlr3cluster
Probabilistic supervised regression and survival analysis: https://mlr3proba.mlr-org.com/.
Other Task:
Task
,
TaskClassif
,
TaskSupervised
,
TaskUnsupervised
,
california_housing
,
mlr_tasks
,
mlr_tasks_breast_cancer
,
mlr_tasks_german_credit
,
mlr_tasks_iris
,
mlr_tasks_mtcars
,
mlr_tasks_penguins
,
mlr_tasks_pima
,
mlr_tasks_sonar
,
mlr_tasks_spam
,
mlr_tasks_wine
,
mlr_tasks_zoo
task = as_task_regr(palmerpenguins::penguins, target = "bill_length_mm") task$task_type task$formula() task$truth() task$data(rows = 1:3, cols = task$feature_names[1:2])
task = as_task_regr(palmerpenguins::penguins, target = "bill_length_mm") task$task_type task$formula() task$truth() task$data(rows = 1:3, cols = task$feature_names[1:2])