
Package: mlr3filters (via r-universe)
August 20, 2024

Title Filter Based Feature Selection for 'mlr3'

Version 0.8.0

Description Extends 'mlr3' with filter methods for feature selection.
Besides standalone filter methods built-in methods of any
machine-learning algorithm are supported. Partial scoring of
multivariate filter methods is supported.

License LGPL-3

URL https://mlr3filters.mlr-org.com,

https://github.com/mlr-org/mlr3filters

BugReports https://github.com/mlr-org/mlr3filters/issues

Depends R (>= 3.1.0)

Imports backports, checkmate, data.table, mlr3 (>= 0.12.0), mlr3misc,
paradox, R6

Suggests Boruta, care, caret, carSurv, FSelectorRcpp, knitr, lgr,
mlr3learners, mlr3measures, mlr3pipelines, praznik, rpart,
survival, testthat (>= 3.0.0), withr

Config/testthat/edition 3

Encoding UTF-8

NeedsCompilation no

Roxygen list(markdown = TRUE, r6 = TRUE)

RoxygenNote 7.3.1

Collate 'Filter.R' 'mlr_filters.R' 'FilterAUC.R' 'FilterAnova.R'
'FilterBoruta.R' 'FilterCMIM.R' 'FilterCarScore.R'
'FilterCarSurvScore.R' 'FilterCorrelation.R' 'FilterDISR.R'
'FilterFindCorrelation.R' 'FilterLearner.R'
'FilterImportance.R' 'FilterInformationGain.R' 'FilterJMI.R'
'FilterJMIM.R' 'FilterKruskalTest.R' 'FilterMIM.R'
'FilterMRMR.R' 'FilterNJMIM.R' 'FilterPerformance.R'
'FilterPermutation.R' 'FilterRelief.R'
'FilterSelectedFeatures.R' 'FilterUnivariateCox.R'
'FilterVariance.R' 'bibentries.R' 'flt.R' 'helper.R'
'reexports.R' 'zzz.R'

1

https://mlr3filters.mlr-org.com
https://github.com/mlr-org/mlr3filters
https://github.com/mlr-org/mlr3filters/issues

2 mlr3filters-package

Repository https://mlr-org.r-universe.dev

RemoteUrl https://github.com/mlr-org/mlr3filters

RemoteRef v0.8.0

RemoteSha 2fd6333e6c3c8ae24370ede1e03701ce30f63bb5

Contents
mlr3filters-package . 2
Filter . 3
flt . 6
mlr_filters . 7
mlr_filters_anova . 8
mlr_filters_auc . 9
mlr_filters_boruta . 10
mlr_filters_carscore . 12
mlr_filters_carsurvscore . 13
mlr_filters_cmim . 14
mlr_filters_correlation . 16
mlr_filters_disr . 17
mlr_filters_find_correlation . 19
mlr_filters_importance . 21
mlr_filters_information_gain . 22
mlr_filters_jmi . 24
mlr_filters_jmim . 25
mlr_filters_kruskal_test . 27
mlr_filters_mim . 29
mlr_filters_mrmr . 30
mlr_filters_njmim . 32
mlr_filters_performance . 34
mlr_filters_permutation . 35
mlr_filters_relief . 38
mlr_filters_selected_features . 39
mlr_filters_univariate_cox . 41
mlr_filters_variance . 42

Index 44

mlr3filters-package mlr3filters: Filter Based Feature Selection for ’mlr3’

Description

Extends ’mlr3’ with filter methods for feature selection. Besides standalone filter methods built-
in methods of any machine-learning algorithm are supported. Partial scoring of multivariate filter
methods is supported.

Filter 3

Author(s)

Maintainer: Michel Lang <michellang@gmail.com> (ORCID)

Authors:

• Patrick Schratz <patrick.schratz@gmail.com> (ORCID)

• Bernd Bischl <bernd_bischl@gmx.net> (ORCID)

• Martin Binder <mlr.developer@mb706.com>

• John Zobolas <bblodfon@gmail.com> (ORCID)

See Also

Useful links:

• https://mlr3filters.mlr-org.com

• https://github.com/mlr-org/mlr3filters

• Report bugs at https://github.com/mlr-org/mlr3filters/issues

Filter Filter Base Class

Description

Base class for filters. Predefined filters are stored in the dictionary mlr_filters. A Filter calculates a
score for each feature of a task. Important features get a large value and unimportant features get a
small value. Note that filter scores may also be negative.

Details

Some features support partial scoring of the feature set: If nfeat is not NULL, only the best nfeat
features are guaranteed to get a score. Additional features may be ignored for computational rea-
sons, and then get a score value of NA.

Public fields

id (character(1))
Identifier of the object. Used in tables, plot and text output.

label (character(1))
Label for this object. Can be used in tables, plot and text output instead of the ID.

task_types (character())
Set of supported task types, e.g. "classif" or "regr". Can be set to the scalar value NA to
allow any task type.
For a complete list of possible task types (depending on the loaded packages), see mlr_reflections$task_types$type.

task_properties (character())
mlr3::Tasktask properties.

https://orcid.org/0000-0001-9754-0393
https://orcid.org/0000-0003-0748-6624
https://orcid.org/0000-0001-6002-6980
https://orcid.org/0000-0002-3609-8674
https://mlr3filters.mlr-org.com
https://github.com/mlr-org/mlr3filters
https://github.com/mlr-org/mlr3filters/issues

4 Filter

param_set (paradox::ParamSet)
Set of hyperparameters.

feature_types (character())
Feature types of the filter.

packages (character())
Packages which this filter is relying on.

man (character(1))
String in the format [pkg]::[topic] pointing to a manual page for this object. Defaults to
NA, but can be set by child classes.

scores Stores the calculated filter score values as named numeric vector. The vector is sorted in
decreasing order with possible NA values last. The more important the feature, the higher the
score. Tied values (this includes NA values) appear in a random, non-deterministic order.

Active bindings

properties (character())
Properties of the filter. Currently, only "missings" is supported. A filter has the property
"missings", iff the filter can handle missing values in the features in a graceful way. Other-
wise, an assertion is thrown if missing values are detected.

hash (character(1))
Hash (unique identifier) for this object.

phash (character(1))
Hash (unique identifier) for this partial object, excluding some components which are varied
systematically during tuning (parameter values) or feature selection (feature names).

Methods

Public methods:
• Filter$new()

• Filter$format()

• Filter$print()

• Filter$help()

• Filter$calculate()

• Filter$clone()

Method new(): Create a Filter object.
Usage:
Filter$new(
id,
task_types,
task_properties = character(),
param_set = ps(),
feature_types = character(),
packages = character(),
label = NA_character_,
man = NA_character_

)

Filter 5

Arguments:

id (character(1))
Identifier for the filter.

task_types (character())
Types of the task the filter can operator on. E.g., "classif" or "regr". Can be set to scalar
NA to allow any task type.

task_properties (character())
Required task properties, see mlr3::Task. Must be a subset of mlr_reflections$task_properties.

param_set (paradox::ParamSet)
Set of hyperparameters.

feature_types (character())
Feature types the filter operates on. Must be a subset of mlr_reflections$task_feature_types.

packages (character())
Set of required packages. Note that these packages will be loaded via requireNamespace(),
and are not attached.

label (character(1))
Label for the new instance.

man (character(1))
String in the format [pkg]::[topic] pointing to a manual page for this object. The refer-
enced help package can be opened via method $help().

Method format(): Format helper for Filter class

Usage:
Filter$format(...)

Arguments:

... (ignored).

Method print(): Printer for Filter class

Usage:
Filter$print()

Method help(): Opens the corresponding help page referenced by field $man.

Usage:
Filter$help()

Method calculate(): Calculates the filter score values for the provided mlr3::Task and stores
them in field scores. nfeat determines the minimum number of features to score (see de-
tails), and defaults to the number of features in task. Loads required packages and then calls
private$.calculate() of the respective subclass.
This private method is is expected to return a numeric vector, uniquely named with (a subset of)
feature names. The returned vector may have missing values. Features with missing values as
well as features with no calculated score are automatically ranked last, in a random order. If the
task has no rows, each feature gets the score NA.

Usage:
Filter$calculate(task, nfeat = NULL)

6 flt

Arguments:

task (mlr3::Task)
mlr3::Task to calculate the filter scores for.

nfeat (integer())
The minimum number of features to calculate filter scores for.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Filter$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other Filter: mlr_filters, mlr_filters_anova, mlr_filters_auc, mlr_filters_boruta, mlr_filters_carscore,
mlr_filters_carsurvscore, mlr_filters_cmim, mlr_filters_correlation, mlr_filters_disr,
mlr_filters_find_correlation, mlr_filters_importance, mlr_filters_information_gain,
mlr_filters_jmi, mlr_filters_jmim, mlr_filters_kruskal_test, mlr_filters_mim, mlr_filters_mrmr,
mlr_filters_njmim, mlr_filters_performance, mlr_filters_permutation, mlr_filters_relief,
mlr_filters_selected_features, mlr_filters_univariate_cox, mlr_filters_variance

flt Syntactic Sugar for Filter Construction

Description

These functions complements mlr_filters with a function in the spirit of mlr3::mlr_sugar.

Usage

flt(.key, ...)

flts(.keys, ...)

Arguments

.key (character(1))
Key passed to the respective dictionary to retrieve the object.

... (named list())
Named arguments passed to the constructor, to be set as parameters in the para-
dox::ParamSet, or to be set as public field. See mlr3misc::dictionary_sugar_get()
for more details.

.keys (character())
Keys passed to the respective dictionary to retrieve multiple objects.

mlr_filters 7

Value

Filter.

Examples

flt("correlation", method = "kendall")
flts(c("mrmr", "jmim"))

mlr_filters Dictionary of Filters

Description

A simple Dictionary storing objects of class Filter. Each Filter has an associated help page, see
mlr_filters_[id].

This dictionary can get populated with additional filters by add-on packages.

For a more convenient way to retrieve and construct filters, see flt().

Usage

mlr_filters

Format

R6Class object

Usage

See Dictionary.

See Also

Other Filter: Filter, mlr_filters_anova, mlr_filters_auc, mlr_filters_boruta, mlr_filters_carscore,
mlr_filters_carsurvscore, mlr_filters_cmim, mlr_filters_correlation, mlr_filters_disr,
mlr_filters_find_correlation, mlr_filters_importance, mlr_filters_information_gain,
mlr_filters_jmi, mlr_filters_jmim, mlr_filters_kruskal_test, mlr_filters_mim, mlr_filters_mrmr,
mlr_filters_njmim, mlr_filters_performance, mlr_filters_permutation, mlr_filters_relief,
mlr_filters_selected_features, mlr_filters_univariate_cox, mlr_filters_variance

Examples

mlr_filters$keys()
as.data.table(mlr_filters)
mlr_filters$get("mim")
flt("anova")

8 mlr_filters_anova

mlr_filters_anova ANOVA F-Test Filter

Description

ANOVA F-Test filter calling stats::aov(). Note that this is equivalent to a t-test for binary clas-
sification.

The filter value is -log10(p) where p is the p-value. This transformation is necessary to ensure
numerical stability for very small p-values.

Super class

mlr3filters::Filter -> FilterAnova

Methods

Public methods:
• FilterAnova$new()

• FilterAnova$clone()

Method new(): Create a FilterAnova object.
Usage:
FilterAnova$new()

Method clone(): The objects of this class are cloneable with this method.
Usage:
FilterAnova$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

References

For a benchmark of filter methods:

Bommert A, Sun X, Bischl B, Rahnenführer J, Lang M (2020). “Benchmark for filter methods
for feature selection in high-dimensional classification data.” Computational Statistics & Data
Analysis, 143, 106839. doi:10.1016/j.csda.2019.106839.

See Also

• PipeOpFilter for filter-based feature selection.
• Dictionary of Filters: mlr_filters

Other Filter: Filter, mlr_filters, mlr_filters_auc, mlr_filters_boruta, mlr_filters_carscore,
mlr_filters_carsurvscore, mlr_filters_cmim, mlr_filters_correlation, mlr_filters_disr,
mlr_filters_find_correlation, mlr_filters_importance, mlr_filters_information_gain,
mlr_filters_jmi, mlr_filters_jmim, mlr_filters_kruskal_test, mlr_filters_mim, mlr_filters_mrmr,
mlr_filters_njmim, mlr_filters_performance, mlr_filters_permutation, mlr_filters_relief,
mlr_filters_selected_features, mlr_filters_univariate_cox, mlr_filters_variance

https://doi.org/10.1016/j.csda.2019.106839

mlr_filters_auc 9

Examples

task = mlr3::tsk("iris")
filter = flt("anova")
filter$calculate(task)
head(as.data.table(filter), 3)

transform to p-value
10^(-filter$scores)

if (mlr3misc::require_namespaces(c("mlr3pipelines", "rpart"), quietly = TRUE)) {
library("mlr3pipelines")
task = mlr3::tsk("spam")

Note: `filter.frac` is selected randomly and should be tuned.

graph = po("filter", filter = flt("anova"), filter.frac = 0.5) %>>%
po("learner", mlr3::lrn("classif.rpart"))

graph$train(task)
}

mlr_filters_auc AUC Filter

Description

Area under the (ROC) Curve filter, analogously to mlr3measures::auc() from mlr3measures.
Missing values of the features are removed before calculating the AUC. If the AUC is undefined for
the input, it is set to 0.5 (random classifier). The absolute value of the difference between the AUC
and 0.5 is used as final filter value.

Super class

mlr3filters::Filter -> FilterAUC

Methods

Public methods:
• FilterAUC$new()

• FilterAUC$clone()

Method new(): Create a FilterAUC object.
Usage:
FilterAUC$new()

Method clone(): The objects of this class are cloneable with this method.
Usage:
FilterAUC$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

https://CRAN.R-project.org/package=mlr3measures

10 mlr_filters_boruta

References

For a benchmark of filter methods:

Bommert A, Sun X, Bischl B, Rahnenführer J, Lang M (2020). “Benchmark for filter methods
for feature selection in high-dimensional classification data.” Computational Statistics & Data
Analysis, 143, 106839. doi:10.1016/j.csda.2019.106839.

See Also

• PipeOpFilter for filter-based feature selection.

• Dictionary of Filters: mlr_filters

Other Filter: Filter, mlr_filters, mlr_filters_anova, mlr_filters_boruta, mlr_filters_carscore,
mlr_filters_carsurvscore, mlr_filters_cmim, mlr_filters_correlation, mlr_filters_disr,
mlr_filters_find_correlation, mlr_filters_importance, mlr_filters_information_gain,
mlr_filters_jmi, mlr_filters_jmim, mlr_filters_kruskal_test, mlr_filters_mim, mlr_filters_mrmr,
mlr_filters_njmim, mlr_filters_performance, mlr_filters_permutation, mlr_filters_relief,
mlr_filters_selected_features, mlr_filters_univariate_cox, mlr_filters_variance

Examples

task = mlr3::tsk("sonar")
filter = flt("auc")
filter$calculate(task)
head(as.data.table(filter), 3)

if (mlr3misc::require_namespaces(c("mlr3pipelines", "rpart"), quietly = TRUE)) {
library("mlr3pipelines")
task = mlr3::tsk("spam")

Note: `filter.frac` is selected randomly and should be tuned.

graph = po("filter", filter = flt("auc"), filter.frac = 0.5) %>>%
po("learner", mlr3::lrn("classif.rpart"))

graph$train(task)
}

mlr_filters_boruta Burota Filter

Description

Filter using the Boruta algorithm for feature selection. If keep = "tentative", confirmed and
tentative features are returned. Note that there is no ordering in the selected features. Selected
features get a score of 1, deselected features get a score of 0. The order of selected features is
random. In combination with mlr3pipelines, only the filter criterion cutoff makes sense.

https://doi.org/10.1016/j.csda.2019.106839
https://CRAN.R-project.org/package=mlr3pipelines

mlr_filters_boruta 11

Super class

mlr3filters::Filter -> FilterBoruta

Methods

Public methods:

• FilterBoruta$new()

• FilterBoruta$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
FilterBoruta$new()

Method clone(): The objects of this class are cloneable with this method.

Usage:
FilterBoruta$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

Kursa MB, Rudnicki WR (2010). “Feature Selection with the Boruta Package.” Journal of Statisti-
cal Software, 36(11), 1-13.

See Also

• PipeOpFilter for filter-based feature selection.

• Dictionary of Filters: mlr_filters

Other Filter: Filter, mlr_filters, mlr_filters_anova, mlr_filters_auc, mlr_filters_carscore,
mlr_filters_carsurvscore, mlr_filters_cmim, mlr_filters_correlation, mlr_filters_disr,
mlr_filters_find_correlation, mlr_filters_importance, mlr_filters_information_gain,
mlr_filters_jmi, mlr_filters_jmim, mlr_filters_kruskal_test, mlr_filters_mim, mlr_filters_mrmr,
mlr_filters_njmim, mlr_filters_performance, mlr_filters_permutation, mlr_filters_relief,
mlr_filters_selected_features, mlr_filters_univariate_cox, mlr_filters_variance

Examples

if (requireNamespace("Boruta")) {
task = mlr3::tsk("sonar")
filter = flt("boruta")
filter$calculate(task)
as.data.table(filter)
}

12 mlr_filters_carscore

mlr_filters_carscore Correlation-Adjusted Marignal Correlation Score Filter

Description

Calculates the Correlation-Adjusted (marginal) coRrelation scores (short CAR scores) implemented
in care::carscore() in package care. The CAR scores for a set of features are defined as the
correlations between the target and the decorrelated features. The filter returns the absolute value
of the calculated scores.

Argument verbose defaults to FALSE.

Super class

mlr3filters::Filter -> FilterCarScore

Methods

Public methods:

• FilterCarScore$new()

• FilterCarScore$clone()

Method new(): Create a FilterCarScore object.

Usage:
FilterCarScore$new()

Method clone(): The objects of this class are cloneable with this method.

Usage:
FilterCarScore$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

• PipeOpFilter for filter-based feature selection.

• Dictionary of Filters: mlr_filters

Other Filter: Filter, mlr_filters, mlr_filters_anova, mlr_filters_auc, mlr_filters_boruta,
mlr_filters_carsurvscore, mlr_filters_cmim, mlr_filters_correlation, mlr_filters_disr,
mlr_filters_find_correlation, mlr_filters_importance, mlr_filters_information_gain,
mlr_filters_jmi, mlr_filters_jmim, mlr_filters_kruskal_test, mlr_filters_mim, mlr_filters_mrmr,
mlr_filters_njmim, mlr_filters_performance, mlr_filters_permutation, mlr_filters_relief,
mlr_filters_selected_features, mlr_filters_univariate_cox, mlr_filters_variance

https://CRAN.R-project.org/package=care

mlr_filters_carsurvscore 13

Examples

if (requireNamespace("care")) {
task = mlr3::tsk("mtcars")
filter = flt("carscore")
filter$calculate(task)
head(as.data.table(filter), 3)

changing the filter settings
filter = flt("carscore")
filter$param_set$values = list("diagonal" = TRUE)
filter$calculate(task)
head(as.data.table(filter), 3)

}

if (mlr3misc::require_namespaces(c("mlr3pipelines", "care", "rpart"), quietly = TRUE)) {
library("mlr3pipelines")
task = mlr3::tsk("mtcars")

Note: `filter.frac` is selected randomly and should be tuned.

graph = po("filter", filter = flt("carscore"), filter.frac = 0.5) %>>%
po("learner", mlr3::lrn("regr.rpart"))

graph$train(task)
}

mlr_filters_carsurvscore

Correlation-Adjusted Survival Score Filter

Description

Calculates CARS scores for right-censored survival tasks. Calls the implementation in carSurv::carSurvScore()
in package carSurv.

Super class

mlr3filters::Filter -> FilterCarSurvScore

Methods

Public methods:
• FilterCarSurvScore$new()

• FilterCarSurvScore$clone()

Method new(): Create a FilterCarSurvScore object.

Usage:
FilterCarSurvScore$new()

https://CRAN.R-project.org/package=carSurv

14 mlr_filters_cmim

Method clone(): The objects of this class are cloneable with this method.

Usage:
FilterCarSurvScore$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

Bommert A, Welchowski T, Schmid M, Rahnenführer J (2021). “Benchmark of filter methods for
feature selection in high-dimensional gene expression survival data.” Briefings in Bioinformatics,
23(1). doi:10.1093/bib/bbab354.

See Also

• PipeOpFilter for filter-based feature selection.

• Dictionary of Filters: mlr_filters

Other Filter: Filter, mlr_filters, mlr_filters_anova, mlr_filters_auc, mlr_filters_boruta,
mlr_filters_carscore, mlr_filters_cmim, mlr_filters_correlation, mlr_filters_disr,
mlr_filters_find_correlation, mlr_filters_importance, mlr_filters_information_gain,
mlr_filters_jmi, mlr_filters_jmim, mlr_filters_kruskal_test, mlr_filters_mim, mlr_filters_mrmr,
mlr_filters_njmim, mlr_filters_performance, mlr_filters_permutation, mlr_filters_relief,
mlr_filters_selected_features, mlr_filters_univariate_cox, mlr_filters_variance

mlr_filters_cmim Minimal Conditional Mutual Information Maximization Filter

Description

Minimal conditional mutual information maximization filter calling praznik::CMIM() from pack-
age praznik.

This filter supports partial scoring (see Filter).

Details

As the scores calculated by the praznik package are not monotone due to the greedy forward
fashion, the returned scores simply reflect the selection order: 1, (k-1)/k, ..., 1/k where k is the
number of selected features.

Threading is disabled by default (hyperparameter threads is set to 1). Set to a number >= 2 to
enable threading, or to 0 for auto-detecting the number of available cores.

Super class

mlr3filters::Filter -> FilterCMIM

https://doi.org/10.1093/bib/bbab354
https://CRAN.R-project.org/package=praznik
https://CRAN.R-project.org/package=praznik

mlr_filters_cmim 15

Methods

Public methods:
• FilterCMIM$new()

• FilterCMIM$clone()

Method new(): Create a FilterCMIM object.

Usage:
FilterCMIM$new()

Method clone(): The objects of this class are cloneable with this method.

Usage:
FilterCMIM$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

References

Kursa MB (2021). “Praznik: High performance information-based feature selection.” SoftwareX,
16, 100819. doi:10.1016/j.softx.2021.100819.

For a benchmark of filter methods:

Bommert A, Sun X, Bischl B, Rahnenführer J, Lang M (2020). “Benchmark for filter methods
for feature selection in high-dimensional classification data.” Computational Statistics & Data
Analysis, 143, 106839. doi:10.1016/j.csda.2019.106839.

See Also

• PipeOpFilter for filter-based feature selection.

• Dictionary of Filters: mlr_filters

Other Filter: Filter, mlr_filters, mlr_filters_anova, mlr_filters_auc, mlr_filters_boruta,
mlr_filters_carscore, mlr_filters_carsurvscore, mlr_filters_correlation, mlr_filters_disr,
mlr_filters_find_correlation, mlr_filters_importance, mlr_filters_information_gain,
mlr_filters_jmi, mlr_filters_jmim, mlr_filters_kruskal_test, mlr_filters_mim, mlr_filters_mrmr,
mlr_filters_njmim, mlr_filters_performance, mlr_filters_permutation, mlr_filters_relief,
mlr_filters_selected_features, mlr_filters_univariate_cox, mlr_filters_variance

Examples

if (requireNamespace("praznik")) {
task = mlr3::tsk("iris")
filter = flt("cmim")
filter$calculate(task, nfeat = 2)
as.data.table(filter)

}

if (mlr3misc::require_namespaces(c("mlr3pipelines", "rpart", "praznik"), quietly = TRUE)) {
library("mlr3pipelines")
task = mlr3::tsk("spam")

https://doi.org/10.1016/j.softx.2021.100819
https://doi.org/10.1016/j.csda.2019.106839

16 mlr_filters_correlation

Note: `filter.frac` is selected randomly and should be tuned.

graph = po("filter", filter = flt("cmim"), filter.frac = 0.5) %>>%
po("learner", mlr3::lrn("classif.rpart"))

graph$train(task)
}

mlr_filters_correlation

Correlation Filter

Description

Simple correlation filter calling stats::cor(). The filter score is the absolute value of the correla-
tion.

Super class

mlr3filters::Filter -> FilterCorrelation

Methods

Public methods:

• FilterCorrelation$new()

• FilterCorrelation$clone()

Method new(): Create a FilterCorrelation object.

Usage:
FilterCorrelation$new()

Method clone(): The objects of this class are cloneable with this method.

Usage:
FilterCorrelation$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Note

This filter, in its default settings, can handle missing values in the features. However, the result-
ing filter scores may be misleading or at least difficult to compare if some features have a large
proportion of missing values.

If a feature has no non-missing value, the resulting score will be NA. Missing scores appear in a
random, non-deterministic order at the end of the vector of scores.

mlr_filters_disr 17

References

For a benchmark of filter methods:

Bommert A, Sun X, Bischl B, Rahnenführer J, Lang M (2020). “Benchmark for filter methods
for feature selection in high-dimensional classification data.” Computational Statistics & Data
Analysis, 143, 106839. doi:10.1016/j.csda.2019.106839.

See Also

• PipeOpFilter for filter-based feature selection.

• Dictionary of Filters: mlr_filters

Other Filter: Filter, mlr_filters, mlr_filters_anova, mlr_filters_auc, mlr_filters_boruta,
mlr_filters_carscore, mlr_filters_carsurvscore, mlr_filters_cmim, mlr_filters_disr,
mlr_filters_find_correlation, mlr_filters_importance, mlr_filters_information_gain,
mlr_filters_jmi, mlr_filters_jmim, mlr_filters_kruskal_test, mlr_filters_mim, mlr_filters_mrmr,
mlr_filters_njmim, mlr_filters_performance, mlr_filters_permutation, mlr_filters_relief,
mlr_filters_selected_features, mlr_filters_univariate_cox, mlr_filters_variance

Examples

Pearson (default)
task = mlr3::tsk("mtcars")
filter = flt("correlation")
filter$calculate(task)
as.data.table(filter)

Spearman
filter = FilterCorrelation$new()
filter$param_set$values = list("method" = "spearman")
filter$calculate(task)
as.data.table(filter)
if (mlr3misc::require_namespaces(c("mlr3pipelines", "rpart"), quietly = TRUE)) {

library("mlr3pipelines")
task = mlr3::tsk("boston_housing")

Note: `filter.frac` is selected randomly and should be tuned.

graph = po("filter", filter = flt("correlation"), filter.frac = 0.5) %>>%
po("learner", mlr3::lrn("regr.rpart"))

graph$train(task)
}

mlr_filters_disr Double Input Symmetrical Relevance Filter

https://doi.org/10.1016/j.csda.2019.106839

18 mlr_filters_disr

Description

Double input symmetrical relevance filter calling praznik::DISR() from package praznik.

This filter supports partial scoring (see Filter).

Details

As the scores calculated by the praznik package are not monotone due to the greedy forward
fashion, the returned scores simply reflect the selection order: 1, (k-1)/k, ..., 1/k where k is the
number of selected features.

Threading is disabled by default (hyperparameter threads is set to 1). Set to a number >= 2 to
enable threading, or to 0 for auto-detecting the number of available cores.

Super class

mlr3filters::Filter -> FilterDISR

Methods

Public methods:

• FilterDISR$new()

• FilterDISR$clone()

Method new(): Create a FilterDISR object.

Usage:

FilterDISR$new()

Method clone(): The objects of this class are cloneable with this method.

Usage:

FilterDISR$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

Kursa MB (2021). “Praznik: High performance information-based feature selection.” SoftwareX,
16, 100819. doi:10.1016/j.softx.2021.100819.

For a benchmark of filter methods:

Bommert A, Sun X, Bischl B, Rahnenführer J, Lang M (2020). “Benchmark for filter methods
for feature selection in high-dimensional classification data.” Computational Statistics & Data
Analysis, 143, 106839. doi:10.1016/j.csda.2019.106839.

https://CRAN.R-project.org/package=praznik
https://CRAN.R-project.org/package=praznik
https://doi.org/10.1016/j.softx.2021.100819
https://doi.org/10.1016/j.csda.2019.106839

mlr_filters_find_correlation 19

See Also

• PipeOpFilter for filter-based feature selection.
• Dictionary of Filters: mlr_filters

Other Filter: Filter, mlr_filters, mlr_filters_anova, mlr_filters_auc, mlr_filters_boruta,
mlr_filters_carscore, mlr_filters_carsurvscore, mlr_filters_cmim, mlr_filters_correlation,
mlr_filters_find_correlation, mlr_filters_importance, mlr_filters_information_gain,
mlr_filters_jmi, mlr_filters_jmim, mlr_filters_kruskal_test, mlr_filters_mim, mlr_filters_mrmr,
mlr_filters_njmim, mlr_filters_performance, mlr_filters_permutation, mlr_filters_relief,
mlr_filters_selected_features, mlr_filters_univariate_cox, mlr_filters_variance

Examples

if (requireNamespace("praznik")) {
task = mlr3::tsk("iris")
filter = flt("disr")
filter$calculate(task)
as.data.table(filter)

}

if (mlr3misc::require_namespaces(c("mlr3pipelines", "rpart", "praznik"), quietly = TRUE)) {
library("mlr3pipelines")
task = mlr3::tsk("spam")

Note: `filter.frac` is selected randomly and should be tuned.

graph = po("filter", filter = flt("disr"), filter.frac = 0.5) %>>%
po("learner", mlr3::lrn("classif.rpart"))

graph$train(task)
}

mlr_filters_find_correlation

Correlation Filter

Description

Simple filter emulating caret::findCorrelation(exact = FALSE).

This gives each feature a score between 0 and 1 that is one minus the cutoff value for which it is ex-
cluded when using caret::findCorrelation(). The negative is used because caret::findCorrelation()
excludes everything above a cutoff, while filters exclude everything below a cutoff. Here the filter
scores are shifted by +1 to get positive values for to align with the way other filters work.

Subsequently caret::findCorrelation(cutoff = 0.9) lists the same features that are excluded
with FilterFindCorrelation at score 0.1 (= 1 - 0.9).

Super class

mlr3filters::Filter -> FilterFindCorrelation

20 mlr_filters_find_correlation

Methods

Public methods:
• FilterFindCorrelation$new()

• FilterFindCorrelation$clone()

Method new(): Create a FilterFindCorrelation object.

Usage:
FilterFindCorrelation$new()

Method clone(): The objects of this class are cloneable with this method.

Usage:
FilterFindCorrelation$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

• PipeOpFilter for filter-based feature selection.

• Dictionary of Filters: mlr_filters

Other Filter: Filter, mlr_filters, mlr_filters_anova, mlr_filters_auc, mlr_filters_boruta,
mlr_filters_carscore, mlr_filters_carsurvscore, mlr_filters_cmim, mlr_filters_correlation,
mlr_filters_disr, mlr_filters_importance, mlr_filters_information_gain, mlr_filters_jmi,
mlr_filters_jmim, mlr_filters_kruskal_test, mlr_filters_mim, mlr_filters_mrmr, mlr_filters_njmim,
mlr_filters_performance, mlr_filters_permutation, mlr_filters_relief, mlr_filters_selected_features,
mlr_filters_univariate_cox, mlr_filters_variance

Examples

Pearson (default)
task = mlr3::tsk("mtcars")
filter = flt("find_correlation")
filter$calculate(task)
as.data.table(filter)

Spearman
filter = flt("find_correlation", method = "spearman")
filter$calculate(task)
as.data.table(filter)

if (mlr3misc::require_namespaces(c("mlr3pipelines", "rpart"), quietly = TRUE)) {
library("mlr3pipelines")
task = mlr3::tsk("spam")

Note: `filter.frac` is selected randomly and should be tuned.

graph = po("filter", filter = flt("find_correlation"), filter.frac = 0.5) %>>%
po("learner", mlr3::lrn("classif.rpart"))

mlr_filters_importance 21

graph$train(task)
}

mlr_filters_importance

Filter for Embedded Feature Selection via Variable Importance

Description

Variable Importance filter using embedded feature selection of machine learning algorithms. Takes
a mlr3::Learner which is capable of extracting the variable importance (property "importance"), fits
the model and extracts the importance values to use as filter scores.

Super classes

mlr3filters::Filter -> mlr3filters::FilterLearner -> FilterImportance

Public fields

learner (mlr3::Learner)
Learner to extract the importance values from.

Methods

Public methods:

• FilterImportance$new()

• FilterImportance$clone()

Method new(): Create a FilterImportance object.

Usage:
FilterImportance$new(learner = mlr3::lrn("classif.featureless"))

Arguments:

learner (mlr3::Learner)
Learner to extract the importance values from.

Method clone(): The objects of this class are cloneable with this method.

Usage:
FilterImportance$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

22 mlr_filters_information_gain

See Also

• PipeOpFilter for filter-based feature selection.

• Dictionary of Filters: mlr_filters

Other Filter: Filter, mlr_filters, mlr_filters_anova, mlr_filters_auc, mlr_filters_boruta,
mlr_filters_carscore, mlr_filters_carsurvscore, mlr_filters_cmim, mlr_filters_correlation,
mlr_filters_disr, mlr_filters_find_correlation, mlr_filters_information_gain, mlr_filters_jmi,
mlr_filters_jmim, mlr_filters_kruskal_test, mlr_filters_mim, mlr_filters_mrmr, mlr_filters_njmim,
mlr_filters_performance, mlr_filters_permutation, mlr_filters_relief, mlr_filters_selected_features,
mlr_filters_univariate_cox, mlr_filters_variance

Examples

if (requireNamespace("rpart")) {
task = mlr3::tsk("iris")
learner = mlr3::lrn("classif.rpart")
filter = flt("importance", learner = learner)
filter$calculate(task)
as.data.table(filter)

}

if (mlr3misc::require_namespaces(c("mlr3pipelines", "rpart", "mlr3learners"), quietly = TRUE)) {
library("mlr3learners")
library("mlr3pipelines")
task = mlr3::tsk("sonar")

learner = mlr3::lrn("classif.rpart")

Note: `filter.frac` is selected randomly and should be tuned.

graph = po("filter", filter = flt("importance", learner = learner), filter.frac = 0.5) %>>%
po("learner", mlr3::lrn("classif.log_reg"))

graph$train(task)
}

mlr_filters_information_gain

Information Gain Filter

Description

Information gain filter calling FSelectorRcpp::information_gain() in package FSelectorRcpp.
Set parameter "type" to "gainratio" to calculate the gain ratio, or set to "symuncert" to calculate
the symmetrical uncertainty (see FSelectorRcpp::information_gain()). Default is "infogain".

Argument equal defaults to FALSE for classification tasks, and to TRUE for regression tasks.

https://CRAN.R-project.org/package=FSelectorRcpp

mlr_filters_information_gain 23

Super class

mlr3filters::Filter -> FilterInformationGain

Methods

Public methods:
• FilterInformationGain$new()

• FilterInformationGain$clone()

Method new(): Create a FilterInformationGain object.

Usage:
FilterInformationGain$new()

Method clone(): The objects of this class are cloneable with this method.

Usage:
FilterInformationGain$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

• PipeOpFilter for filter-based feature selection.

• Dictionary of Filters: mlr_filters

Other Filter: Filter, mlr_filters, mlr_filters_anova, mlr_filters_auc, mlr_filters_boruta,
mlr_filters_carscore, mlr_filters_carsurvscore, mlr_filters_cmim, mlr_filters_correlation,
mlr_filters_disr, mlr_filters_find_correlation, mlr_filters_importance, mlr_filters_jmi,
mlr_filters_jmim, mlr_filters_kruskal_test, mlr_filters_mim, mlr_filters_mrmr, mlr_filters_njmim,
mlr_filters_performance, mlr_filters_permutation, mlr_filters_relief, mlr_filters_selected_features,
mlr_filters_univariate_cox, mlr_filters_variance

Examples

if (requireNamespace("FSelectorRcpp")) {
InfoGain (default)
task = mlr3::tsk("sonar")
filter = flt("information_gain")
filter$calculate(task)
head(filter$scores, 3)
as.data.table(filter)

GainRatio

filterGR = flt("information_gain")
filterGR$param_set$values = list("type" = "gainratio")
filterGR$calculate(task)
head(as.data.table(filterGR), 3)

}

24 mlr_filters_jmi

if (mlr3misc::require_namespaces(c("mlr3pipelines", "FSelectorRcpp", "rpart"), quietly = TRUE)) {
library("mlr3pipelines")
task = mlr3::tsk("spam")

Note: `filter.frac` is selected randomly and should be tuned.

graph = po("filter", filter = flt("information_gain"), filter.frac = 0.5) %>>%
po("learner", mlr3::lrn("classif.rpart"))

graph$train(task)

}

mlr_filters_jmi Joint Mutual Information Filter

Description

Joint mutual information filter calling praznik::JMI() in package praznik.

This filter supports partial scoring (see Filter).

Details

As the scores calculated by the praznik package are not monotone due to the greedy forward
fashion, the returned scores simply reflect the selection order: 1, (k-1)/k, ..., 1/k where k is the
number of selected features.

Threading is disabled by default (hyperparameter threads is set to 1). Set to a number >= 2 to
enable threading, or to 0 for auto-detecting the number of available cores.

Super class

mlr3filters::Filter -> FilterJMI

Methods

Public methods:
• FilterJMI$new()

• FilterJMI$clone()

Method new(): Create a FilterJMI object.
Usage:
FilterJMI$new()

Method clone(): The objects of this class are cloneable with this method.
Usage:
FilterJMI$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

https://CRAN.R-project.org/package=praznik
https://CRAN.R-project.org/package=praznik

mlr_filters_jmim 25

References

Kursa MB (2021). “Praznik: High performance information-based feature selection.” SoftwareX,
16, 100819. doi:10.1016/j.softx.2021.100819.

For a benchmark of filter methods:

Bommert A, Sun X, Bischl B, Rahnenführer J, Lang M (2020). “Benchmark for filter methods
for feature selection in high-dimensional classification data.” Computational Statistics & Data
Analysis, 143, 106839. doi:10.1016/j.csda.2019.106839.

See Also

• PipeOpFilter for filter-based feature selection.

• Dictionary of Filters: mlr_filters

Other Filter: Filter, mlr_filters, mlr_filters_anova, mlr_filters_auc, mlr_filters_boruta,
mlr_filters_carscore, mlr_filters_carsurvscore, mlr_filters_cmim, mlr_filters_correlation,
mlr_filters_disr, mlr_filters_find_correlation, mlr_filters_importance, mlr_filters_information_gain,
mlr_filters_jmim, mlr_filters_kruskal_test, mlr_filters_mim, mlr_filters_mrmr, mlr_filters_njmim,
mlr_filters_performance, mlr_filters_permutation, mlr_filters_relief, mlr_filters_selected_features,
mlr_filters_univariate_cox, mlr_filters_variance

Examples

if (requireNamespace("praznik")) {
task = mlr3::tsk("iris")
filter = flt("jmi")
filter$calculate(task, nfeat = 2)
as.data.table(filter)

}

if (mlr3misc::require_namespaces(c("mlr3pipelines", "rpart", "praznik"), quietly = TRUE)) {
library("mlr3pipelines")
task = mlr3::tsk("spam")

Note: `filter.frac` is selected randomly and should be tuned.

graph = po("filter", filter = flt("jmi"), filter.frac = 0.5) %>>%
po("learner", mlr3::lrn("classif.rpart"))

graph$train(task)
}

mlr_filters_jmim Minimal Joint Mutual Information Maximization Filter

Description

Minimal joint mutual information maximization filter calling praznik::JMIM() in package praznik.

This filter supports partial scoring (see Filter).

https://doi.org/10.1016/j.softx.2021.100819
https://doi.org/10.1016/j.csda.2019.106839
https://CRAN.R-project.org/package=praznik

26 mlr_filters_jmim

Details

As the scores calculated by the praznik package are not monotone due to the greedy forward
fashion, the returned scores simply reflect the selection order: 1, (k-1)/k, ..., 1/k where k is the
number of selected features.

Threading is disabled by default (hyperparameter threads is set to 1). Set to a number >= 2 to
enable threading, or to 0 for auto-detecting the number of available cores.

Super class

mlr3filters::Filter -> FilterJMIM

Methods

Public methods:
• FilterJMIM$new()

• FilterJMIM$clone()

Method new(): Create a FilterJMIM object.

Usage:
FilterJMIM$new()

Method clone(): The objects of this class are cloneable with this method.

Usage:
FilterJMIM$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

References

Kursa MB (2021). “Praznik: High performance information-based feature selection.” SoftwareX,
16, 100819. doi:10.1016/j.softx.2021.100819.

For a benchmark of filter methods:

Bommert A, Sun X, Bischl B, Rahnenführer J, Lang M (2020). “Benchmark for filter methods
for feature selection in high-dimensional classification data.” Computational Statistics & Data
Analysis, 143, 106839. doi:10.1016/j.csda.2019.106839.

See Also

• PipeOpFilter for filter-based feature selection.

• Dictionary of Filters: mlr_filters

Other Filter: Filter, mlr_filters, mlr_filters_anova, mlr_filters_auc, mlr_filters_boruta,
mlr_filters_carscore, mlr_filters_carsurvscore, mlr_filters_cmim, mlr_filters_correlation,
mlr_filters_disr, mlr_filters_find_correlation, mlr_filters_importance, mlr_filters_information_gain,
mlr_filters_jmi, mlr_filters_kruskal_test, mlr_filters_mim, mlr_filters_mrmr, mlr_filters_njmim,
mlr_filters_performance, mlr_filters_permutation, mlr_filters_relief, mlr_filters_selected_features,
mlr_filters_univariate_cox, mlr_filters_variance

https://CRAN.R-project.org/package=praznik
https://doi.org/10.1016/j.softx.2021.100819
https://doi.org/10.1016/j.csda.2019.106839

mlr_filters_kruskal_test 27

Examples

if (requireNamespace("praznik")) {
task = mlr3::tsk("iris")
filter = flt("jmim")
filter$calculate(task, nfeat = 2)
as.data.table(filter)

}

if (mlr3misc::require_namespaces(c("mlr3pipelines", "rpart", "praznik"), quietly = TRUE)) {
library("mlr3pipelines")
task = mlr3::tsk("spam")

Note: `filter.frac` is selected randomly and should be tuned.

graph = po("filter", filter = flt("jmim"), filter.frac = 0.5) %>>%
po("learner", mlr3::lrn("classif.rpart"))

graph$train(task)
}

mlr_filters_kruskal_test

Kruskal-Wallis Test Filter

Description

Kruskal-Wallis rank sum test filter calling stats::kruskal.test().

The filter value is -log10(p) where p is the p-value. This transformation is necessary to ensure
numerical stability for very small p-values.

Super class

mlr3filters::Filter -> FilterKruskalTest

Methods

Public methods:
• FilterKruskalTest$new()

• FilterKruskalTest$clone()

Method new(): Create a FilterKruskalTest object.
Usage:
FilterKruskalTest$new()

Method clone(): The objects of this class are cloneable with this method.
Usage:
FilterKruskalTest$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

28 mlr_filters_kruskal_test

Note

This filter, in its default settings, can handle missing values in the features. However, the result-
ing filter scores may be misleading or at least difficult to compare if some features have a large
proportion of missing values.

If a feature has not at least one non-missing observation per label, the resulting score will be NA.
Missing scores appear in a random, non-deterministic order at the end of the vector of scores.

References

For a benchmark of filter methods:

Bommert A, Sun X, Bischl B, Rahnenführer J, Lang M (2020). “Benchmark for filter methods
for feature selection in high-dimensional classification data.” Computational Statistics & Data
Analysis, 143, 106839. doi:10.1016/j.csda.2019.106839.

See Also

• PipeOpFilter for filter-based feature selection.

• Dictionary of Filters: mlr_filters

Other Filter: Filter, mlr_filters, mlr_filters_anova, mlr_filters_auc, mlr_filters_boruta,
mlr_filters_carscore, mlr_filters_carsurvscore, mlr_filters_cmim, mlr_filters_correlation,
mlr_filters_disr, mlr_filters_find_correlation, mlr_filters_importance, mlr_filters_information_gain,
mlr_filters_jmi, mlr_filters_jmim, mlr_filters_mim, mlr_filters_mrmr, mlr_filters_njmim,
mlr_filters_performance, mlr_filters_permutation, mlr_filters_relief, mlr_filters_selected_features,
mlr_filters_univariate_cox, mlr_filters_variance

Examples

task = mlr3::tsk("iris")
filter = flt("kruskal_test")
filter$calculate(task)
as.data.table(filter)

transform to p-value
10^(-filter$scores)

if (mlr3misc::require_namespaces(c("mlr3pipelines", "rpart"), quietly = TRUE)) {
library("mlr3pipelines")
task = mlr3::tsk("spam")

Note: `filter.frac` is selected randomly and should be tuned.

graph = po("filter", filter = flt("kruskal_test"), filter.frac = 0.5) %>>%
po("learner", mlr3::lrn("classif.rpart"))

graph$train(task)
}

https://doi.org/10.1016/j.csda.2019.106839

mlr_filters_mim 29

mlr_filters_mim Mutual Information Maximization Filter

Description

Conditional mutual information based feature selection filter calling praznik::MIM() in package
praznik.

This filter supports partial scoring (see Filter).

Details

As the scores calculated by the praznik package are not monotone due to the greedy forward
fashion, the returned scores simply reflect the selection order: 1, (k-1)/k, ..., 1/k where k is the
number of selected features.

Threading is disabled by default (hyperparameter threads is set to 1). Set to a number >= 2 to
enable threading, or to 0 for auto-detecting the number of available cores.

Super class

mlr3filters::Filter -> FilterMIM

Methods

Public methods:
• FilterMIM$new()

• FilterMIM$clone()

Method new(): Create a FilterMIM object.

Usage:
FilterMIM$new()

Method clone(): The objects of this class are cloneable with this method.

Usage:
FilterMIM$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

References

Kursa MB (2021). “Praznik: High performance information-based feature selection.” SoftwareX,
16, 100819. doi:10.1016/j.softx.2021.100819.

For a benchmark of filter methods:

Bommert A, Sun X, Bischl B, Rahnenführer J, Lang M (2020). “Benchmark for filter methods
for feature selection in high-dimensional classification data.” Computational Statistics & Data
Analysis, 143, 106839. doi:10.1016/j.csda.2019.106839.

https://CRAN.R-project.org/package=praznik
https://CRAN.R-project.org/package=praznik
https://doi.org/10.1016/j.softx.2021.100819
https://doi.org/10.1016/j.csda.2019.106839

30 mlr_filters_mrmr

See Also

• PipeOpFilter for filter-based feature selection.

• Dictionary of Filters: mlr_filters

Other Filter: Filter, mlr_filters, mlr_filters_anova, mlr_filters_auc, mlr_filters_boruta,
mlr_filters_carscore, mlr_filters_carsurvscore, mlr_filters_cmim, mlr_filters_correlation,
mlr_filters_disr, mlr_filters_find_correlation, mlr_filters_importance, mlr_filters_information_gain,
mlr_filters_jmi, mlr_filters_jmim, mlr_filters_kruskal_test, mlr_filters_mrmr, mlr_filters_njmim,
mlr_filters_performance, mlr_filters_permutation, mlr_filters_relief, mlr_filters_selected_features,
mlr_filters_univariate_cox, mlr_filters_variance

Examples

if (requireNamespace("praznik")) {
task = mlr3::tsk("iris")
filter = flt("mim")
filter$calculate(task, nfeat = 2)
as.data.table(filter)

}

if (mlr3misc::require_namespaces(c("mlr3pipelines", "rpart", "praznik"), quietly = TRUE)) {
library("mlr3pipelines")
task = mlr3::tsk("spam")

Note: `filter.frac` is selected randomly and should be tuned.

graph = po("filter", filter = flt("mim"), filter.frac = 0.5) %>>%
po("learner", mlr3::lrn("classif.rpart"))

graph$train(task)
}

mlr_filters_mrmr Minimum Redundancy Maximal Relevancy Filter

Description

Minimum redundancy maximal relevancy filter calling praznik::MRMR() in package praznik.

This filter supports partial scoring (see Filter).

Details

As the scores calculated by the praznik package are not monotone due to the greedy forward
fashion, the returned scores simply reflect the selection order: 1, (k-1)/k, ..., 1/k where k is the
number of selected features.

Threading is disabled by default (hyperparameter threads is set to 1). Set to a number >= 2 to
enable threading, or to 0 for auto-detecting the number of available cores.

https://CRAN.R-project.org/package=praznik
https://CRAN.R-project.org/package=praznik

mlr_filters_mrmr 31

Super class

mlr3filters::Filter -> FilterMRMR

Methods

Public methods:
• FilterMRMR$new()

• FilterMRMR$clone()

Method new(): Create a FilterMRMR object.

Usage:
FilterMRMR$new()

Method clone(): The objects of this class are cloneable with this method.

Usage:
FilterMRMR$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

Kursa MB (2021). “Praznik: High performance information-based feature selection.” SoftwareX,
16, 100819. doi:10.1016/j.softx.2021.100819.

For a benchmark of filter methods:

Bommert A, Sun X, Bischl B, Rahnenführer J, Lang M (2020). “Benchmark for filter methods
for feature selection in high-dimensional classification data.” Computational Statistics & Data
Analysis, 143, 106839. doi:10.1016/j.csda.2019.106839.

See Also

• PipeOpFilter for filter-based feature selection.

• Dictionary of Filters: mlr_filters

Other Filter: Filter, mlr_filters, mlr_filters_anova, mlr_filters_auc, mlr_filters_boruta,
mlr_filters_carscore, mlr_filters_carsurvscore, mlr_filters_cmim, mlr_filters_correlation,
mlr_filters_disr, mlr_filters_find_correlation, mlr_filters_importance, mlr_filters_information_gain,
mlr_filters_jmi, mlr_filters_jmim, mlr_filters_kruskal_test, mlr_filters_mim, mlr_filters_njmim,
mlr_filters_performance, mlr_filters_permutation, mlr_filters_relief, mlr_filters_selected_features,
mlr_filters_univariate_cox, mlr_filters_variance

Examples

if (requireNamespace("praznik")) {
task = mlr3::tsk("iris")
filter = flt("mrmr")
filter$calculate(task, nfeat = 2)
as.data.table(filter)

https://doi.org/10.1016/j.softx.2021.100819
https://doi.org/10.1016/j.csda.2019.106839

32 mlr_filters_njmim

}

if (mlr3misc::require_namespaces(c("mlr3pipelines", "rpart", "praznik"), quietly = TRUE)) {
library("mlr3pipelines")
task = mlr3::tsk("spam")

Note: `filter.frac` is selected randomly and should be tuned.

graph = po("filter", filter = flt("mrmr"), filter.frac = 0.5) %>>%
po("learner", mlr3::lrn("classif.rpart"))

graph$train(task)
}

mlr_filters_njmim Minimal Normalised Joint Mutual Information Maximization Filter

Description

Minimal normalised joint mutual information maximization filter calling praznik::NJMIM() from
package praznik.

This filter supports partial scoring (see Filter).

Details

As the scores calculated by the praznik package are not monotone due to the greedy forward
fashion, the returned scores simply reflect the selection order: 1, (k-1)/k, ..., 1/k where k is the
number of selected features.

Threading is disabled by default (hyperparameter threads is set to 1). Set to a number >= 2 to
enable threading, or to 0 for auto-detecting the number of available cores.

Super class

mlr3filters::Filter -> FilterNJMIM

Methods

Public methods:
• FilterNJMIM$new()

• FilterNJMIM$clone()

Method new(): Create a FilterNJMIM object.

Usage:
FilterNJMIM$new()

Method clone(): The objects of this class are cloneable with this method.

Usage:

https://CRAN.R-project.org/package=praznik
https://CRAN.R-project.org/package=praznik

mlr_filters_njmim 33

FilterNJMIM$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

Kursa MB (2021). “Praznik: High performance information-based feature selection.” SoftwareX,
16, 100819. doi:10.1016/j.softx.2021.100819.

For a benchmark of filter methods:

Bommert A, Sun X, Bischl B, Rahnenführer J, Lang M (2020). “Benchmark for filter methods
for feature selection in high-dimensional classification data.” Computational Statistics & Data
Analysis, 143, 106839. doi:10.1016/j.csda.2019.106839.

See Also

• PipeOpFilter for filter-based feature selection.

• Dictionary of Filters: mlr_filters

Other Filter: Filter, mlr_filters, mlr_filters_anova, mlr_filters_auc, mlr_filters_boruta,
mlr_filters_carscore, mlr_filters_carsurvscore, mlr_filters_cmim, mlr_filters_correlation,
mlr_filters_disr, mlr_filters_find_correlation, mlr_filters_importance, mlr_filters_information_gain,
mlr_filters_jmi, mlr_filters_jmim, mlr_filters_kruskal_test, mlr_filters_mim, mlr_filters_mrmr,
mlr_filters_performance, mlr_filters_permutation, mlr_filters_relief, mlr_filters_selected_features,
mlr_filters_univariate_cox, mlr_filters_variance

Examples

if (requireNamespace("praznik")) {
task = mlr3::tsk("iris")
filter = flt("njmim")
filter$calculate(task, nfeat = 2)
as.data.table(filter)

}

if (mlr3misc::require_namespaces(c("mlr3pipelines", "rpart", "praznik"), quietly = TRUE)) {
library("mlr3pipelines")
task = mlr3::tsk("spam")

Note: `filter.frac` is selected randomly and should be tuned.

graph = po("filter", filter = flt("njmim"), filter.frac = 0.5) %>>%
po("learner", mlr3::lrn("classif.rpart"))

graph$train(task)
}

https://doi.org/10.1016/j.softx.2021.100819
https://doi.org/10.1016/j.csda.2019.106839

34 mlr_filters_performance

mlr_filters_performance

Predictive Performance Filter

Description

Filter which uses the predictive performance of a mlr3::Learner as filter score. Performs a mlr3::resample()
for each feature separately. The filter score is the aggregated performance of the mlr3::Measure, or
the negated aggregated performance if the measure has to be minimized.

Super classes

mlr3filters::Filter -> mlr3filters::FilterLearner -> FilterPerformance

Public fields

learner (mlr3::Learner)

resampling (mlr3::Resampling)

measure (mlr3::Measure)

Methods

Public methods:
• FilterPerformance$new()

• FilterPerformance$clone()

Method new(): Create a FilterDISR object.

Usage:
FilterPerformance$new(
learner = mlr3::lrn("classif.featureless"),
resampling = mlr3::rsmp("holdout"),
measure = NULL

)

Arguments:

learner (mlr3::Learner)
mlr3::Learner to use for model fitting.

resampling (mlr3::Resampling)
mlr3::Resampling to be used within resampling.

measure (mlr3::Measure)
mlr3::Measure to be used for evaluating the performance.

Method clone(): The objects of this class are cloneable with this method.

mlr_filters_permutation 35

Usage:

FilterPerformance$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

• PipeOpFilter for filter-based feature selection.

• Dictionary of Filters: mlr_filters

Other Filter: Filter, mlr_filters, mlr_filters_anova, mlr_filters_auc, mlr_filters_boruta,
mlr_filters_carscore, mlr_filters_carsurvscore, mlr_filters_cmim, mlr_filters_correlation,
mlr_filters_disr, mlr_filters_find_correlation, mlr_filters_importance, mlr_filters_information_gain,
mlr_filters_jmi, mlr_filters_jmim, mlr_filters_kruskal_test, mlr_filters_mim, mlr_filters_mrmr,
mlr_filters_njmim, mlr_filters_permutation, mlr_filters_relief, mlr_filters_selected_features,
mlr_filters_univariate_cox, mlr_filters_variance

Examples

if (requireNamespace("rpart")) {
task = mlr3::tsk("iris")
learner = mlr3::lrn("classif.rpart")
filter = flt("performance", learner = learner)
filter$calculate(task)
as.data.table(filter)

}

if (mlr3misc::require_namespaces(c("mlr3pipelines", "rpart"), quietly = TRUE)) {
library("mlr3pipelines")
task = mlr3::tsk("iris")
l = lrn("classif.rpart")

Note: `filter.frac` is selected randomly and should be tuned.

graph = po("filter", filter = flt("performance", learner = l), filter.frac = 0.5) %>>%
po("learner", mlr3::lrn("classif.rpart"))

graph$train(task)
}

mlr_filters_permutation

Permutation Score Filter

36 mlr_filters_permutation

Description

The permutation filter randomly permutes the values of a single feature in a mlr3::Task to break
the association with the response. The permuted feature, together with the unmodified features, is
used to perform a mlr3::resample(). The permutation filter score is the difference between the
aggregated performance of the mlr3::Measure and the performance estimated on the unmodified
mlr3::Task.

Parameters

standardize logical(1)
Standardize feature importance by maximum score.

nmc integer(1)
Number of Monte-Carlo iterations to use in computing the feature importance.

Super classes

mlr3filters::Filter -> mlr3filters::FilterLearner -> FilterPermutation

Public fields

learner (mlr3::Learner)

resampling (mlr3::Resampling)

measure (mlr3::Measure)

Active bindings

hash (character(1))
Hash (unique identifier) for this object.

phash (character(1))
Hash (unique identifier) for this partial object, excluding some components which are varied
systematically during tuning (parameter values) or feature selection (feature names).

Methods

Public methods:
• FilterPermutation$new()

• FilterPermutation$clone()

Method new(): Create a FilterPermutation object.

Usage:
FilterPermutation$new(
learner = mlr3::lrn("classif.featureless"),
resampling = mlr3::rsmp("holdout"),
measure = NULL

)

mlr_filters_permutation 37

Arguments:
learner (mlr3::Learner)

mlr3::Learner to use for model fitting.
resampling (mlr3::Resampling)

mlr3::Resampling to be used within resampling.
measure (mlr3::Measure)

mlr3::Measure to be used for evaluating the performance.

Method clone(): The objects of this class are cloneable with this method.
Usage:
FilterPermutation$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

• PipeOpFilter for filter-based feature selection.
• Dictionary of Filters: mlr_filters

Other Filter: Filter, mlr_filters, mlr_filters_anova, mlr_filters_auc, mlr_filters_boruta,
mlr_filters_carscore, mlr_filters_carsurvscore, mlr_filters_cmim, mlr_filters_correlation,
mlr_filters_disr, mlr_filters_find_correlation, mlr_filters_importance, mlr_filters_information_gain,
mlr_filters_jmi, mlr_filters_jmim, mlr_filters_kruskal_test, mlr_filters_mim, mlr_filters_mrmr,
mlr_filters_njmim, mlr_filters_performance, mlr_filters_relief, mlr_filters_selected_features,
mlr_filters_univariate_cox, mlr_filters_variance

Examples

if (requireNamespace("rpart")) {
learner = mlr3::lrn("classif.rpart")
resampling = mlr3::rsmp("holdout")
measure = mlr3::msr("classif.acc")
filter = flt("permutation", learner = learner, measure = measure, resampling = resampling,

nmc = 2)
task = mlr3::tsk("iris")
filter$calculate(task)
as.data.table(filter)

}

if (mlr3misc::require_namespaces(c("mlr3pipelines", "rpart"), quietly = TRUE)) {
library("mlr3pipelines")
task = mlr3::tsk("iris")

Note: `filter.frac` is selected randomly and should be tuned.

graph = po("filter", filter = flt("permutation", nmc = 2), filter.frac = 0.5) %>>%
po("learner", mlr3::lrn("classif.rpart"))

graph$train(task)
}

38 mlr_filters_relief

mlr_filters_relief RELIEF Filter

Description

Information gain filter calling FSelectorRcpp::relief() in package FSelectorRcpp.

Super class

mlr3filters::Filter -> FilterRelief

Methods

Public methods:

• FilterRelief$new()

• FilterRelief$clone()

Method new(): Create a FilterRelief object.

Usage:
FilterRelief$new()

Method clone(): The objects of this class are cloneable with this method.

Usage:
FilterRelief$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Note

This filter can handle missing values in the features. However, the resulting filter scores may be
misleading or at least difficult to compare if some features have a large proportion of missing values.

If a feature has no non-missing observation, the resulting score will be (close to) 0.

See Also

• PipeOpFilter for filter-based feature selection.

• Dictionary of Filters: mlr_filters

Other Filter: Filter, mlr_filters, mlr_filters_anova, mlr_filters_auc, mlr_filters_boruta,
mlr_filters_carscore, mlr_filters_carsurvscore, mlr_filters_cmim, mlr_filters_correlation,
mlr_filters_disr, mlr_filters_find_correlation, mlr_filters_importance, mlr_filters_information_gain,
mlr_filters_jmi, mlr_filters_jmim, mlr_filters_kruskal_test, mlr_filters_mim, mlr_filters_mrmr,
mlr_filters_njmim, mlr_filters_performance, mlr_filters_permutation, mlr_filters_selected_features,
mlr_filters_univariate_cox, mlr_filters_variance

https://CRAN.R-project.org/package=FSelectorRcpp

mlr_filters_selected_features 39

Examples

if (requireNamespace("FSelectorRcpp")) {
Relief (default)
task = mlr3::tsk("iris")
filter = flt("relief")
filter$calculate(task)
head(filter$scores, 3)
as.data.table(filter)

}

if (mlr3misc::require_namespaces(c("mlr3pipelines", "FSelectorRcpp", "rpart"), quietly = TRUE)) {
library("mlr3pipelines")
task = mlr3::tsk("iris")

Note: `filter.frac` is selected randomly and should be tuned.

graph = po("filter", filter = flt("relief"), filter.frac = 0.5) %>>%
po("learner", mlr3::lrn("classif.rpart"))

graph$train(task)
}

mlr_filters_selected_features

Filter for Embedded Feature Selection

Description

Filter using embedded feature selection of machine learning algorithms. Takes a mlr3::Learner
which is capable of extracting the selected features (property "selected_features"), fits the model
and extracts the selected features.

Note that contrary to mlr_filters_importance, there is no ordering in the selected features. Selected
features get a score of 1, deselected features get a score of 0. The order of selected features is
random and different from the order in the learner. In combination with mlr3pipelines, only the
filter criterion cutoff makes sense.

Super classes

mlr3filters::Filter -> mlr3filters::FilterLearner -> FilterSelectedFeatures

Public fields

learner (mlr3::Learner)
Learner to extract the importance values from.

https://CRAN.R-project.org/package=mlr3pipelines

40 mlr_filters_selected_features

Methods

Public methods:
• FilterSelectedFeatures$new()

• FilterSelectedFeatures$clone()

Method new(): Create a FilterImportance object.

Usage:
FilterSelectedFeatures$new(learner = mlr3::lrn("classif.featureless"))

Arguments:
learner (mlr3::Learner)

Learner to extract the selected features from.

Method clone(): The objects of this class are cloneable with this method.

Usage:
FilterSelectedFeatures$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

• PipeOpFilter for filter-based feature selection.

• Dictionary of Filters: mlr_filters

Other Filter: Filter, mlr_filters, mlr_filters_anova, mlr_filters_auc, mlr_filters_boruta,
mlr_filters_carscore, mlr_filters_carsurvscore, mlr_filters_cmim, mlr_filters_correlation,
mlr_filters_disr, mlr_filters_find_correlation, mlr_filters_importance, mlr_filters_information_gain,
mlr_filters_jmi, mlr_filters_jmim, mlr_filters_kruskal_test, mlr_filters_mim, mlr_filters_mrmr,
mlr_filters_njmim, mlr_filters_performance, mlr_filters_permutation, mlr_filters_relief,
mlr_filters_univariate_cox, mlr_filters_variance

Examples

if (requireNamespace("rpart")) {
task = mlr3::tsk("iris")
learner = mlr3::lrn("classif.rpart")
filter = flt("selected_features", learner = learner)
filter$calculate(task)
as.data.table(filter)

}

if (mlr3misc::require_namespaces(c("mlr3pipelines", "mlr3learners", "rpart"), quietly = TRUE)) {
library("mlr3pipelines")
library("mlr3learners")
task = mlr3::tsk("sonar")

filter = flt("selected_features", learner = lrn("classif.rpart"))

Note: All filter scores are either 0 or 1, i.e. setting `filter.cutoff = 0.5` means that

mlr_filters_univariate_cox 41

we select all "selected features".

graph = po("filter", filter = filter, filter.cutoff = 0.5) %>>%
po("learner", mlr3::lrn("classif.log_reg"))

graph$train(task)
}

mlr_filters_univariate_cox

Univariate Cox Survival Filter

Description

Calculates scores for assessing the relationship between individual features and the time-to-event
outcome (right-censored survival data) using a univariate Cox proportional hazards model. The goal
is to determine which features have a statistically significant association with the event of interest,
typically in the context of clinical or biomedical research.

This filter fits a Cox Proportional Hazards model using each feature independently and extracts
the p-value that quantifies the significance of the feature’s impact on survival. The filter value is
-log10(p) where p is the p-value. This transformation is necessary to ensure numerical stabil-
ity for very small p-values. Also higher values denote more important features. The filter works
only for numeric features so please ensure that factor variables are properly encoded, e.g. using
PipeOpEncode.

Super class

mlr3filters::Filter -> FilterUnivariateCox

Methods

Public methods:

• FilterUnivariateCox$new()

• FilterUnivariateCox$clone()

Method new(): Create a FilterUnivariateCox object.

Usage:
FilterUnivariateCox$new()

Method clone(): The objects of this class are cloneable with this method.

Usage:
FilterUnivariateCox$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

42 mlr_filters_variance

See Also

• PipeOpFilter for filter-based feature selection.

• Dictionary of Filters: mlr_filters

Other Filter: Filter, mlr_filters, mlr_filters_anova, mlr_filters_auc, mlr_filters_boruta,
mlr_filters_carscore, mlr_filters_carsurvscore, mlr_filters_cmim, mlr_filters_correlation,
mlr_filters_disr, mlr_filters_find_correlation, mlr_filters_importance, mlr_filters_information_gain,
mlr_filters_jmi, mlr_filters_jmim, mlr_filters_kruskal_test, mlr_filters_mim, mlr_filters_mrmr,
mlr_filters_njmim, mlr_filters_performance, mlr_filters_permutation, mlr_filters_relief,
mlr_filters_selected_features, mlr_filters_variance

Examples

filter = flt("univariate_cox")
filter

mlr_filters_variance Variance Filter

Description

Variance filter calling stats::var().

Argument na.rm defaults to TRUE here.

Super class

mlr3filters::Filter -> FilterVariance

Methods

Public methods:

• FilterVariance$new()

• FilterVariance$clone()

Method new(): Create a FilterVariance object.

Usage:
FilterVariance$new()

Method clone(): The objects of this class are cloneable with this method.

Usage:
FilterVariance$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

mlr_filters_variance 43

References

For a benchmark of filter methods:

Bommert A, Sun X, Bischl B, Rahnenführer J, Lang M (2020). “Benchmark for filter methods
for feature selection in high-dimensional classification data.” Computational Statistics & Data
Analysis, 143, 106839. doi:10.1016/j.csda.2019.106839.

See Also

• PipeOpFilter for filter-based feature selection.

• Dictionary of Filters: mlr_filters

Other Filter: Filter, mlr_filters, mlr_filters_anova, mlr_filters_auc, mlr_filters_boruta,
mlr_filters_carscore, mlr_filters_carsurvscore, mlr_filters_cmim, mlr_filters_correlation,
mlr_filters_disr, mlr_filters_find_correlation, mlr_filters_importance, mlr_filters_information_gain,
mlr_filters_jmi, mlr_filters_jmim, mlr_filters_kruskal_test, mlr_filters_mim, mlr_filters_mrmr,
mlr_filters_njmim, mlr_filters_performance, mlr_filters_permutation, mlr_filters_relief,
mlr_filters_selected_features, mlr_filters_univariate_cox

Examples

task = mlr3::tsk("mtcars")
filter = flt("variance")
filter$calculate(task)
head(filter$scores, 3)
as.data.table(filter)

if (mlr3misc::require_namespaces(c("mlr3pipelines", "rpart"), quietly = TRUE)) {
library("mlr3pipelines")
task = mlr3::tsk("spam")

Note: `filter.frac` is selected randomly and should be tuned.

graph = po("filter", filter = flt("variance"), filter.frac = 0.5) %>>%
po("learner", mlr3::lrn("classif.rpart"))

graph$train(task)
}

https://doi.org/10.1016/j.csda.2019.106839

Index

∗ Dictionary
mlr_filters, 7

∗ Filter
Filter, 3
mlr_filters, 7
mlr_filters_anova, 8
mlr_filters_auc, 9
mlr_filters_boruta, 10
mlr_filters_carscore, 12
mlr_filters_carsurvscore, 13
mlr_filters_cmim, 14
mlr_filters_correlation, 16
mlr_filters_disr, 17
mlr_filters_find_correlation, 19
mlr_filters_importance, 21
mlr_filters_information_gain, 22
mlr_filters_jmi, 24
mlr_filters_jmim, 25
mlr_filters_kruskal_test, 27
mlr_filters_mim, 29
mlr_filters_mrmr, 30
mlr_filters_njmim, 32
mlr_filters_performance, 34
mlr_filters_permutation, 35
mlr_filters_relief, 38
mlr_filters_selected_features, 39
mlr_filters_univariate_cox, 41
mlr_filters_variance, 42

∗ datasets
mlr_filters, 7

care::carscore(), 12
caret::findCorrelation(), 19
carSurv::carSurvScore(), 13
character(), 4
Cox Proportional Hazards, 41

Dictionary, 7, 8, 10–12, 14, 15, 17, 19, 20,
22, 23, 25, 26, 28, 30, 31, 33, 35, 37,
38, 40, 42, 43

dictionary, 3, 6

Filter, 3, 7, 8, 10–12, 14, 15, 17–20, 22–26,
28–33, 35, 37, 38, 40, 42, 43

FilterAnova (mlr_filters_anova), 8
FilterAUC (mlr_filters_auc), 9
FilterBoruta (mlr_filters_boruta), 10
FilterCarScore (mlr_filters_carscore),

12
FilterCarSurvScore

(mlr_filters_carsurvscore), 13
FilterCMIM (mlr_filters_cmim), 14
FilterCorrelation

(mlr_filters_correlation), 16
FilterDISR (mlr_filters_disr), 17
FilterFindCorrelation

(mlr_filters_find_correlation),
19

FilterImportance
(mlr_filters_importance), 21

FilterInformationGain
(mlr_filters_information_gain),
22

FilterJMI (mlr_filters_jmi), 24
FilterJMIM (mlr_filters_jmim), 25
FilterKruskalTest

(mlr_filters_kruskal_test), 27
FilterMIM (mlr_filters_mim), 29
FilterMRMR (mlr_filters_mrmr), 30
FilterNJMIM (mlr_filters_njmim), 32
FilterPerformance

(mlr_filters_performance), 34
FilterPermutation

(mlr_filters_permutation), 35
FilterRelief (mlr_filters_relief), 38
Filters, 8, 10–12, 14, 15, 17, 19, 20, 22, 23,

25, 26, 28, 30, 31, 33, 35, 37, 38, 40,
42, 43

FilterSelectedFeatures
(mlr_filters_selected_features),

44

INDEX 45

39
FilterUnivariateCox

(mlr_filters_univariate_cox),
41

FilterVariance (mlr_filters_variance),
42

flt, 6
flt(), 7
flts (flt), 6
FSelectorRcpp::information_gain(), 22
FSelectorRcpp::relief(), 38

integer(), 6

mlr3::Learner, 21, 34, 36, 37, 39, 40
mlr3::Measure, 34, 36, 37
mlr3::mlr_sugar, 6
mlr3::resample(), 34, 36
mlr3::Resampling, 34, 36, 37
mlr3::Task, 3, 5, 6, 36
mlr3filters (mlr3filters-package), 2
mlr3filters-package, 2
mlr3filters::Filter, 8, 9, 11–14, 16, 18,

19, 21, 23, 24, 26, 27, 29, 31, 32, 34,
36, 38, 39, 41, 42

mlr3measures::auc(), 9
mlr3misc::dictionary_sugar_get(), 6
mlr_filters, 3, 6, 7, 8, 10–12, 14, 15, 17, 19,

20, 22, 23, 25, 26, 28, 30, 31, 33, 35,
37, 38, 40, 42, 43

mlr_filters_anova, 6, 7, 8, 10–12, 14, 15,
17, 19, 20, 22, 23, 25, 26, 28, 30, 31,
33, 35, 37, 38, 40, 42, 43

mlr_filters_auc, 6–8, 9, 11, 12, 14, 15, 17,
19, 20, 22, 23, 25, 26, 28, 30, 31, 33,
35, 37, 38, 40, 42, 43

mlr_filters_boruta, 6–8, 10, 10, 12, 14, 15,
17, 19, 20, 22, 23, 25, 26, 28, 30, 31,
33, 35, 37, 38, 40, 42, 43

mlr_filters_carscore, 6–8, 10, 11, 12, 14,
15, 17, 19, 20, 22, 23, 25, 26, 28, 30,
31, 33, 35, 37, 38, 40, 42, 43

mlr_filters_carsurvscore, 6–8, 10–12, 13,
15, 17, 19, 20, 22, 23, 25, 26, 28, 30,
31, 33, 35, 37, 38, 40, 42, 43

mlr_filters_cmim, 6–8, 10–12, 14, 14, 17,
19, 20, 22, 23, 25, 26, 28, 30, 31, 33,
35, 37, 38, 40, 42, 43

mlr_filters_correlation, 6–8, 10–12, 14,
15, 16, 19, 20, 22, 23, 25, 26, 28, 30,
31, 33, 35, 37, 38, 40, 42, 43

mlr_filters_disr, 6–8, 10–12, 14, 15, 17,
17, 20, 22, 23, 25, 26, 28, 30, 31, 33,
35, 37, 38, 40, 42, 43

mlr_filters_find_correlation, 6–8,
10–12, 14, 15, 17, 19, 19, 22, 23, 25,
26, 28, 30, 31, 33, 35, 37, 38, 40, 42,
43

mlr_filters_importance, 6–8, 10–12, 14,
15, 17, 19, 20, 21, 23, 25, 26, 28, 30,
31, 33, 35, 37–40, 42, 43

mlr_filters_information_gain, 6–8,
10–12, 14, 15, 17, 19, 20, 22, 22, 25,
26, 28, 30, 31, 33, 35, 37, 38, 40, 42,
43

mlr_filters_jmi, 6–8, 10–12, 14, 15, 17, 19,
20, 22, 23, 24, 26, 28, 30, 31, 33, 35,
37, 38, 40, 42, 43

mlr_filters_jmim, 6–8, 10–12, 14, 15, 17,
19, 20, 22, 23, 25, 25, 28, 30, 31, 33,
35, 37, 38, 40, 42, 43

mlr_filters_kruskal_test, 6–8, 10–12, 14,
15, 17, 19, 20, 22, 23, 25, 26, 27, 30,
31, 33, 35, 37, 38, 40, 42, 43

mlr_filters_mim, 6–8, 10–12, 14, 15, 17, 19,
20, 22, 23, 25, 26, 28, 29, 31, 33, 35,
37, 38, 40, 42, 43

mlr_filters_mrmr, 6–8, 10–12, 14, 15, 17,
19, 20, 22, 23, 25, 26, 28, 30, 30, 33,
35, 37, 38, 40, 42, 43

mlr_filters_njmim, 6–8, 10–12, 14, 15, 17,
19, 20, 22, 23, 25, 26, 28, 30, 31, 32,
35, 37, 38, 40, 42, 43

mlr_filters_performance, 6–8, 10–12, 14,
15, 17, 19, 20, 22, 23, 25, 26, 28, 30,
31, 33, 34, 37, 38, 40, 42, 43

mlr_filters_permutation, 6–8, 10–12, 14,
15, 17, 19, 20, 22, 23, 25, 26, 28, 30,
31, 33, 35, 35, 38, 40, 42, 43

mlr_filters_relief, 6–8, 10–12, 14, 15, 17,
19, 20, 22, 23, 25, 26, 28, 30, 31, 33,
35, 37, 38, 40, 42, 43

mlr_filters_selected_features, 6–8,
10–12, 14, 15, 17, 19, 20, 22, 23, 25,
26, 28, 30, 31, 33, 35, 37, 38, 39, 42,
43

46 INDEX

mlr_filters_univariate_cox, 6–8, 10–12,
14, 15, 17, 19, 20, 22, 23, 25, 26, 28,
30, 31, 33, 35, 37, 38, 40, 41, 43

mlr_filters_variance, 6–8, 10–12, 14, 15,
17, 19, 20, 22, 23, 25, 26, 28, 30, 31,
33, 35, 37, 38, 40, 42, 42

mlr_reflections$task_feature_types, 5
mlr_reflections$task_properties, 5
mlr_reflections$task_types$type, 3

paradox::ParamSet, 4–6
PipeOpEncode, 41
PipeOpFilter, 8, 10–12, 14, 15, 17, 19, 20,

22, 23, 25, 26, 28, 30, 31, 33, 35, 37,
38, 40, 42, 43

praznik::CMIM(), 14
praznik::DISR(), 18
praznik::JMI(), 24
praznik::JMIM(), 25
praznik::MIM(), 29
praznik::MRMR(), 30
praznik::NJMIM(), 32

R6, 11
R6Class, 7
requireNamespace(), 5

stats::aov(), 8
stats::cor(), 16
stats::kruskal.test(), 27

	mlr3filters-package
	Filter
	flt
	mlr_filters
	mlr_filters_anova
	mlr_filters_auc
	mlr_filters_boruta
	mlr_filters_carscore
	mlr_filters_carsurvscore
	mlr_filters_cmim
	mlr_filters_correlation
	mlr_filters_disr
	mlr_filters_find_correlation
	mlr_filters_importance
	mlr_filters_information_gain
	mlr_filters_jmi
	mlr_filters_jmim
	mlr_filters_kruskal_test
	mlr_filters_mim
	mlr_filters_mrmr
	mlr_filters_njmim
	mlr_filters_performance
	mlr_filters_permutation
	mlr_filters_relief
	mlr_filters_selected_features
	mlr_filters_univariate_cox
	mlr_filters_variance
	Index

