Package: mlr3proba (via r-universe)

November 21, 2024

Title Probabilistic Supervised Learning for 'mlr3'
Version 0.7.0

Description Provides extensions for probabilistic supervised learning
for 'mlr3'. This includes extending the regression task to
probabilistic and interval regression, adding a survival task,
and other specialized models, predictions, and measures.

License LGPL-3

URL https://mlr3proba.mlr-org.com,
https://github.com/mlr-org/mlr3proba

BugReports https://github.com/mlr-org/mlr3proba/issues
Depends mlr3 (>=0.14.1), R (>=3.5.0)

Imports checkmate, data.table, distr6 (>= 1.8.4), ggplot2, mlr3misc
(>=0.7.0), mlr3pipelines (>= 0.7.0), mlr3viz, paradox (>=
1.0.0), R6, Repp (>=1.0.4), survival

Suggests bujar, GGally, knitr, lgr, lifecycle, param6 (>=0.2.4),
pracma, rpart, set6 (>= 0.2.6), simsurv, survAUC, testthat (>=
3.0.0), vdiffr, abind, Ecdat, coxed, mlr3learners, pammtools

LinkingTo Rcpp

Remotes xoopR/distr6, xoopR/param6, xoopR/set6
Config/testthat/edition 3

ByteCompile true

Encoding UTF-8

LazyData true

NeedsCompilation no

Roxygen list(markdown = TRUE, r6 = TRUE)
RoxygenNote 7.3.2

Collate 'LearnerDens.R' 'aaa.R' 'LearnerDensHistogram.R'
'LearnerDensKDE.R' 'LearnerSurv.R' 'LearnerSurvCoxPH.R'
'LearnerSurvKaplan.R' 'LearnerSurvRpart.R' 'MeasureDens.R'

1

https://mlr3proba.mlr-org.com
https://github.com/mlr-org/mlr3proba
https://github.com/mlr-org/mlr3proba/issues

'MeasureDensLogloss.R' 'MeasureRegrLogloss.R' 'MeasureSurv.R'
'MeasureSurvAUC.R' 'MeasureSurvCalibrationAlpha.R'
'MeasureSurvCalibrationBeta.R' 'MeasureSurvChamblessAUC.R'
'MeasureSurvCindex.R' 'MeasureSurvDCalibration.R'
'MeasureSurvGraf.R' 'MeasureSurvHungAUC.R'
'MeasureSurvIntLogloss.R' 'MeasureSurvLogloss.R'
'MeasureSurvMAE.R' 'MeasureSurvMSE.R' 'MeasureSurvNagelkR2.R'
‘MeasureSurvOQuigleyR2.R' 'MeasureSurvRCLL.R'
'MeasureSurvRMSE.R' 'MeasureSurvSchmid.R'
'MeasureSurvSongAUC.R' 'MeasureSurvSongTNR.R'
'MeasureSurvSongTPR.R' 'MeasureSurvUnoAUC.R'
'MeasureSurvUnoTNR.R' 'MeasureSurvUnoTPR.R' 'MeasureSurvXuR2.R'
'"PipeOpBreslow.R' 'PipeOpCrankCompositor.R’
'"PipeOpDistrCompositor.R' 'PipeOpPredClassifSurvDiscTime.R'
'"PipeOpPredClassifSurvIPCW.R' 'PipeOpTransformer.R’
'PipeOpPredTransformer.R' PipeOpPredRegrSurv.R’
'"PipeOpPredSurvRegr.R' 'PipeOpProbregrCompositor.R’
'"PipeOpResponseCompositor.R' 'PipeOpSurvAvg.R'
'PipeOpTaskRegrSurv.R' PipeOpTaskSurvClassifDiscTime.R'
'PipeOpTaskSurvClassif[PCW.R' 'PipeOpTaskSurvRegr.R'
'PipeOpTaskTransformer.R' 'PredictionDataDens.R’
"PredictionDataSurv.R' 'PredictionDens.R' 'PredictionSurv.R'
'ReppExports.R' "TaskDens.R' "TaskDens_zzz.R'
"TaskGeneratorCoxed.R' 'TaskGeneratorSimdens.R'
'TaskGeneratorSimsurv.R' 'TaskSurv.R' 'TaskSurv_zzz.R'
'as_prediction_dens.R' 'as_prediction_surv.R' 'as_task_dens.R'
'as_task_surv.R' 'assertions.R' 'autoplot.R' 'bibentries.R'
'breslow.R' 'cindex.R' 'data.R' 'helpers.R' 'histogram.R'
'integrated_scores.R' 'mlr3proba-package.R' ‘pecs.R’

'pipelines.R' 'plot.R' "plot_probregr.R' 'scoring_rule_erv.R'
'surv_measures.R' 'surv_return.R' 'zzz.R'

Repository https://mlr-org.r-universe.dev

RemoteUrl https://github.com/mlr-org/mlr3proba
RemoteRef v0.7.0

RemoteSha 44fd50c3313b0al4b023a4d4a707c16£52cc3bda

Contents

mlr3proba-package
SUIV_TETUITL L o o e
ACLZ . . L e e e
ASSEIT_SUIV o o e e e e e e e e e e e e e e e e e e e
aSSErt_SUrV_MAtrIX v v v v e e e e e e e e e e e e e e e e e
as_prediction_dens Lo e
as_prediCton_SUTV« o v v it e e e e e e e
as_task dens
as_task_SUIV e

Contents

Contents

3
autoplot.PredictionSurv 14
autoplot.TaskDens L 16
autoplot.TaskSurv 17
breslow e 18
8DCS . e e 20
get_mortality 21
GIACE . . v v v v e e e e e e e e e e e e e e e e e 22
LearnerDens e e e e e 23
LearnerSurv e e 25
MeasureDens e e 27
MeasureSUIrV e e e e e e e e e e e e 28
MeasureSurvAUC e e e e e e e 30
mlr_graphs_crankcompositor L. 32
mlr_graphs_distrcompositor 33
mlr_graphs_probregr e e e 35
mlr_graphs_responsecompositorl 37
mlr_graphs_survaverager e e e 38
mlr_graphs_survbagging e 40
mlr_graphs_survtoclassif disctime oL 0oL 41
mlr_graphs_survtoclassif IPCW L 43
mlr_graphs_survtoregro e e 45
mlr_learners_dens.hist L. 48
mlr_learners_dens.kde 50
mlr_learners_surv.coxph 51
mlr_learners_survkaplan 53
mlr_learners_surv.rpart L. oL e 54
mlr_measures_dens.Jogloss Lo 56
mlr_measures_regrlogloss L o 58
mlr_measures_surv.calib_alpha L o 59
mlr_measures_surv.calib_beta L 61
mlr_measures_surv.chambless_auc 63
mlr_measures_surv.cindeX e e e e e e e e e e 65
mlr_measures_surv.dcalib 68
mlr_measures_surv.grafo 71
mlr_measures_survhung_auc. oL 75
mlr_measures_surv.intlogloss L 77
mlr_measures_surv.ogloss 81
mlr_measures_SUIV.IMAE v v v v v o e e e e e e e e e e e 84
mIr_MmeasureS_SUIV.INSE v v v v v o e e e e e e e e e e e e 86
mlr_measures_surv.nagelk 12 87
mlr_measures_survoquigley_r2 oL 89
mlr_measures_surv.rcll L L L L e 91
MIr_MeasureS_SUIV.IMSE v v v v v v e e e e e e e e e e e e e e e e e 93
mlr_measures_surv.schmid 95
mir_measures_SUrv.SONZ_aUC« ¢ ¢ o v v vt v e e e e e e e e 99
mlr_measures_SUrv.SONZ_tNT v v v v v v v v et e e e e e e e e e 101
mlr_measures_Surv.SONZ_tPT . . . « . v v v v v v i e e e e e e e e e e e 103

mlr_measures_SUrv.UnO_aUC« . v v v v v e e e e e e e e e e e e e 105

Index

Contents

mlr_measures_SUrv.uno_tNr v v v v v e e e e e e e e e e 107
mlr_measures_Surv.uno_tPr o o vttt e e e e e e e e e e 109
mlr_measures_SUIV.XU_ T2 v v v v e e e e e e e e e e e e e 111
mlr_pipeops_compose_breslow_distr oo 113
mlr_pipeops_compose_probregr u i e e e 115
mlr_pipeops_crankcompose e 117
mlr_pipeops_distrcomposeo e 119
MIr_pipeops_IeSPONSECOMPOSE . .« « © v v v v v v v e e e e e e e e e e e e e 122
mMIr_pipeops_sUrvavg v vt e e e e e e 124
mlr_pipeops_trafopred_classifsurv_disctime oL, 126
mlr_pipeops_trafopred_classifsurv_IPCW 128
mlr_pipeops_trafopred_regrsurv Lo 129
mlr_pipeops_trafopred_survregr oL 131
mlr_pipeops_trafotask_regrsurv L. Lo 133
mlr_pipeops_trafotask_survclassif_disctime 134
mlr_pipeops_trafotask_survclassif IPCW 137
mlr_pipeops_trafotask_survregr Lo 139
mlr_tasks_actg e e e 143
mlr_tasks_faithful 144
mlr_tasks_gbes 145
mlr_tasks_gbsg 146
mlr_tasks_grace e e e e 147
mir_tasks_lung e 148
mlr_tasks_mgus e e 149
mlr_tasks_pbc L 150
mlr_tasks_precip e e e e e 151
mir_tasks_ratso e 152
mlr_tasks_unemployment 153
milr_tasks_veteran e e e e 154
milr_tasks_whas e 155
mlr_task_generators_coxed 156
mlr_task_generators_simdens Lo 158
mlr_task_generators_Simsury e e e e 159
PECS o o e e e e 161
PipeOpPredTransformer 163
PipeOpTaskTransformer i 165
PipeOpTransformer L 167
plot.LearnerSurv L e 168
plot_probregr e e e e 169
PredictionDens 171
PredictionSurv e e 172
TaskDens e e e e e e 175
TaskSurv e 176
Whas . . . e 182

183

mlr3proba-package 5

mlr3proba-package mlr3proba: Probabilistic Supervised Learning for 'mir3’

Description

Provides extensions for probabilistic supervised learning for 'mlr3’. This includes extending the
regression task to probabilistic and interval regression, adding a survival task, and other specialized
models, predictions, and measures.

Author(s)

Maintainer: John Zobolas <bblodfon@gmail.com> (ORCID)

Authors:

* Raphael Sonabend <raphaelsonabend@gmail.com> (ORCID)
* Franz Kiraly <f.kiraly@ucl.ac.uk>
* Michel Lang <michellang@gmail.com> (ORCID)

Philip Studener <philip.studener@gmx.de>
Other contributors:

e Nurul Ain Toha <nurul. toha. 15@ucl.ac. uk> [contributor]
¢ Andreas Bender <bender.at.R@gmail.com> (ORCID) [contributor]
e Lukas Burk <github@quantenbrot.de> (ORCID) [contributor]

¢ Maximilian Muecke <muecke.maximilian@gmail.com> (ORCID) [contributor]

See Also

Useful links:

e https://mlr3proba.mlr-org.com
e https://github.com/mlr-org/mlr3proba

* Report bugs at https://github.com/mlr-org/mlr3proba/issues

https://orcid.org/0000-0002-3609-8674
https://orcid.org/0000-0001-9225-4654
https://orcid.org/0000-0001-9754-0393
https://orcid.org/0000-0001-5628-8611
https://orcid.org/0000-0001-7528-3795
https://orcid.org/0009-0000-9432-9795
https://mlr3proba.mlr-org.com
https://github.com/mlr-org/mlr3proba
https://github.com/mlr-org/mlr3proba/issues

6 .surv_return

.surv_return Get Survival Predict Types

Description

Internal helper function to easily return the correct survival predict types.

Usage

.surv_return(
times = NULL,
surv = NULL,
crank = NULL,
1p = NULL,
response = NULL,
which.curve = NULL

Arguments

times (numeric())
Vector of survival times.

surv (matrix() |array())
Matrix or array of predicted survival probabilities, rows (1st dimension) are ob-
servations, columns (2nd dimension) are times and in the case of an array there
should be one more dimension. Number of columns should be equal to length
of times. In case a numeric() vector is provided, it is converted to a single row
(one observation) matrix.

crank (numeric())

Relative risk/continuous ranking. Higher value is associated with higher risk.
If NULL then either set as -response if available or 1p if available (this as-
sumes that the 1p prediction comes from a PH type model - in case of an AFT
model the user should provide -1p). In case neither response or 1p are pro-
vided, then crank is calculated as the sum of the cumulative hazard function
(expected mortality) derived from the predicted survival function (surv), see
get_mortality. In case surv is a 3d array, we use the which. curve parameter to
decide which survival matrix (index in the 3rd dimension) will be chosen for the
calculation of crank.

1p (numeric())
Predicted linear predictor, used to impute crank if NULL.

response (numeric())
Predicted survival time, passed through function without modification.

which.curve Which curve (3rd dimension) should the crank be calculated for, in case surv is
an array? If between (0,1) it is taken as the quantile of the curves otherwise if
greater than 1 it is taken as the curve index. It can also be “'mean’ and the survival
probabilities are averaged across the 3rd dimension. Default value (NULL) is the
0.5 quantile which is the median across the 3rd dimension of the survival array.

actg 7

References

Sonabend, Raphael, Bender, Andreas, Vollmer, Sebastian (2022). “Avoiding C-hacking when eval-
uating survival distribution predictions with discrimination measures.” Bioinformatics. ISSN 1367-
4803, doi: 10.1093/BIOINFORMATICS/BTAC451, https://academic.oup.com/bioinformatics/
advance-article/doi/10.1093/bioinformatics/btac451/6640155.

Examples

10 # number of observations
50 # time points

n
k

Create the matrix with random values between @ and 1
mat = matrix(runif(n * k, min = @, max = 1), nrow = n, ncol = k)

transform it to a survival matrix
surv_mat = t(apply(mat, 1L, function(row) sort(row, decreasing = TRUE)))

crank is expected mortality, distr is the survival matrix
.surv_return(times = 1:k, surv = surv_mat)

if crank is set, it's not overwritten
.surv_return(times = 1:k, surv = surv_mat, crank = rnorm(n))

1p = crank
.surv_return(lp = rnorm(n))

if response is set and no crank, crank = -response
.surv_return(response = sample(1:100, n))

if both are set, they are not overwritten
.surv_return(crank = rnorm(n), response = sample(1:100, n))

actg ACTG 320 Clinical Trial Dataset

Description

actg dataset from Hosmer et al. (2008)

Usage

actg

Format

id Identification Code
time Time to AIDS diagnosis or death (days).

https://doi.org/10.1093/BIOINFORMATICS/BTAC451
https://academic.oup.com/bioinformatics/advance-article/doi/10.1093/bioinformatics/btac451/6640155
https://academic.oup.com/bioinformatics/advance-article/doi/10.1093/bioinformatics/btac451/6640155

8 assert_surv

censor Event indicator. 1 = AIDS defining diagnosis, 0 = Otherwise.
time_d Time to death (days)

censor_d Event indicator for death (only). 1 = Death, 0 = Otherwise.
tx Treatment indicator. 1 = Treatment includes IDV, 0 = Control group.

txgrp Treatment group indicator. 1 =ZDV + 3TC.2=72DV + 3TC + IDV. 3 =d4T + 3TC. 4 = d4T
+ 3TC + IDV.

strat2 CD4 stratum at screening. 0 = CD4 <= 50. 1 = CD4 > 50.
sexF 0= Male. | = Female.

raceth Race/Ethnicity. 1 = White Non-Hispanic. 2 = Black Non-Hispanic. 3 = Hispanic. 4 =
Asian, Pacific Islander. 5 = American Indian, Alaskan Native. 6 = Other/unknown.

ivdrug IV drug use history. 1 = Never. 2 = Currently. 3 = Previously.
hemophil Hemophiliac. 1 = Yes. 0 = No.

karnof Karnofsky Performance Scale. 100 = Normal; no complaint no evidence of disease. 90 =
Normal activity possible; minor signs/symptoms of disease. 80 = Normal activity with effort;
some signs/symptoms of disease. 70 = Cares for self; normal activity/active work not possible.

cd4 Baseline CD4 count (Cells/Milliliter).
priorzdv Months of prior ZDV use (months).

age Age at Enrollment (years).

Source

https://onlinelibrary.wiley.com/doi/book/10.1002/9780470258019

References

Hosmer, D.W. and Lemeshow, S. and May, S. (2008) Applied Survival Analysis: Regression Mod-
eling of Time to Event Data: Second Edition, John Wiley and Sons Inc., New York, NY

assert_surv Assert survival object

Description

Asserts x is a survival::Surv object with added checks

Usage
assert_surv(
X,
len = NULL,

any.missing = TRUE,
null.ok = FALSE,
.var.name = vname(x)

https://onlinelibrary.wiley.com/doi/book/10.1002/9780470258019

assert_surv_matrix 9

Arguments
X Object to check
len If non-NULL checks object is length 1en
any.missing If FALSE then errors if there are any NAs in x
null.ok If FALSE then errors if x is NULL, otherwise passes
.var.name Optional variable name to return if assertion fails

assert_surv_matrix Assert survival matrix
Description

Asserts if the given input matrix is a (discrete) survival probabilities matrix using Repp code. The
following checks are performed:

1. All values are probabilities, i.e. S(t) € [0, 1]

2. Column names correspond to time-points and should therefore be coercable to numeric and
increasing

3. Per row/observation, the survival probabilities decrease non-strictly, i.e. S(t) > S(¢t + 1)

Usage

assert_surv_matrix(x)

Arguments
X (matrix())
A matrix of (predicted) survival probabilities. Rows are observations, columns
are (increasing) time points.
Value

if the assertion fails an error occurs, otherwise NULL is returned invisibly.

Examples

X = matrix(data = ¢(1,0.6,0.4,0.8,0.8,0.7), nrow = 2, ncol = 3, byrow = TRUE)
colnames(x) = c(12, 34, 42)
X

assert_surv_matrix(x)

10

as_prediction_dens

as_prediction_dens Convert to a Density Prediction

Description

Convert object to a PredictionDens.

Usage

as_prediction_dens(x, ...)

S3 method for class 'PredictionDens'
as_prediction_dens(x, ...)

S3 method for class 'data.frame'

as_prediction_dens(x, ...)
Arguments
X (any)

Object to convert.

(any)
Additional arguments.

Value

PredictionDens.

Examples

library(mlr3)

task = tsk("precip”)
learner = 1rn("dens.hist")
learner$train(task)

p = learner$predict(task)

convert to a data.table
tab = as.data.table(p)

convert back to a Prediction
as_prediction_dens(tab)

as_prediction_surv

11

as_prediction_surv Convert to a Survival Prediction

Description

Convert object to a PredictionSurv.

Usage

as_prediction_surv(x, ...)

S3 method for class 'PredictionSurv'
as_prediction_surv(x, ...)

S3 method for class 'data.frame'

as_prediction_surv(x, ...)
Arguments
X (any)

Value

PredictionSurv.

Examples

library(mlr3)

Object to convert.

(any)
Additional arguments.

task = tsk("rats")

learner = 1rn("surv.coxph")
learner$train(task)

p = learner$predict(task)

convert to a data.table
tab = as.data.table(p)

convert back to a Prediction
as_prediction_surv(tab)

12 as_task surv

as_task_dens Convert to a Density Task

Description

Convert object to a density task (TaskDens).

Usage

as_task_dens(x, ...)

S3 method for class 'TaskDens'
as_task_dens(x, clone = FALSE, ...)

S3 method for class 'data.frame'
as_task_dens(x, id = deparse(substitute(x)), ...)

S3 method for class 'DataBackend'’

as_task_dens(x, id = deparse(substitute(x)), ...)
Arguments
X (any)

Object to convert, e.g. a data.frame().

(any)
Additional arguments.

clone (logical(1))
If TRUE, ensures that the returned object is not the same as the input x.

id (character(1))
Id for the new task. Defaults to the (deparsed and substituted) name of x.

as_task_surv Convert to a Survival Task

Description

Convert object to a survival task (TaskSurv).

as_task_ surv 13

Usage

as_task_surv(x, ...)

S3 method for class 'TaskSurv'
as_task_surv(x, clone = FALSE, ...)

S3 method for class 'data.frame'
as_task_surv(

X,

time = "time",
event = "event”,
time2,

type = "right"”,

id = deparse(substitute(x)),

S3 method for class 'DataBackend'’
as_task_surv(

X’

time = "time",
event = "event”,
time2,

type = "right"”,
id = deparse(substitute(x)),

)

S3 method for class 'formula'

as_task_surv(x, data, id = deparse(substitute(data)), ...)
Arguments

X (any)

Object to convert, e.g. a data. frame().

(any)
Additional arguments.

clone (logical(1))
If TRUE, ensures that the returned object is not the same as the input x.

time (character(1))
Name of the column for event time if data is right censored, otherwise starting
time if interval censored.

event (character(1))
Name of the column giving the event indicator. If data is right censored then
"0"/FALSE means alive (no event), "1"/TRUE means dead (event). If type is
"interval” then "0" means right censored, "1" means dead (event), "2" means

14

time2

type

id

data

autoplot.PredictionSurv

left censored, and "3" means interval censored. If type is "interval2” then
event is ignored.

(character(1))
Name of the column for ending time of the interval for interval censored or
counting process data, otherwise ignored.

(character(1))
Name of the column giving the type of censoring. Default is ’right’ censoring.

(character(1))
Id for the new task. Defaults to the (deparsed and substituted) name of x.

(data.frame())
Data frame containing all columns referenced in formula x.

autoplot.PredictionSurv

Plot for PredictionSurv

Description

Generates plots for PredictionSurv, depending on argument type:

* "calib” (default): Calibration plot comparing the average predicted survival distribution to
a Kaplan-Meier prediction, this is not a comparison of a stratified crank or lp prediction.
object must have distr prediction. geom_line() is used for comparison split between the
prediction (Pred) and Kaplan-Meier estimate (KM). In addition labels are added for the x (T)
and y (S(T)) axes.

e "dcalib”: Distribution calibration plot. A model is D-calibrated if X% of deaths occur before
the X/100 quantile of the predicted distribution, e.g. if 50% of observations die before their
predicted median survival time. A model is D-calibrated if the resulting plot lies on x =y.

* "preds”: Matplots the survival curves for all predictions

Usage

S3 method for class 'PredictionSurv'

autoplot(
object,
type =

row_ids

times =

xyline
cuts =

theme =

"calib”,
task = NULL,

NULL,
TRUE,

theme_minimal(),

extend_quantile = FALSE,

autoplot.PredictionSurv 15

Arguments

object
type

task

row_ids

times

xyline

cuts

theme

extend_quantile

References

(PredictionSurv).

(character(1))
Name of the column giving the type of censoring. Default is ’right’ censoring.

(TaskSurv)

If type = "calib" then task is passed to $predict in the Kaplan-Meier learner.
(integer())

If type = "calib” then row_ids is passed to $predict in the Kaplan-Meier
learner.

(numeric())

If type = "calib” then times is the values on the x-axis to plot over, if NULL
uses all times from task.

(logical(1))

If TRUE (default) plots the x-y line for type = "dcalib”.

(integer(1))

Number of cuts in (0,1) to plot dcalib over, defaultis 11.

(ggplot2::theme())
The ggplot2: :theme_minimal() is applied by default to all plots.

(logical(1))

If TRUE then dcalib will impute NAs from predicted quantile function with the
maximum observed outcome time, e.g. if the last predicted survival probability
is greater than 0.1, then the last predicted cdf is smaller than 0.9 so FA1(0.9) =
NA, this would be imputed with max(times). Default is FALSE.

(any): Additional arguments, currently unused.

Haider H, Hoehn B, Davis S, Greiner R (2020). “Effective Ways to Build and Evaluate Individual
Survival Distributions.” Journal of Machine Learning Research, 21(85), 1-63. https://jmlr.
org/papers/v21/18-772.html.

Examples

library(mlr3)

library(mlr3proba)

library(mlr3viz)

learn = 1lrn("surv.coxph")
task = tsk("unemployment")
p = learn$train(task, row_ids = 1:300)$predict(task, row_ids = 301:400)

calibration by comparison of average prediction to Kaplan-Meier
autoplot(p, type = "calib”, task = task, row_ids = 301:400)

Distribution-calibration (D-Calibration)
autoplot(p, type = "dcalib")

https://jmlr.org/papers/v21/18-772.html
https://jmlr.org/papers/v21/18-772.html

16

Predictions
autoplot(p, type

autoplot.TaskDens

= "preds”)

autoplot.TaskDens

Plot for Density Tasks

Description

Generates plots for TaskDens.
Usage

S3 method for class 'TaskDens'

autoplot(object, type = "dens", theme = theme_minimal(), ...)
Arguments

object (TaskDens).

type (character(1)): Type of the plot. Available choices:

theme

Value

e "dens": histogram density estimator (default) with ggplot2: :geom_histogram().
* "freq": histogram frequency plot with ggplot2: :geom_histogram().
* "overlay": histogram with overlaid density plot with ggplot2: : geom_histogram()
and ggplot2: :geom_density().
* "fregpoly”: frequency polygon plot with ggplot2: :geom_freqgpoly.
(ggplot2::theme())
The ggplot2: :theme_minimal() is applied by default to all plots.
(any): Additional arguments, possibly passed down to the underlying plot func-
tions.

ggplot2::ggplot () object.

Examples

library(mlr3)

library(mlr3proba)

library(mlr3viz)
library(ggplot2)

task = tsk("precip”)

head(fortify(task

))

autoplot(task, bins = 15)

autoplot(task, type = "freq”, bins = 15)
autoplot(task, type = "overlay”, bins = 15)
autoplot(task, type = "fregpoly”, bins = 15)

autoplot. TaskSurv 17

autoplot.TaskSurv Plot for Survival Tasks

Description

Generates plots for TaskSurv, depending on argument type:

e "target": Calls GGally: :ggsurv() on a survival: :survfit() object. This computes the
Kaplan-Meier survival curve for the observations if this task.

* "duo”: Passes data and additional arguments down to GGally: : ggduo(). columnsX is target,
columnsyY is features.

* "pairs”: Passes data and additional arguments down to GGally: :ggpairs(). Color is set to
target column.

Usage

S3 method for class 'TaskSurv'
autoplot(
object,
type = "target”,
theme = theme_minimal(),
reverse = FALSE,

Arguments
object (TaskSurv).
type (character(1)):
Type of the plot. See above for available choices.
theme (ggplot2::theme())
The ggplot2:: theme_minimal() is applied by default to all plots.
reverse (logical())
If TRUE and type = 'target’, it plots the Kaplan-Meier curve of the censoring
distribution. Default is FALSE.
(any): Additional arguments. rhs is passed down to $formula of TaskSurv for
stratification for type "target"”. Other arguments are passed to the respective
underlying plot functions.
Value

ggplot2::ggplot () object.

18 breslow

Examples

library(mlr3)
library(mlr3viz)
library(mlr3proba)
library(ggplot2)

task = tsk("lung")

head(fortify(task))

autoplot(task) # KM

autoplot(task) # KM of the censoring distribution
autoplot(task, rhs = "sex")

autoplot(task, type = "duo")

breslow Survival probabilities using Breslow’s estimator

Description

Helper function to compose a survival distribution (or cumulative hazard) from the relative risk
predictions (linear predictors, 1p) of a proportional hazards model (e.g. a Cox-type model).

Usage
breslow(times, status, lp_train, lp_test, eval_times = NULL, type = "surv"
Arguments
times (numeric())
Vector of times (train set).
status (numeric())

Vector of status indicators (train set). For each observation in the train set, this
should be 0 (alive/censored) or 1 (dead).

lp_train (numeric())
Vector of linear predictors (train set). These are the relative score predictions
(Ip = BX4trqin) from a proportional hazards model on the train set.

lp_test (numeric())
Vector of linear predictors (test set). These are the relative score predictions
(Ip = BXiest) from a proportional hazards model on the test set.

eval_times (numeric())
Vector of times to compute survival probabilities. If NULL (default), the unique
and sorted times from the train set will be used, otherwise the unique and sorted
eval_times.

type (character())
Type of prediction estimates. Default is surv which returns the survival prob-
abilities S;(t) for each test observation i. If cumhaz, the function returns the
estimated cumulative hazards H,(t).

breslow 19

Details
We estimate the survival probability of individual ¢ (from the test set), at time point ¢ as follows:

Si(t) = e Hi)) = g=Ho(®)xe'™

where:

* H,(t) is the cumulative hazard function for individual 4

« Hy(t) is Breslow’s estimator for the cumulative baseline hazard. Estimation requires the
training set’s times and status as well the risk predictions (1p_train).

* [p; is the risk prediction (linear predictor) of individual ¢ on the test set.

Breslow’s approach uses a non-parametric maximum likelihood estimation of the cumulative base-
line hazard function:

I(T; <)
Ho
Z Z]ER elpJ
where:

* t is the vector of time points (unique and sorted, from the train set)

¢ n is number of events (train set)

e T'is the vector of event times (train set)

* ¢ is the status indicator (1 = event or 0 = censored)

* R, is the risk set (number of individuals at risk just before event ¢)

* Ip; is the risk prediction (linear predictor) of individual j (who is part of the risk set I2;) on
the train set.

We employ constant interpolation to estimate the cumulative baseline hazards, extending from the
observed unique event times to the specified evaluation times (eval_times). Any values falling
outside the range of the estimated times are assigned as follows:

Ho(eval_times < min(t)) = 0

and

Ho(eval_times > max(t)) = Ho(mazx(t))

Note that in the rare event of 1p predictions being Inf or -Inf, the resulting cumulative hazard
values become NaN, which we substitute with Inf (and corresponding survival probabilities take the
value of 0).

For similar implementations, see gbm: : basehaz.gbm(), C060: :basesurv() and xgboost. surv: :sgb_bhaz().

Value

amatrix (obs x times). Number of columns is equal to eval_times and number of rows is equal
to the number of test observations (i.e. the length of the 1p_test vector). Depending on the type
argument, the matrix can have either survival probabilities (0-1) or cumulative hazard estimates
(0-Inf).

20 gbes

References

Cox DR (1972). “Regression Models and Life-Tables.” Journal of the Royal Statistical Society:
Series B (Methodological), 34(2), 187-202. doi:10.1111/§.25176161.1972.tb00899.x.

Lin, Y. D (2007). “On the Breslow estimator.” Lifetime Data Analysis, 13(4), 471-480. doi:10.1007/
$109850079048y.

Examples
task = tsk("rats")
part = partition(task, ratio = 0.8)

learner = 1rn("surv.coxph")
learner$train(task, part$train)

p_train = learner$predict(task, part$train)
p_test = learner$predict(task, part$test)

surv = breslow(times = task$times(part$train), status = task$status(part$train),
lp_train = p_train$lp, lp_test = p_test$lp)
head(surv)

gbcs German Breast Cancer Study (GBCS) Dataset

Description

gbcs dataset from Hosmer et al. (2008)

Usage
ghcs

Format

id Identification Code

diagdate Date of diagnosis.

recdate Date of recurrence free survival.
deathdate Date of death.

age Age at diagnosis (years).

menopause Menopausal status. 1 = Yes, 0 = No.
hormone Hormone therapy. 1 = Yes. 0 = No.
size Tumor size (mm).

grade Tumor grade (1-3).

nodes Number of lymph nodes.

prog_recp Number of progesterone receptors.

https://doi.org/10.1111/j.2517-6161.1972.tb00899.x
https://doi.org/10.1007/s10985-007-9048-y
https://doi.org/10.1007/s10985-007-9048-y

get_mortality 21

estrg_recp Number of estrogen receptors.

rectime Time to recurrence (days).

censrec Recurrence status. 1 = Recurrence. 0 = Censored.
survtime Time to death (days).

censdead Censoring status. 1 = Death. 0 = Censored.

Source

https://onlinelibrary.wiley.com/doi/book/10.1002/9780470258019

References

Hosmer, D.W. and Lemeshow, S. and May, S. (2008) Applied Survival Analysis: Regression Mod-
eling of Time to Event Data: Second Edition, John Wiley and Sons Inc., New York, NY

get_mortality Calculate the expected mortality risks from a survival matrix

Description

Many methods can be used to reduce a discrete survival distribution prediction (i.e. matrix) to a
relative risk / ranking prediction, see Sonabend et al. (2022).

This function calculates a relative risk score as the sum of the predicted cumulative hazard function,
also called ensemble/expected mortality. This risk score can be loosely interpreted as the expected
number of deaths for patients with similar characteristics, see Ishwaran et al. (2008) and has no
model or survival distribution assumptions.

Usage

get_mortality(x)

Arguments
X (matrix())
A survival matrix where rows are the (predicted) observations and columns the
time-points. For more details, see assert_surv_matrix.
Value

a numeric vector of the mortality risk scores, one per row of the input survival matrix.

https://onlinelibrary.wiley.com/doi/book/10.1002/9780470258019

22 grace

References

Sonabend, Raphael, Bender, Andreas, Vollmer, Sebastian (2022). “Avoiding C-hacking when eval-
uating survival distribution predictions with discrimination measures.” Bioinformatics. ISSN 1367-
4803, doi:10.1093/BIOINFORMATICS/BTAC451, https://academic.oup.com/bioinformatics/
advance-article/doi/10.1093/bioinformatics/btac451/6640155.

Ishwaran, Hemant, Kogalur, B U, Blackstone, H E, Lauer, S M, others (2008). “Random survival
forests.” The Annals of applied statistics, 2(3), 841-860.

Examples

n = 10 # number of observations
k = 50 # time points

Create the matrix with random values between @ and 1
mat = matrix(runif(n * k, min = @, max = 1), nrow = n, ncol = k)

transform it to a survival matrix
surv_mat = t(apply(mat, 1L, function(row) sort(row, decreasing = TRUE)))
colnames(surv_mat) = 1:k # time points

get mortality scores (the larger, the more risk)
mort = get_mortality(surv_mat)
mort

grace GRACE 1000 Dataset

Description

grace dataset from Hosmer et al. (2008)

Usage

grace

Format

id Identification Code

days Follow up time.

death Censoring indicator. 1 = Death. 0 = Censored.

revasc Revascularization Performed. 1 = Yes. 0 = No.
revascdays Days to revascularization after admission.

los Length of hospital stay (days).

age Age at admission (years).

sysbp Systolic blood pressure on admission (mm Hg).
stchange ST-segment deviation on index ECG. 1 = Yes. 0 = No.

https://doi.org/10.1093/BIOINFORMATICS/BTAC451
https://academic.oup.com/bioinformatics/advance-article/doi/10.1093/bioinformatics/btac451/6640155
https://academic.oup.com/bioinformatics/advance-article/doi/10.1093/bioinformatics/btac451/6640155

LearnerDens 23

Source

https://onlinelibrary.wiley.com/doi/book/10.1002/9780470258019

References

Hosmer, D.W. and Lemeshow, S. and May, S. (2008) Applied Survival Analysis: Regression Mod-
eling of Time to Event Data: Second Edition, John Wiley and Sons Inc., New York, NY

LearnerDens Density Learner

Description

This Learner specializes Learner for density estimation problems:

e task_type is set to "dens”
¢ Creates Predictions of class PredictionDens.
e Possible values for predict_types are:

— "pdf": Evaluates estimated probability density function for each value in the test set.
— "cdf": Evaluates estimated cumulative distribution function for each value in the test set.

Super class

mlr3::Learner -> LearnerDens

Methods

Public methods:

¢ LearnerDens$new()
¢ LearnerDens$clone()

Method new(): Creates a new instance of this R6 class.

Usage:

LearnerDens$new(
id,
param_set = ps(),
predict_types = "cdf",
feature_types = character(),
properties = character(),
packages = character(),
label = NA_character_,
man = NA_character_

)

Arguments:

https://onlinelibrary.wiley.com/doi/book/10.1002/9780470258019

24 LearnerDens

id (character(1))
Identifier for the new instance.
param_set (paradox::ParamSet)
Set of hyperparameters.
predict_types (character())
Supported predict types. Must be a subset of mlr_reflections$learner_predict_types.
feature_types (character())
Feature types the learner operates on. Must be a subset of mlr_reflections$task_feature_types.
properties (character())
Set of properties of the Learner. Must be a subset of mlr_reflections$learner_properties.
The following properties are currently standardized and understood by learners in mlr3:

* "missings”: The learner can handle missing values in the data.
* "weights": The learner supports observation weights.

* "importance”: The learner supports extraction of importance scores, i.e. comes with an
$importance() extractor function (see section on optional extractors in Learner).

* "selected_features”: The learner supports extraction of the set of selected features,

i.e. comes with a $selected_features() extractor function (see section on optional
extractors in Learner).

* "oob_error”: The learner supports extraction of estimated out of bag error, i.e. comes
with a oob_error () extractor function (see section on optional extractors in Learner).
packages (character())

Set of required packages. A warning is signaled by the constructor if at least one of the pack-

ages is not installed, but loaded (not attached) later on-demand via requireNamespace().
label (character(1))

Label for the new instance.

man (character(1))

String in the format [pkg]: : [topic] pointing to a manual page for this object. The refer-
enced help package can be opened via method $help().

Method clone(): The objects of this class are cloneable with this method.
Usage:
LearnerDens$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

See Also

Other Learner: LearnerSurv

Examples

library(mlr3)
get all density learners from mlr_learners:

lrns = mlr_learners$mget(mlr_learners$keys(”*dens"))
names(lrns)

get a specific learner from mlr_learners:

https://CRAN.R-project.org/package=mlr3

LearnerSurv 25

mlr_learners$get("dens.hist")
1rn("dens.hist")

LearnerSurv Survival Learner

Description

This Learner specializes Learner for survival problems:

e task_type is set to "surv”
¢ Creates Predictions of class PredictionSurv.

» Possible values for predict_types are:
— "distr"”: Predicts a probability distribution for each observation in the test set, uses
distr6.
— "1p": Predicts a linear predictor for each observation in the test set.
— "crank": Predicts a continuous ranking for each observation in the test set.
— "response”: Predicts a survival time for each observation in the test set.

Super class

mlr3::Learner -> LearnerSurv

Methods
Public methods:

e LearnerSurv$new()
e LearnerSurv$clone()

Method new(): Creates a new instance of this R6 class.

Usage:

LearnerSurv$new(
id,
param_set = ps(),
predict_types = "distr”,
feature_types = character(),
properties = character(),
packages = character(),
label = NA_character_,
man = NA_character_

)
Arguments:

id (character(1))
Identifier for the new instance.

26 LearnerSurv

param_set (paradox::ParamSet)
Set of hyperparameters.
predict_types (character())
Supported predict types. Must be a subset of m1r_reflections$learner_predict_types.
feature_types (character())
Feature types the learner operates on. Must be a subset of mlr_reflections$task_feature_types.
properties (character())
Set of properties of the Learner. Must be a subset of mlr_reflections$learner_properties.
The following properties are currently standardized and understood by learners in mlr3:
* "missings”: The learner can handle missing values in the data.
* "weights": The learner supports observation weights.
* "importance”: The learner supports extraction of importance scores, i.e. comes with an
$importance() extractor function (see section on optional extractors in Learner).
* "selected_features"”: The learner supports extraction of the set of selected features,
i.e. comes with a $selected_features() extractor function (see section on optional
extractors in Learner).
* "oob_error”: The learner supports extraction of estimated out of bag error, i.e. comes
with a oob_error () extractor function (see section on optional extractors in Learner).
packages (character())
Set of required packages. A warning is signaled by the constructor if at least one of the pack-
ages is not installed, but loaded (not attached) later on-demand via requireNamespace().
label (character(1))
Label for the new instance.
man (character(1))
String in the format [pkg]: : [topic] pointing to a manual page for this object. The refer-
enced help package can be opened via method $help().

Method clone(): The objects of this class are cloneable with this method.
Usage:
LearnerSurv$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.

See Also

Other Learner: LearnerDens

Examples

library(mlr3)

get all survival learners from mlr_learners:

lrns = mlr_learners$mget(mlr_learners$keys("*surv"))
names(lrns)

get a specific learner from mlr_learners:
mlr_learners$get("surv.coxph”)
1rn("surv.coxph")

https://CRAN.R-project.org/package=mlr3

MeasureDens

27

MeasureDens Density Measure

Description

This measure specializes Measure for survival problems.

e task_type is set to "dens”.

¢ Possible values for predict_type are "pdf” and "cdf".

Predefined measures can be found in the dictionary mlr3::mlr_measures.

Super class

mlr3::Measure -> MeasureDens

Methods

Public methods:

¢ MeasureDens$new()

Method new(): Creates a new instance of this R6 class.

Usage:

MeasureDens$new(
id,
param_set = ps(),
range,
minimize = NA,
aggregator NULL,
properties = character(),
predict_type = "pdf",
task_properties = character(),
packages = character(),
label = NA_character_,
man = NA_character_

)

Arguments:
id (character(1))
Identifier for the new instance.
param_set (paradox::ParamSet)
Set of hyperparameters.
range (numeric(2))
Feasible range for this measure as c(lower_bound, upper_bound)
infinite.

. Both bounds may be

28 MeasureSurv

minimize (logical(1))
Set to TRUE if good predictions correspond to small values, and to FALSE if good predictions
correspond to large values. If set to NA (default), tuning this measure is not possible.
aggregator (function(x))

Function to aggregate individual performance scores x where x is a numeric vector. If NULL,
defaults to mean().

properties (character())

Properties of the measure. Must be a subset of mlr_reflections$measure_properties. Sup-
ported by mlr3:

* "requires_task" (requires the complete Task),
* "requires_learner” (requires the trained Learner),
* "requires_train_set" (requires the training indices from the Resampling), and
* "na_score” (the measure is expected to occasionally return NA or NaN).
predict_type (character(1))
Required predict type of the Learner. Possible values are stored in mlr_reflections$learner_predict_types.

task_properties (character())
Required task properties, see Task.

packages (character())

Set of required packages. A warning is signaled by the constructor if at least one of the pack-

ages is not installed, but loaded (not attached) later on-demand via requireNamespace().
label (character(1))

Label for the new instance.

man (character(1))

String in the format [pkg]: : [topic] pointing to a manual page for this object. The refer-
enced help package can be opened via method $help().

See Also

Default density measures: dens.logloss

Other Measure: MeasureSuryv

MeasureSurv Survival Measure

Description
This measure specializes Measure for survival problems.
e task_type is setto "surv”.

 Possible values for predict_type are "distr”, "1p", "crank”, and "response”.

)

Predefined measures can be found in the dictionary mlr3::mlr_measures.

Super class

mlr3::Measure -> MeasureSurv

MeasureSurv 29

Methods
Public methods:

¢ MeasureSurv$new()
e MeasureSurv$print()

Method new(): Creates a new instance of this R6 class.

Usage:
MeasureSurv$new(
id,
param_set = ps(),
range,

minimize = NA,

aggregator = NULL,

properties = character(),
predict_type = "distr"”,
task_properties = character(),
packages = character(),

label = NA_character_,

man = NA_character_,

se = FALSE

)

Arguments:
id (character(1))
Identifier for the new instance.
param_set (paradox::ParamSet)
Set of hyperparameters.
range (numeric(2))
Feasible range for this measure as c(lower_bound, upper_bound). Both bounds may be
infinite.
minimize (logical(1))
Set to TRUE if good predictions correspond to small values, and to FALSE if good predictions
correspond to large values. If set to NA (default), tuning this measure is not possible.
aggregator (function(x))
Function to aggregate individual performance scores x where x is a numeric vector. If NULL,
defaults to mean().
properties (character())
Properties of the measure. Must be a subset of mlr_reflections$measure_properties. Sup-
ported by mlr3:
* "requires_task" (requires the complete Task),
* "requires_learner” (requires the trained Learner),
* "requires_train_set"” (requires the training indices from the Resampling), and
* "na_score” (the measure is expected to occasionally return NA or NaN).
predict_type (character(1))
Required predict type of the Learner. Possible values are stored in mlr_reflections$learner_predict_types.
task_properties (character())
Required task properties, see Task.

30 MeasureSurvAUC

packages (character())
Set of required packages. A warning is signaled by the constructor if at least one of the pack-
ages is not installed, but loaded (not attached) later on-demand via requireNamespace().

label (character(1))
Label for the new instance.

man (character(1))
String in the format [pkg]: : [topic] pointing to a manual page for this object. The refer-

enced help package can be opened via method $help().
se If TRUE then returns standard error of the measure otherwise returns the mean (default).

Method print(): Printer.

Usage:

MeasureSurv$print()

See Also

Default survival measures: surv.cindex

Other Measure: MeasureDens

MeasureSurvAUC Abstract Class for survAUC Measures

Description

This is an abstract class that should not be constructed directly.

Parameter details

e integrated (logical(1))
If TRUE (default), returns the integrated score (eg across time points); otherwise, not integrated
(eg at a single time point).

e times (numeric())
If integrated == TRUE then a vector of time-points over which to integrate the score. If

integrated == FALSE then a single time point at which to return the score.

Super classes

mlr3::Measure ->mlr3proba: :MeasureSurv -> MeasureSurvAUC

MeasureSurvAUC 31

Methods

Public methods:

* MeasureSurvAUC$new()
e MeasureSurvAUC$clone()

Method new(): Creates a new instance of this R6 class.

Usage:

MeasureSurvAUC$new(
id,
properties = character(),
label = NA_character_,
man = NA_character_,
param_set = ps()

)

Arguments:

id (character(1))
Identifier for the new instance.

properties (character())

Properties of the measure. Must be a subset of mlr_reflections$measure_properties. Sup-
ported by mlr3:

* "requires_task” (requires the complete Task),

* "requires_learner” (requires the trained Learner),

* "requires_train_set” (requires the training indices from the Resampling), and
* "na_score” (the measure is expected to occasionally return NA or NaN).

label (character(1))
Label for the new instance.

man (character(1))

String in the format [pkg]: : [topic] pointing to a manual page for this object. The refer-
enced help package can be opened via method $help().

param_set (paradox::ParamSet)
Set of hyperparameters.

Method clone(): The objects of this class are cloneable with this method.
Usage:
MeasureSurvAUC$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

32

mlr_graphs_crankcompositor

mlr_graphs_crankcompositor

Estimate Survival crank Predict Type Pipeline

Description

Wrapper around PipeOpCrankCompositor to simplify Graph creation.

Usage

pipeline_crankcompositor(

learner,

method = c("mort"),
overwrite = FALSE,

graph_learner

Arguments

learner

method

overwrite

graph_learner

Value

= FALSE

[mlr3::Learner]|[mlr3pipelines: :PipeOp]|[mlr3pipelines: :Graph]
Either a Learner which will be wrapped in mlr3pipelines::PipeOpLearner, a
PipeOp which will be wrapped in mlr3pipelines::Graph or a Graph itself. Un-
derlying Learner should be LearnerSurv.

(character(1))

Determines what method should be used to produce a continuous ranking from
the distribution. Currently only mort is supported, which is the sum of the
cumulative hazard, also called expected/ensemble mortality, see Ishwaran et al.
(2008). For more details, see get_mortality().

(logical(1))

If FALSE (default) and the prediction already has a crank prediction, then the
compositor returns the input prediction unchanged. If TRUE, then the crank will
be overwritten.

(logical(1))

If TRUE returns wraps the Graph as a GraphLearner otherwise (default) returns
as a Graph.

mlr3pipelines::Graph or mlr3pipelines::GraphLearner

Dictionary

This Graph can be instantiated via the dictionary mlr_graphs or with the associated sugar function

pplO:

mlr_graphs$get (”crankcompositor")
ppl("crankcompositor™)

mlr_graphs_distrcompositor 33

See Also

Other pipelines: mlr_graphs_distrcompositor,mlr_graphs_probregr,mlr_graphs_responsecompositor,
mlr_graphs_survaverager, mlr_graphs_survbagging, mlr_graphs_survtoclassif_IPCW, mlr_graphs_survtoclass:

Examples

Not run:
library(mlr3)
library(mlr3pipelines)

task = tsk("lung")
part = partition(task)

change the crank prediction type of a Cox's model predictions
grlrn = ppl(
"crankcompositor”,
learner = 1rn("surv.coxph"),
method = "mort”,
overwrite = TRUE,
graph_learner = TRUE
)
grlrn$train(task, part$train)
grlrn$predict(task, part$test)

End(Not run)

mlr_graphs_distrcompositor
Estimate Survival distr Predict Type Pipeline

Description

Wrapper around PipeOpDistrCompositor or PipeOpBreslow to simplify Graph creation.

[Experimental]
Usage
pipeline_distrcompositor(
learner,
estimator = "kaplan”,
form = "aft”,

overwrite = FALSE,
scale_lp = FALSE,
graph_learner = FALSE

34 mlr_graphs_distrcompositor

Arguments

learner [mlr3::Learner]|[mlr3pipelines::PipeOp]|[mlr3pipelines: :Graph]
Either a Learner which will be wrapped in mlr3pipelines::PipeOpLearner, a
PipeOp which will be wrapped in mlr3pipelines::Graph or a Graph itself. Un-
derlying Learner should be LearnerSurv.

estimator (character(1))
One of kaplan (default), nelson or breslow, corresponding to the Kaplan-
Meier, Nelson-Aalen and Breslow estimators respectively. Used to estimate the
baseline survival distribution.

form (character(1))
One of aft (default), ph, or po, corresponding to accelerated failure time, pro-
portional hazards, and proportional odds respectively. Used to determine the
form of the composed survival distribution. Ignored if estimator is breslow.

overwrite (logical(1))
If FALSE (default) then if the learner already has a distr, the compositor does
nothing. If TRUE then the distr is overwritten by the compositor if already
present, which may be required for changing the prediction distr from one
model form to another.

scale_lp (logical(1))
If TRUE and form is "aft”, the linear predictor scores are scaled before the
composition. Experimental option, see more details on PipeOpDistrCompositor.
Default is FALSE.

graph_learner (logical(1))
If TRUE returns wraps the Graph as a GraphLearner otherwise (default) returns
as a Graph.

Value

mlr3pipelines::Graph or mlr3pipelines::GraphLearner

Dictionary
This Graph can be instantiated via the dictionary mlr_graphs or with the associated sugar function

pplO):

mlr_graphs$get("distrcompositor”)
ppl(”"distrcompositor”)
See Also

Other pipelines: mlr_graphs_crankcompositor,mlr_graphs_probregr,mlr_graphs_responsecompositor,
mlr_graphs_survaverager, mlr_graphs_survbagging, mlr_graphs_survtoclassif_IPCW, mlr_graphs_survtoclass:

Examples

Not run:
library(mlr3pipelines)

mlr_graphs_probregr 35

let's change the distribution prediction of Cox (Breslow-based) to an AFT form:
task = tsk("rats")
grlrn = ppl(
"distrcompositor”,
learner = 1rn("surv.coxph"),
estimator = "kaplan”,
form = "aft",
overwrite = TRUE,
graph_learner = TRUE
)
grlrn$train(task)
grlrn$predict(task)

End(Not run)

mlr_graphs_probregr Estimate Regression distr Predict Type Pipeline

Description

Wrapper around PipeOpProbregr to simplify Graph creation.

[Experimental]
Usage
pipeline_probregr(
learner,
learner_se = NULL,
dist = "Uniform”,
graph_learner = FALSE
)
Arguments
learner [mlr3::Learner]|[mlr3pipelines: :PipeOp]|[mlr3pipelines: :Graph]

Either a Learner which will be wrapped in mlr3pipelines::PipeOpLearner, a
PipeOp which will be wrapped in mlr3pipelines::Graph or a Graph itself. Un-
derlying Learner should be LearnerRegr.

learner_se [mlr3::Learner]|[mlr3pipelines: :PipeOp]
Optional LearnerRegr with predict_type se to estimate the standard error. If left
NULL then learner must have se in predict_types.

dist (character(1))
Location-scale distribution to use for composition. Current possibilities are’
"Cauchy”, "Gumbel”, "Laplace”, "Logistic”, "Normal”, "Uniform".

Default is "Uniform”.

graph_learner (logical(1))
If TRUE returns wraps the Graph as a GraphLearner otherwise (default) returns
as a Graph.

36 mlr_graphs_probregr

Value

mlr3pipelines::Graph or mlr3pipelines::GraphLearner

Dictionary

This Graph can be instantiated via the dictionary mlr_graphs or with the associated sugar function
pplO:

mlr_graphs$get("probregr™)
ppl("probregr")

See Also

Other pipelines: mlr_graphs_crankcompositor,mlr_graphs_distrcompositor,mlr_graphs_responsecompositor,
mlr_graphs_survaverager, mlr_graphs_survbagging, mlr_graphs_survtoclassif_IPCW, mlr_graphs_survtoclass:

Examples

Not run:
library(mlr3)
library(mlr3pipelines)

task = tsk("boston_housing")

method 1 - same learner for response and se

pipe = ppl(
"probregr”,
learner = 1lrn("regr.featureless”, predict_type = "se"),
dist = "Uniform”

)

pipe$train(task)

pipe$predict(task)

method 2 - different learners for response and se
pipe = ppl(
"probregr”,
learner = lrn("regr.rpart”),
learner_se = 1rn("regr.featureless”, predict_type = "se"),
dist = "Normal”
)
pipe$train(task)
pipe$predict(task)

End(Not run)

mlr_graphs_responsecompositor 37

mlr_graphs_responsecompositor

Estimate Survival Time/Response Predict Type Pipeline

Description

Wrapper around PipeOpResponseCompositor to simplify Graph creation.

Usage

pipeline_responsecompositor(

learner,

method = "rmst"”,

tau = NULL,

add_crank = FALSE,
overwrite = FALSE,

graph_learner

Arguments

learner

method

tau

add_crank

overwrite

graph_learner

= FALSE

[mlr3::Learner]|[mlr3pipelines: :PipeOp]|[mlr3pipelines: :Graph]
Either a Learner which will be wrapped in mlr3pipelines::PipeOpLearner, a
PipeOp which will be wrapped in mlr3pipelines::Graph or a Graph itself. Un-
derlying Learner should be LearnerSurv.

(character(1))

Determines what method should be used to produce a survival time (response)
from the survival distribution. Available methods are "rmst” and "median”,
corresponding to the restricted mean survival time and the median survival time
respectively.

(numeric(1))

Determines the time point up to which we calculate the restricted mean survival
time (works only for the "rmst” method). If NULL (default), all the available
time points in the predicted survival distribution will be used.

(logical(1))
If TRUE then crank predict type will be set as -response (as higher survival
times correspond to lower risk). Works only if overwrite is TRUE.

(logical(1))

If FALSE (default) and the prediction already has a response prediction, then the
compositor returns the input prediction unchanged. If TRUE, then the response
(and the crank, if add_crank is TRUE) will be overwritten.

(logical(1))

If TRUE returns wraps the Graph as a GraphLearner otherwise (default) returns
as a Graph.

38 mlr_graphs_survaverager

Value

mlr3pipelines::Graph or mlr3pipelines::GraphLearner

Dictionary

This Graph can be instantiated via the dictionary mlr_graphs or with the associated sugar function
pplO:

mlr_graphs$get ("responsecompositor”)
ppl("responsecompositor™)

See Also

Other pipelines: mlr_graphs_crankcompositor,mlr_graphs_distrcompositor,mlr_graphs_probregr,
mlr_graphs_survaverager, mlr_graphs_survbagging, mlr_graphs_survtoclassif_IPCW, mlr_graphs_survtoclass:

Examples

Not run:
library(mlr3)
library(mlr3pipelines)

task
part

tsk("lung")
partition(task)

add survival time prediction type to the predictions of a Cox model
grlrn = ppl(
"responsecompositor”,
learner = lrn("surv.coxph"),
method = "rmst”,
overwrite = TRUE,
graph_learner = TRUE
)
grlrn$train(task, part$train)
grlrn$predict(task, part$test)

End(Not run)

mlr_graphs_survaverager
Survival Prediction Averaging Pipeline

Description

Wrapper around PipeOpSurvAvg to simplify Graph creation.

mlr_graphs_survaverager 39

Usage

pipeline_survaverager(learners, param_vals = list(), graph_learner = FALSE)

Arguments
learners (list())
List of LearnerSurvs to average.
param_vals (list())

Parameters, including weights, to pass to PipeOpSurvAvg.

graph_learner (logical(1))
If TRUE returns wraps the Graph as a GraphLearner otherwise (default) returns
as a Graph.

Value

mlr3pipelines::Graph or mlr3pipelines::GraphLearner

Dictionary
This Graph can be instantiated via the dictionary mlr_graphs or with the associated sugar function

pplO:

mlr_graphs$get("survaverager”)
ppl("survaverager")

See Also

Other pipelines: mlr_graphs_crankcompositor,mlr_graphs_distrcompositor,mlr_graphs_probregr,
mlr_graphs_responsecompositor, mlr_graphs_survbagging, mlr_graphs_survtoclassif_IPCW,
mlr_graphs_survtoclassif_disctime

Examples

Not run:
library(mlr3)
library(mlr3pipelines)

task = tsk("rats")

pipe = ppl(
"survaverager",
learners = lrns(c(”surv.kaplan”, "surv.coxph")),
param_vals = list(weights = c(0.1, 0.9)),
graph_learner = FALSE

)

pipe$train(task)

pipe$predict(task)

End(Not run)

40

mlr_graphs_survbagging

mlr_graphs_survbagging

Survival Prediction Averaging Pipeline

Description

Wrapper around PipeOpSubsample and PipeOpSurvAvg to simplify Graph creation.

Usage

pipeline_survbagging(

learner,
iterations =
frac = 0.7,
avg = TRUE,
weights = 1,
graph_learner

Arguments

learner

iterations

frac

avg

weights

graph_learner

Details

10,

= FALSE

[mlr3::Learner]|[mlr3pipelines: :PipeOp]|[mlr3pipelines: :Graph]
Either a Learner which will be wrapped in mlr3pipelines::PipeOpLearner, a
PipeOp which will be wrapped in mlr3pipelines::Graph or a Graph itself. Un-
derlying Learner should be LearnerSurv.

(integer(1))

Number of bagging iterations. Defaults to 10.

(numeric(1))

Percentage of rows to keep during subsampling. See PipeOpSubsample for more
information. Defaults to 0.7.

(logical(1))

If TRUE (default) predictions are aggregated with PipeOpSurvAvg, otherwise
returned as multiple predictions. Can only be FALSE if graph_learner = FALSE.
(numeric())

Weights for model avering, ignored if avg = FALSE. Default is uniform weight-
ing, see PipeOpSurvAvg.

(logical(1))

If TRUE returns wraps the Graph as a GraphLearner otherwise (default) returns
as a Graph.

Bagging (Bootstrap AGGregatING) is the process of bootstrapping data and aggregating the final
predictions. Bootstrapping splits the data into B smaller datasets of a given size and is performed
with PipeOpSubsample. Aggregation is the sample mean of deterministic predictions and a Mix-
tureDistribution of distribution predictions. This can be further enhanced by using a weighted
average by supplying weights.

mlr_graphs_survtoclassif_disctime 41

Value

mlr3pipelines::Graph or mlr3pipelines::GraphLearner

Dictionary

This Graph can be instantiated via the dictionary mlr_graphs or with the associated sugar function
ppl0:

mlr_graphs$get ("survbagging")
ppl("survbagging")

See Also

Other pipelines: mlr_graphs_crankcompositor, mlr_graphs_distrcompositor, mlr_graphs_probregr,
mlr_graphs_responsecompositor, mlr_graphs_survaverager,mlr_graphs_survtoclassif_IPCW,
mlr_graphs_survtoclassif_disctime

Examples

Not run:
library(mlr3)
library(mlr3pipelines)

task = tsk("rats")
pipe = ppl(
"survbagging”,
learner = lrn("surv.coxph"),
iterations = 5,
graph_learner = FALSE
)
pipe$train(task)
pipe$predict(task)

End(Not run)

mlr_graphs_survtoclassif_disctime
Survival to Classification Reduction using Discrete Time Pipeline

Description

Wrapper around PipeOpTaskSurvClassifDiscTime and PipeOpPredClassifSurvDiscTime to sim-
plify Graph creation.

42 mlr_graphs_survtoclassif_disctime

Usage
pipeline_survtoclassif_disctime(
learner,
cut = NULL,
max_time = NULL,
rhs = NULL,
graph_learner = FALSE
)
Arguments
learner LearnerClassif
Classification learner to fit the transformed TaskClassif. learner must have
predict_type of type "prob”.
cut (numeric())
Split points, used to partition the data into intervals. If unspecified, all unique
event times will be used. If cut is a single integer, it will be interpreted as the
number of equidistant intervals from 0 until the maximum event time.
max_time (numeric(1))

If cut is unspecified, this will be the last possible event time. All event times
after max_time will be administratively censored at max_time.

rhs (character(1))
Right-hand side of the formula to use with the learner. All features of the task
are available as well as tend the upper bounds of the intervals created by cut.
If rhs is unspecified, the formula of the task will be used.

graph_learner (logical(1))
If TRUE returns wraps the Graph as a GraphLearner otherwise (default) returns
as a Graph.
Details

The pipeline consists of the following steps:

1. PipeOpTaskSurvClassifDiscTime Converts TaskSurv to a TaskClassif.
2. A LearnerClassif is fit and predicted on the new TaskClassif.
3. PipeOpPredClassifSurvDiscTime transforms the resulting PredictionClassif to PredictionSurv.

4. Optionally: PipeOpModelMatrix is used to transform the formula of the task before fitting the
learner.
Value

mlr3pipelines::Graph or mlr3pipelines::GraphLearner

Dictionary

This Graph can be instantiated via the dictionary mlr_graphs or with the associated sugar function
pplO):

mlr_graphs_survtoclassif_IPCW 43

mlr_graphs$get ("survtoclassif_disctime")
ppl("survtoclassif_disctime")

References

Tutz, Gerhard, Schmid, Matthias (2016). Modeling Discrete Time-to-Event Data, series Springer
Series in Statistics. Springer International Publishing. ISBN 978-3-319-28156-8 978-3-319-28158-
2, http://1link.springer.com/10.1007/978-3-319-28158-2.

See Also

Other pipelines: mlr_graphs_crankcompositor,mlr_graphs_distrcompositor,mlr_graphs_probregr,
mlr_graphs_responsecompositor, mlr_graphs_survaverager,mlr_graphs_survbagging, mlr_graphs_survtoclass:

Examples

Not run:
library(mlr3)
library(mlr3learners)
library(mlr3pipelines)

task = tsk("lung"”)
part = partition(task)

grlrn = ppl(
"survtoclassif_disctime”,
learner = 1rn("classif.log_reg"),
cut = 4, # 4 equidistant time intervals
graph_learner = TRUE
)
grlrn$train(task, row_ids = part$train)
grlrn$predict(task, row_ids = part$test)

End(Not run)

mlr_graphs_survtoclassif_IPCW
Survival to Classification Reduction using IPCW Pipeline

Description

Wrapper around PipeOpTaskSurvClassif[PCW and PipeOpPredClassifSurvIPCW to simplify Graph
creation.

http://link.springer.com/10.1007/978-3-319-28158-2

44

Usage

mlr_graphs_survtoclassif_IPCW

pipeline_survtoclassif_IPCW(

learner,
tau = NULL,

eps = 0.001,

graph_learner = FALSE

Arguments

learner

tau

eps

graph_learner

Details

LearnerClassif
Classification learner to fit the transformed TaskClassif.

(numeric())
Predefined time point for [IPCW. Observations with time larger than 7 are cen-
sored. Must be less or equal to the maximum event time.

(numeric())

Small value to replace G(¢) = 0 censoring probabilities to prevent infinite
weights (a warning is triggered if this happens).

(logical(1))

If TRUE returns wraps the Graph as a GraphLearner otherwise (default) returns
as a Graph.

The pipeline consists of the following steps:

1. PipeOpTaskSurvClassifIPCW Converts TaskSurv to a TaskClassif.

2. A LearnerClassif is fit and predicted on the new TaskClassif.

3. PipeOpPredClassifSurvIPCW transforms the resulting PredictionClassif to PredictionSurv.

Value

mlr3pipelines::Graph or mlr3pipelines::GraphLearner

Dictionary

This Graph can be instantiated via the dictionary mlr_graphs or with the associated sugar function

pplO:

mlr_graphs$get (”"survtoclassif_IPCW")
ppl(”survtoclassif_IPCW")

Additional alias id for pipeline construction:

ppl(”survtoclassif_vock")

mlr_graphs_survtoregr 45

References

Vock, M D, Wolfson, Julian, Bandyopadhyay, Sunayan, Adomavicius, Gediminas, Johnson, E
P, Vazquez-Benitez, Gabriela, O’Connor, J P (2016). “Adapting machine learning techniques
to censored time-to-event health record data: A general-purpose approach using inverse proba-
bility of censoring weighting.” Journal of Biomedical Informatics, 61, 119—131. doi:10.1016/
j.jb1.2016.03.009, https://www.sciencedirect.com/science/article/pii/S1532046416000496.

See Also

Other pipelines: mlr_graphs_crankcompositor, mlr_graphs_distrcompositor, mlr_graphs_probregr,
mlr_graphs_responsecompositor, mlr_graphs_survaverager,mlr_graphs_survbagging, mlr_graphs_survtoclass:

Examples

Not run:
library(mlr3)
library(mlr3learners)
library(mlr3pipelines)

task = tsk("lung"”)
part = partition(task)

grlrn = ppl(
"survtoclassif_IPCW",
learner = 1rn("classif.rpart”),
tau = 500, # Observations after 500 days are censored
graph_learner = TRUE
)
grlrn$train(task, row_ids = part$train)
pred = grlrn$predict(task, row_ids = part$test)
pred # crank and distr at the cutoff time point included

score predictions
pred$score() # C-index

pred$score(msr(”surv.brier”, times = 500, integrated = FALSE)) # Brier score at tau

End(Not run)

mlr_graphs_survtoregr Survival to Regression Reduction Pipeline

Description

Wrapper around multiple PipeOps to help in creation of complex survival reduction methods. Three
reductions are currently implemented, see details. [Experimental]

https://doi.org/10.1016/j.jbi.2016.03.009
https://doi.org/10.1016/j.jbi.2016.03.009
https://www.sciencedirect.com/science/article/pii/S1532046416000496

46 mlr_graphs_survtoregr

Usage

pipeline_survtoregr(
method = 1,
regr_learner = 1rn("regr.featureless”),
distrcompose = TRUE,
distr_estimator = 1lrn("”surv.kaplan"),
regr_se_learner = NULL,
surv_learner = lrn("surv.coxph"),

survregr_params = list(method = "ipcw", estimator = "kaplan”, alpha = 1),
distrcompose_params = list(form = "aft"),
probregr_params = list(dist = "Uniform"),
learnercv_params = list(resampling.method = "insample”),
graph_learner = FALSE

)

Arguments
method (integer(1))

Reduction method to use, corresponds to those in details. Defaultis 1.
regr_learner LearnerRegr
Regression learner to fit to the transformed TaskRegr. If regr_se_learner is
NULL in method 2, then regr_learner must have se predict_type.
distrcompose (logical(1))
For method 3 if TRUE (default) then PipeOpDistrCompositor is utilised to trans-
form the deterministic predictions to a survival distribution.
distr_estimator
LearnerSurv
For methods 1 and 3 if distrcompose = TRUE then specifies the learner to esti-
mate the baseline hazard, must have predict_type distr.
regr_se_learner
LearnerRegr
For method 2 if regr_learner is not used to predict the se then a LearnerRegr
with se predict_type must be provided.
surv_learner LearnerSurv

For method 3, a LearnerSurv with 1p predict type to estimate linear predictors.
survregr_params

(1ist())
Parameters passed to PipeOpTaskSurvRegr, default are survival to regression
transformation via ipcw, with weighting determined by Kaplan-Meier and no
additional penalty for censoring.

distrcompose_params
(1ist())
Parameters passed to PipeOpDistrCompositor, default is accelerated failure time

model form.
probregr_params

(1ist())
Parameters passed to PipeOpProbregr, default is Uniform distribution for com-
position.

mlr_graphs_survtoregr 47

learnercv_params

(1ist())

Parameters passed to PipeOpLearnerCV, default is to use insampling.

graph_learner (logical(1))

Details

If TRUE returns wraps the Graph as a GraphLearner otherwise (default) returns
as a Graph.

Three reduction strategies are implemented, these are:

1. Survival to Deterministic Regression A

(a) PipeOpTaskSurvRegr Converts TaskSurv to TaskRegr.
(b) A LearnerRegr is fit and predicted on the new TaskRegr.
(c) PipeOpPredRegrSurv transforms the resulting PredictionRegr to PredictionSurv.

2. Survival to Probabilistic Regression

(a) PipeOpTaskSurvRegr Converts TaskSurv to TaskRegr.

(b) A LearnerRegr is fit on the new TaskRegr to predict response, optionally a second
LearnerRegr can be fit to predict se.

(c) PipeOpProbregr composes a distr prediction from the learner(s).
(d) PipeOpPredRegrSurv transforms the resulting PredictionRegr to PredictionSurv.

3. Survival to Deterministic Regression B

(a) PipeOpLearnerCV cross-validates and makes predictions from a linear LearnerSurv with
1p predict type on the original TaskSurv.

(b) PipeOpTaskSurvRegr transforms the 1p predictions into the target of a TaskRegr with the
same features as the original TaskSurv.

(c) A LearnerRegr is fit and predicted on the new TaskRegr.
(d) PipeOpPredRegrSurv transforms the resulting PredictionRegr to PredictionSurv.

(e) Optionally: PipeOpDistrCompositor is used to compose a distr predict_type from the
predicted 1p predict_type.

Interpretation:

1. Once a dataset has censoring removed (by a given method) then a regression learner can

predict the survival time as the response.

. This is a very similar reduction to the first method with the main difference being the distri-

bution composition. In the first case this is composed in a survival framework by assuming
a linear model form and baseline hazard estimator, in the second case the composition is in
a regression framework. The latter case could result in problematic negative predictions and
should therefore be interpreted with caution, however a wider choice of distributions makes it
a more flexible composition.

. This is a rarer use-case that bypasses censoring not be removing it but instead by first pre-

dicting the linear predictor from a survival model and fitting a regression model on these
predictions. The resulting regression predictions can then be viewed as the linear predictors
of the new data, which can ultimately be composed to a distribution.

48 mlr_learners_dens.hist

Examples

Not run:
library(mlr3)
library(mlr3pipelines)

task = tsk("rats")

method 1 with censoring deletion, compose to distribution
pipe = ppl(
"survtoregr”,
method = 1,
regr_learner = lrn("regr.featureless"”),
survregr_params = list(method = "delete")
)
pipe$train(task)
pipe$predict(task)

method 2 with censoring imputation (mrl), one regr learner
pipe = ppl(
"survtoregr”,
method = 2,
regr_learner = lrn("regr.featureless”, predict_type = "se"),
survregr_params = list(method = "mrl")
)
pipe$train(task)
pipe$predict(task)

method 3 with censoring omission and no composition, insample resampling
pipe = ppl(

"survtoregr”,

method = 3,

regr_learner = lrn("regr.featureless”),

distrcompose = FALSE,

surv_learner = 1rn("surv.coxph”),

survregr_params = list(method = "omission")

)
pipe$train(task)
pipe$predict(task)

End(Not run)

mlr_learners_dens.hist
Histogram Density Estimator

Description

Calls graphics: :hist() and the result is coerced to a distr6::Distribution

mlir_learners_dens.hist 49

Dictionary

This Learner can be instantiated via the dictionary mlr_learners or with the associated sugar function
Irn():

LearnerDensHistogram$new()
mlr_learners$get(”dens.hist")
1rn("dens.hist")

Meta Information
* Type: "dens"
* Predict Types: pdf, cdf, distr
» Feature Types: integer, numeric
* Properties: -

» Packages: mlr3 mlr3proba distré

Super classes

mlr3::Learner ->mlr3proba: :LearnerDens -> LearnerDensHistogram

Methods

Public methods:

* LearnerDensHistogram$new()
* LearnerDensHistogram$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
LearnerDensHistogram$new()

Method clone(): The objects of this class are cloneable with this method.

Usage:
LearnerDensHistogram$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other density estimators: mlr_learners_dens.kde

https://CRAN.R-project.org/package=mlr3
https://CRAN.R-project.org/package=mlr3proba
https://CRAN.R-project.org/package=distr6

50 mlir _learners_dens.kde

mlr_learners_dens.kde Kernel Density Estimator

Description

Calls kernels implemented in distr6 and the result is coerced to a distr6::Distribution.

Details

The default bandwidth uses Silverman’s rule-of-thumb for Gaussian kernels, however for non-
Gaussian kernels it is recommended to use mlr3tuning to tune the bandwidth with cross-validation.
Other density learners can be used for automated bandwidth selection. The default kernel is Epanech-
nikov (chosen to reduce dependencies).

Dictionary
This Learner can be instantiated via the dictionary mlr_learners or with the associated sugar function

Irn():

LearnerDensKDE$new()
mlr_learners$get("dens.kde")
lrn("dens.kde")

Meta Information

* Type: "dens"

* Predict Types: pdf, distr

* Feature Types: integer, numeric
* Properties: missings

* Packages: mlr3 mlr3proba distré

Super classes

mlr3::Learner ->mlr3proba: :LearnerDens -> LearnerDensKDE

Methods
Public methods:

* LearnerDenskKDE$new()
e LearnerDenskDE$clone()

Method new(): Creates a new instance of this R6 class.
Usage:
LearnerDensKDE$new()

Method clone(): The objects of this class are cloneable with this method.

https://CRAN.R-project.org/package=mlr3tuning
https://CRAN.R-project.org/package=mlr3
https://CRAN.R-project.org/package=mlr3proba
https://CRAN.R-project.org/package=distr6

mlr_learners_surv.coxph 51

Usage:
LearnerDenskKDE$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

References

Silverman, W. B (1986). Density Estimation for Statistics and Data Analysis. Chapman & Hall,
London.

See Also

Other density estimators: mlr_learners_dens.hist

mlr_learners_surv.coxph
Cox Proportional Hazards Survival Learner

Description
Calls survival: :coxph().
* Ipis predicted by survival: :predict.coxph()

e distr is predicted by survival: :survfit.coxph()

e crank is identical to 1p

Dictionary

This Learner can be instantiated via the dictionary mlr_learners or with the associated sugar function
Irn():

LearnerSurvCoxPH$new()
mlr_learners$get("surv.coxph™)
lrn("surv.coxph™)

Meta Information

* Task type: “surv”
* Predict Types: “crank”, “distr”, “Ip”

* Feature Types: “logical”, “integer”, “numeric”, “factor”

* Required Packages: mlr3, mlr3proba, survival, distr6

Parameters

https://CRAN.R-project.org/package=mlr3
https://CRAN.R-project.org/package=mlr3proba
https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=distr6

52 mlr_learners_surv.coxph

Id Type Default Levels Range
ties character efron efron, breslow, exact -
singular.ok logical TRUE TRUE, FALSE -

type character efron efron, aalen, kalbfleisch-prentice -
stype integer 2 [1,2]

Super classes

mlr3::Learner ->mlr3proba::LearnerSurv -> LearnerSurvCoxPH

Methods

Public methods:

e LearnerSurvCoxPH$new()

¢ LearnerSurvCoxPH$clone()

Method new(): Creates a new instance of this R6 class.

Usage:

LearnerSurvCoxPH$new()

Method clone(): The objects of this class are cloneable with this method.

Usage:
LearnerSurvCoxPH$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References
Cox DR (1972). “Regression Models and Life-Tables.” Journal of the Royal Statistical Society:
Series B (Methodological), 34(2), 187-202. doi:10.1111/§.25176161.1972.tb00899.x.

See Also

Other survival learners: mlr_learners_surv.kaplan, mlr_learners_surv.rpart

https://doi.org/10.1111/j.2517-6161.1972.tb00899.x

mlr_learners_surv.kaplan 53

mlr_learners_surv.kaplan
Kaplan-Meier Estimator Survival Learner

Description
Calls survival::survfit().

* distr is predicted by estimating the survival function with survival: :survfit()
* crank is predicted as the sum of the cumulative hazard function (expected mortality) derived
from the survival distribution, distr
Dictionary
This Learner can be instantiated via the dictionary mlr_learners or with the associated sugar function

Irn():

LearnerSurvKaplan$new()
mlr_learners$get(”surv.kaplan")
lrn("surv.kaplan”)

Meta Information

* Task type: “surv”

* Predict Types: “crank”, “distr”

CEINT3 CEINT3 CLINNT3

* Feature Types: “logical”, “integer”, “numeric”, “character”, “factor”, “ordered”

* Required Packages: mir3, mlr3proba, survival, distr6

Parameters

Empty ParamSet

Super classes

mlr3::Learner ->mlr3proba: :LearnerSurv -> LearnerSurvKaplan

Methods
Public methods:

e LearnerSurvKaplan$new()
e LearnerSurvKaplan$clone()

Method new(): Creates a new instance of this R6 class.
Usage:
LearnerSurvKaplan$new()

https://CRAN.R-project.org/package=mlr3
https://CRAN.R-project.org/package=mlr3proba
https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=distr6

54 mlir_learners_surv.rpart

Method clone(): The objects of this class are cloneable with this method.
Usage:
LearnerSurvKaplan$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.
References

Kaplan EL, Meier P (1958). “Nonparametric Estimation from Incomplete Observations.” Journal
of the American Statistical Association, 53(282), 457-481. doi:10.1080/01621459.1958.10501452.

See Also

Other survival learners: mlr_learners_surv.coxph, mlr_learners_surv.rpart

mlr_learners_surv.rpart
Rpart Survival Trees Survival Learner

Description
Calls rpart::rpart().

e crank is predicted using rpart: :predict.rpart()

Dictionary

This Learner can be instantiated via the dictionary mlr_learners or with the associated sugar function
Irn():

LearnerSurvRpart$new()
mlr_learners$get("surv.rpart”)
Irn("surv.rpart")

Meta Information

* Task type: “surv”
e Predict Types: “crank”

* Feature Types: “logical”, “integer”, “numeric”, “character”, “factor”, “ordered”

* Required Packages: mlr3, mlr3proba, rpart, distr6, survival

https://doi.org/10.1080/01621459.1958.10501452
https://CRAN.R-project.org/package=mlr3
https://CRAN.R-project.org/package=mlr3proba
https://CRAN.R-project.org/package=rpart
https://CRAN.R-project.org/package=distr6
https://CRAN.R-project.org/package=survival

mlr_learners_surv.rpart 55
Parameters
Id Type Default Levels Range
parms numeric 1 (—00, 00)
minbucket integer - [1,00)
minsplit integer 20 [1,00)
cp numeric 0.01 [0,1]
maxcompete integer 4 [0, 00)
maxsurrogate integer 5 [0, 00)
maxdepth integer 30 [1,30]
usesurrogate integer 2 [0, 2]
surrogatestyle integer 0 [0,1]
xval integer 10 [0, 00)
cost untyped - -
keep_model logical FALSE TRUE, FALSE -

Initial parameter values

* xval is set to 0 in order to save some computation time.

¢ model has been renamed to keep_model.

Super classes

mlr3::Learner ->mlr3proba: :LearnerSurv -> LearnerSurvRpart

Methods
Public methods:

e LearnerSurvRpart$new()

* LearnerSurvRpart$importance()

e LearnerSurvRpart$selected_features()
e LearnerSurvRpart$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
LearnerSurvRpart$new()

Method importance(): The importance scores are extracted from the model slot variable. importance.

Usage:
LearnerSurvRpart$importance()

Returns: Named numeric().

Method selected_features(): Selected features are extracted from the model slot frame$var.

Usage:

56 mlr_measures_dens.logloss

LearnerSurvRpart$selected_features()

Returns: character().

Method clone(): The objects of this class are cloneable with this method.

Usage:
LearnerSurvRpart$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References
Breiman L, Friedman JH, Olshen RA, Stone CJ (1984). Classification And Regression Trees. Rout-
ledge. doi:10.1201/9781315139470.

See Also

Other survival learners: mlr_learners_surv.coxph, mlr_learners_surv.kaplan

mlr_measures_dens.logloss
Log Loss Density Measure

Description

Calculates the cross-entropy, or logarithmic (log), loss.

Details

The Log Loss, in the context of probabilistic predictions, is defined as the negative log probability
density function, f, evaluated at the observed value, y,

L(f,y) = —log(f(y))

Dictionary

This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar
function msr():

MeasureDensLogloss$new()
mlr_measures$get("dens.logloss")
msr("dens.logloss")

https://doi.org/10.1201/9781315139470

mlr_measures_dens.logloss 57

Parameters

Id Type Default Range
eps numeric le-15 [0,1]

Meta Information
* Type: "density”
* Range: [0, 00)
* Minimize: TRUE

* Required prediction: pdf

Parameter details

e eps (numeric(1))
Very small number to substitute zero values in order to prevent errors in e.g. log(0) and/or
division-by-zero calculations. Default value is le-15.

Super classes

mlr3::Measure ->mlr3proba: :MeasureDens -> MeasureDensLogloss

Methods

Public methods:

e MeasureDenslLogloss$new()
* MeasureDensLogloss$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
MeasureDensLogloss$new()

Method clone(): The objects of this class are cloneable with this method.

Usage:
MeasureDensLogloss$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

58 mlr_measures_regr.logloss

mlr_measures_regr.logloss
Log Loss Regression Measure

Description

Calculates the cross-entropy, or logarithmic (log), loss.

Details

The Log Loss, in the context of probabilistic predictions, is defined as the negative log probability
density function, f, evaluated at the observed value, ¥,

L(f,y) = —log(f(y))

Parameters

Id Type Default Range
eps numeric le-15 [0,1]

Meta Information
» Type: "regr”
* Range: [0, 00)
* Minimize: TRUE

* Required prediction: distr

Parameter details
* eps (numeric(1))

Very small number to substitute zero values in order to prevent errors in e.g. log(0) and/or
division-by-zero calculations. Default value is le-15.

Super classes

mlr3::Measure ->mlr3: :MeasureRegr -> MeasureRegrLogloss

mlir_measures_surv.calib_alpha 59

Methods
Public methods:

* MeasureRegrLogloss$new()
* MeasureRegrLogloss$clone()
Method new(): Creates a new instance of this R6 class.
Usage:
MeasureRegrLogloss$new()
Method clone(): The objects of this class are cloneable with this method.

Usage:
MeasureRegrLogloss$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

mlr_measures_surv.calib_alpha
Van Houwelingen’s Calibration Alpha Survival Measure

Description

This calibration method is defined by estimating

a=> 6/> Hi(T)
where ¢ is the observed censoring indicator from the test data, H; is the predicted cumulative hazard,

and T; is the observed survival time (event or censoring).

The standard error is given by

Qae = exp(1/1/D6:)
The model is well calibrated if the estimated & coefficient (returned score) is equal to 1.

Dictionary

This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar
function msr():

MeasureSurvCalibrationAlpha$new()

mlr_measures$get(”surv.calib_alpha")
msr(“surv.calib_alpha")

Parameters

60

mlir_measures_surv.calib_alpha

Meta Information

Id Type Default Levels Range
eps numeric ~ 0.001 [0,1]
se logical FALSE TRUE, FALSE -
method character ratio ratio, diff -
truncate numeric Inf (=00, 00)
* Type: "surv”

* Range: (—o0, 00)
* Minimize: FALSE

* Required prediction: distr

Parameter details

e eps (numeric(1))

Very small number to substitute zero values in order to prevent errors in e.g. log(0) and/or
division-by-zero calculations. Default value is 0.001.

e se (logical(1))

If TRUE then return standard error of the measure, otherwise the score itself (default).

* method (character(1))

Returns & if equal to ratio (default) and |1 — &| if equal to diff. With diff, the output score
can be minimized and for example be used for tuning purposes. This parameter takes effect
only if se is FALSE.

* truncate (double(1))

This parameter controls the upper bound of the output score. We use truncate = Inf by
default (so no truncation) and it’s up to the user to set this up reasonably given the chosen
method. Note that truncation may severely limit automated tuning with this measure using
method = diff.

Super classes

mlr3::Measure ->mlr3proba: :MeasureSurv ->MeasureSurvCalibrationAlpha

Methods

Public methods:

e MeasureSurvCalibrationAlpha$new()
¢ MeasureSurvCalibrationAlpha$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
MeasureSurvCalibrationAlpha$new(method = "ratio")

mlir_measures_surv.calib_beta 61

Arguments:

method defines which output score to return, see "Parameter details" section.

Method clone(): The objects of this class are cloneable with this method.

Usage:
MeasureSurvCalibrationAlpha$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

Van Houwelingen, C. H (2000). ‘“Validation, calibration, revision and combination of prognostic
survival models.” Statistics in Medicine, 19(24), 3401-3415. doi:10.1002/10970258(20001230)19:24<3401::AID-
SIM554>3.0.CO;22.

See Also

Other survival measures: mlr_measures_surv.calib_beta, mlr_measures_surv.chambless_auc,
mlr_measures_surv.cindex, mlr_measures_surv.dcalib, mlr_measures_surv.graf, mlr_measures_surv.hung_auc,
mlr_measures_surv.intlogloss, mlr_measures_surv.logloss, mlr_measures_surv.mae, mlr_measures_surv.mse,
mlr_measures_surv.nagelk_r2,mlr_measures_surv.oquigley_r2,mlr_measures_surv.rcll,
mlr_measures_surv.rmse, mlr_measures_surv.schmid, mlr_measures_surv.song_auc, mlr_measures_surv.song_tl
mlr_measures_surv.song_tpr, mlr_measures_surv.uno_auc, mlr_measures_surv.uno_tnr,
mlr_measures_surv.uno_tpr, mlr_measures_surv.xu_r2

Other calibration survival measures: mlr_measures_surv.calib_beta, mlr_measures_surv.dcalib

Other distr survival measures: mlr_measures_surv.dcalib, mlr_measures_surv.graf,mlr_measures_surv.intloglos
mlr_measures_surv.logloss, mlr_measures_surv.rcll, mlr_measures_surv.schmid

mlr_measures_surv.calib_beta
Van Houwelingen’s Calibration Beta Survival Measure

Description

This calibration method fits the predicted linear predictor from a Cox PH model as the only predictor
in a new Cox PH model with the test data as the response.

h(t|z) = ho(t)exp(B x Ip)

where [p is the predicted linear predictor on the test data.
The model is well calibrated if the estimated B coefficient (returned score) is equal to 1.

Note: Assumes fitted model is Cox PH (i.e. has an 1p prediction type).

https://doi.org/10.1002/1097-0258%2820001230%2919%3A24%3C3401%3A%3AAID-SIM554%3E3.0.CO%3B2-2
https://doi.org/10.1002/1097-0258%2820001230%2919%3A24%3C3401%3A%3AAID-SIM554%3E3.0.CO%3B2-2

62 mlir_measures_surv.calib_beta

Dictionary

This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar
function msr():

MeasureSurvCalibrationBeta$new()
mlr_measures$get(”surv.calib_beta")
msr("surv.calib_beta")

Parameters
Id Type Default Levels
se logical FALSE TRUE, FALSE
method character ratio ratio, diff

Meta Information

* Type: "surv”

* Range: (—o0, 00)

* Minimize: FALSE

* Required prediction: 1p

Parameter details

e se (logical(1))
If TRUE then return standard error of the measure which is the standard error of the estimated
coefficient se 4 from the Cox PH model. If FALSE (default) then returns the estimated coeffi-

cient B
* method (9haracter(1)) .
Returns (3 if equal to ratio (default) and |1 — 5| if diff. With diff, the output score can be

minimized and for example be used for tuning purposes. This parameter takes effect only if
se is FALSE.

Super classes

mlr3::Measure -> mlr3proba: :MeasureSurv -> MeasureSurvCalibrationBeta

Methods
Public methods:

¢ MeasureSurvCalibrationBeta$new()
e MeasureSurvCalibrationBeta$clone()

Method new(): Creates a new instance of this R6 class.

mlir_measures_surv.chambless_auc 63

Usage:

MeasureSurvCalibrationBeta$new(method = "ratio")

Arguments:

method defines which output score to return, see "Parameter details" section.

Method clone(): The objects of this class are cloneable with this method.

Usage:

MeasureSurvCalibrationBeta$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

Van Houwelingen, C.

H (2000). “Validation, calibration, revision and combination of prognostic

survival models.” Statistics in Medicine, 19(24), 3401-3415. doi:10.1002/10970258(20001230)19:24<3401::AID-

SIM554>3.0.CO;22.

See Also

Other survival measures: mlr_measures_surv.calib_alpha, mlr_measures_surv.chambless_auc,

mlr_measures_surv.
mlr_measures_surv.
mlr_measures_surv.
mlr_measures_surv.
mlr_measures_surv.
mlr_measures_surv.

cindex, mlr_measures_surv.dcalib, mlr_measures_surv.graf, mlr_measures_surv.hung_auc,
intlogloss, mlr_measures_surv.logloss, mlr_measures_surv.mae, mlr_measures_surv.mse,
nagelk_r2, mlr_measures_surv.oquigley_r2, mlr_measures_surv.rcll,

rmse, mlr_measures_surv.schmid, mlr_measures_surv.song_auc, mlr_measures_surv.song_t
song_tpr, mlr_measures_surv.uno_auc, mlr_measures_surv.uno_tnr,

uno_tpr, mlr_measures_surv.xu_r2

Other calibration survival measures: mlr_measures_surv.calib_alpha, mlr_measures_surv.dcalib

Other Ip survival measures: mlr_measures_surv.chambless_auc, mlr_measures_surv.hung_auc,

mlr_measures_surv.
mlr_measures_surv.
mlr_measures_surv.

nagelk_r2, mlr_measures_surv.oquigley_r2, mlr_measures_surv.song_auc,
song_tnr,mlr_measures_surv.song_tpr,mlr_measures_surv.uno_auc,
uno_tnr, mlr_measures_surv.uno_tpr, mlr_measures_surv.xu_r2

mlr_measures_surv.chambless_auc

Chambless and Diao’s AUC Survival Measure

Description

Calls survAUC: : AUC.cd().

Assumes Cox PH model specification.

Details

All measures implemented from survAUC should be used with care, we are aware of problems in
implementation that sometimes cause fatal errors in R. In future updates some of these measures
may be re-written and implemented directly in mlr3proba.

https://doi.org/10.1002/1097-0258%2820001230%2919%3A24%3C3401%3A%3AAID-SIM554%3E3.0.CO%3B2-2
https://doi.org/10.1002/1097-0258%2820001230%2919%3A24%3C3401%3A%3AAID-SIM554%3E3.0.CO%3B2-2
https://CRAN.R-project.org/package=survAUC

64 mlr_measures_surv.chambless_auc

Dictionary

This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar
function msr():

MeasureSurvChamblessAUC$new()
mlr_measures$get("”surv.chambless_auc")
msr("surv.chambless_auc")

Parameters
Id Type Default Levels
integrated logical TRUE TRUE, FALSE
times untyped -

Meta Information
e Type: "surv”
* Range: [0, 1]
* Minimize: FALSE
* Required prediction: 1p

Parameter details

e integrated (logical(1))
If TRUE (default), returns the integrated score (eg across time points); otherwise, not integrated
(eg at a single time point).

e times (numeric())
If integrated == TRUE then a vector of time-points over which to integrate the score. If
integrated == FALSE then a single time point at which to return the score.

Super classes

mlr3::Measure->mlr3proba: :MeasureSurv->mlr3proba: :MeasureSurvAUC ->MeasureSurvChamblessAUC

Methods

Public methods:

e MeasureSurvChamblessAUC$new()
¢ MeasureSurvChamblessAUC$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
MeasureSurvChamblessAUC$new()

mlr_measures_surv.cindex 65

Method clone(): The objects of this class are cloneable with this method.

Usage:
MeasureSurvChamblessAUC$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

Chambless LE, Diao G (2006). “Estimation of time-dependent area under the ROC curve for long-
term risk prediction.” Statistics in Medicine, 25(20), 3474-3486. doi:10.1002/sim.2299.

See Also

Other survival measures: mlr_measures_surv.calib_alpha, mlr_measures_surv.calib_beta,
mlr_measures_surv.cindex, mlr_measures_surv.dcalib, mlr_measures_surv.graf, mlr_measures_surv.hung_auc,
mlr_measures_surv.intlogloss, mlr_measures_surv.logloss, mlr_measures_surv.mae, mlr_measures_surv.mse,
mlr_measures_surv.nagelk_r2,mlr_measures_surv.oquigley_r2,mlr_measures_surv.rcll,
mlr_measures_surv.rmse, mlr_measures_surv.schmid, mlr_measures_surv.song_auc, mlr_measures_surv.song_t!
mlr_measures_surv.song_tpr, mlr_measures_surv.uno_auc, mlr_measures_surv.uno_tnr,
mlr_measures_surv.uno_tpr, mlr_measures_surv.xu_r2

Other AUC survival measures: mlr_measures_surv.hung_auc, mlr_measures_surv.song_auc,
mlr_measures_surv.song_tnr, mlr_measures_surv.song_tpr,mlr_measures_surv.uno_auc,
mlr_measures_surv.uno_tnr, mlr_measures_surv.uno_tpr

Other lp survival measures: mlr_measures_surv.calib_beta, mlr_measures_surv.hung_auc,
mlr_measures_surv.nagelk_r2,mlr_measures_surv.oquigley_r2,mlr_measures_surv.song_auc,
mlr_measures_surv.song_tnr, mlr_measures_surv.song_tpr,mlr_measures_surv.uno_auc,
mlr_measures_surv.uno_tnr, mlr_measures_surv.uno_tpr, mlr_measures_surv.xu_r2

mlr_measures_surv.cindex
Concordance Statistics Survival Measure

Description

Calculates weighted concordance statistics, which, depending on the chosen weighting method
(weight_meth) and tied times parameter (tiex), are equivalent to several proposed methods. By
default, no weighting is applied and this is equivalent to Harrell’s C-index.

Details

For the Kaplan-Meier estimate of the training survival distribution (.5), and the Kaplan-Meier esti-
mate of the training censoring distribution (G), we have the following options for time-independent
concordance statistics (C-indexes) given the weighted method:

weight_meth:

e "I" = No weighting. (Harrell)

https://doi.org/10.1002/sim.2299

66 mlir _measures_surv.cindex

* "GH" = Gonen and Heller’s Concordance Index

* "G" = Weights concordance by 1/G.

* "G2" = Weights concordance by 1/G2. (Uno et al.)

* "SG" = Weights concordance by S/G (Shemper et al.)
* "S" = Weights concordance by .S (Peto and Peto)

The last three require training data. "GH" is only applicable to LearnerSurvCoxPH.

The implementation is slightly different from survival::concordance. Firstly this implementation is
faster, and secondly the weights are computed on the training dataset whereas in survival::concordance
the weights are computed on the same testing data.

Dictionary

This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar
function msr():

MeasureSurvCindex$new()
mlr_measures$get("surv.cindex")
msr("surv.cindex")

Parameters
Id Type Default Levels Range
t_max numeric - [0, 00)
p_max numeric - [0,1]
weight_meth character 1 I,G,G2,SG,S,GH -
tiex numeric 0.5 [0,1]
eps numeric ~ 0.001 [0,1]

Meta Information
e Type: "surv”
* Range: [0, 1]
e Minimize: FALSE

* Required prediction: crank

Parameter details

e eps (numeric(1))
Very small number to substitute zero values in order to prevent errors in e.g. log(0) and/or
division-by-zero calculations. Default value is 0.001.

e t_max (numeric(1))
Cutoff time (i.e. time horizon) to evaluate concordance up to.

mlr_measures_surv.cindex 67

e p_max (numeric(1))
The proportion of censoring to evaluate concordance up to in the given dataset. When t_max
is specified, this parameter is ignored.

e weight_meth (character(1))
Method for weighting concordance. Default "I" is Harrell’s C. See details.

e tiex (numeric(1))
Weighting applied to tied rankings, default is to give them half (0.5) weighting.

Super classes

mlr3::Measure ->mlr3proba: :MeasureSurv -> MeasureSurvCindex

Methods

Public methods:

* MeasureSurvCindex$new()
e MeasureSurvCindex$clone()

Method new(): This is an abstract class that should not be constructed directly.

Usage:
MeasureSurvCindex$new()

Method clone(): The objects of this class are cloneable with this method.
Usage:
MeasureSurvCindex$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

References

Peto, Richard, Peto, Julian (1972). “Asymptotically efficient rank invariant test procedures.” Jour-
nal of the Royal Statistical Society: Series A (General), 135(2), 185-198.

Harrell, E F, Califf, M R, Pryor, B D, Lee, L K, Rosati, A R (1982). “Evaluating the yield of medical
tests.” Jama, 247(18), 2543-2546.

Goenen M, Heller G (2005). “Concordance probability and discriminatory power in proportional
hazards regression.” Biometrika, 92(4), 965-970. doi:10.1093/biomet/92.4.965.

Schemper, Michael, Wakounig, Samo, Heinze, Georg (2009). “The estimation of average haz-
ard ratios by weighted Cox regression.” Statistics in Medicine, 28(19), 2473-2489. doi:10.1002/
sim.3623.

Uno H, Cai T, Pencina MJ, D’ Agostino RB, Wei LJ (2011). “On the C-statistics for evaluating
overall adequacy of risk prediction procedures with censored survival data.” Statistics in Medicine,
n/a—n/a. doi:10.1002/sim.4154.

https://doi.org/10.1093/biomet/92.4.965
https://doi.org/10.1002/sim.3623
https://doi.org/10.1002/sim.3623
https://doi.org/10.1002/sim.4154

68 mlir_measures_surv.dcalib

See Also

Other survival measures: mlr_measures_surv.calib_alpha, mlr_measures_surv.calib_beta,
mlr_measures_surv.chambless_auc, mlr_measures_surv.dcalib, mlr_measures_surv.graf,
mlr_measures_surv.hung_auc, mlr_measures_surv.intlogloss, mlr_measures_surv.logloss,
mlr_measures_surv.mae, mlr_measures_surv.mse, mlr_measures_surv.nagelk_r2, mlr_measures_surv.oquigley_|
mlr_measures_surv.rcll, mlr_measures_surv.rmse, mlr_measures_surv.schmid, mlr_measures_surv.song_auc,
mlr_measures_surv.song_tnr,mlr_measures_surv.song_tpr,mlr_measures_surv.uno_auc,
mlr_measures_surv.uno_tnr, mlr_measures_surv.uno_tpr, mlr_measures_surv.xu_r2

Examples

library(mlr3)

task = tsk("rats")

learner = 1rn("surv.coxph™)

part = partition(task) # train/test split
learner$train(task, part$train)

p = learner$predict(task, part$test)

Harrell's C-index
p$score(msr(”surv.cindex")) # same as “p$score()”

Uno's C-index
p$score(msr("surv.cindex”, weight_meth = "G2"),
task = task, train_set = part$train)

Harrell's C-index evaluated up to a specific time horizon
p$score(msr(”surv.cindex"”, t_max = 97))

Harrell's C-index evaluated up to the time corresponding to 30% of censoring
p$score(msr(”surv.cindex”, p_max = 0.3))

mlr_measures_surv.dcalib
D-Calibration Survival Measure

Description

This calibration method is defined by calculating the following statistic:

s = B/nZ(Pi —n/B)?

7

where B is number of ’buckets’ (that equally divide [0, 1] into intervals), n is the number of pre-
dictions, and P; is the observed proportion of observations in the th interval. An observation is
assigned to the ith bucket, if its predicted survival probability at the time of event falls within the
corresponding interval. This statistic assumes that censoring time is independent of death time.

A model is well-calibrated if s ~ Unif(B), tested with chisq. test (p > 0.05 if well-calibrated).
Model i is better calibrated than model j if s(i) < s(j), meaning that lower values of this measure
are preferred.

mlir_measures_surv.dcalib 69

Details

This measure can either return the test statistic or the p-value from the chisq.test. The former
is useful for model comparison whereas the latter is useful for determining if a model is well-
calibrated. If chisq = FALSE and s is the predicted value then you can manually compute the p.value
with pchisq(s, B- 1, lower.tail = FALSE).

NOTE: This measure is still experimental both theoretically and in implementation. Results should
therefore only be taken as an indicator of performance and not for conclusive judgements about
model calibration.

Dictionary
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar

function msr():

MeasureSurvDCalibration$new()
mlr_measures$get(”surv.dcalib")
msr("surv.dcalib”)

Parameters
Id Type Default Levels Range
B integer 10 [1,00)
chisq logical FALSE TRUE, FALSE -
truncate numeric Inf [0, 0)
Meta Information
* Type: "surv”
* Range: [0, 00)

e Minimize: TRUE

* Required prediction: distr

Parameter details

e B(integer (1))
Number of buckets to test for uniform predictions over. Default of 10 is recommended by
Haider et al. (2020). Changing this parameter affects truncate.

e chisq (logical(1))
If TRUE returns the p-value of the corresponding chisq.test instead of the measure. Default is
FALSE and returns the statistic s. You can manually get the p-value by executing pchisq(s,
B -1, lower.tail = FALSE). The null hypothesis is that the model is D-calibrated.

70 mlir_measures_surv.dcalib

e truncate (double(1))
This parameter controls the upper bound of the output statistic, when chisq is FALSE. We use
truncate = Inf by default but 10 may be sufficient for most purposes, which corresponds to
a p-value of 0.35 for the chisq.test using B = 10 buckets. Values > 10 translate to even lower
p-values and thus less calibrated models. If the number of buckets B changes, you probably
will want to change the truncate value as well to correspond to the same p-value significance.
Note that truncation may severely limit automated tuning with this measure.

Super classes

mlr3::Measure -> mlr3proba: :MeasureSurv -> MeasureSurvDCalibration

Methods
Public methods:

* MeasureSurvDCalibration$new()
* MeasureSurvDCalibration$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
MeasureSurvDCalibration$new()

Method clone(): The objects of this class are cloneable with this method.
Usage:
MeasureSurvDCalibration$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

References

Haider, Humza, Hoehn, Bret, Davis, Sarah, Greiner, Russell (2020). “Effective Ways to Build and
Evaluate Individual Survival Distributions.” Journal of Machine Learning Research, 21(85), 1-63.
https://jmlr.org/papers/v21/18-772.html.

See Also

Other survival measures: mlr_measures_surv.calib_alpha, mlr_measures_surv.calib_beta,
mlr_measures_surv.chambless_auc, mlr_measures_surv.cindex, mlr_measures_surv.graf,
mlr_measures_surv.hung_auc, mlr_measures_surv.intlogloss, mlr_measures_surv.logloss,
mlr_measures_surv.mae, mlr_measures_surv.mse, mlr_measures_surv.nagelk_r2,mlr_measures_surv.oquigley_|
mlr_measures_surv.rcll, mlr_measures_surv.rmse, mlr_measures_surv.schmid, mlr_measures_surv.song_auc,
mlr_measures_surv.song_tnr, mlr_measures_surv.song_tpr,mlr_measures_surv.uno_auc,
mlr_measures_surv.uno_tnr, mlr_measures_surv.uno_tpr, mlr_measures_surv.xu_r2

Other calibration survival measures: mlr_measures_surv.calib_alpha, mlr_measures_surv.calib_beta

Other distr survival measures: mlr_measures_surv.calib_alpha, mlr_measures_surv.graf,
mlr_measures_surv.intlogloss, mlr_measures_surv.logloss, mlr_measures_surv.rcll, mlr_measures_surv.schi

https://jmlr.org/papers/v21/18-772.html

mlir_measures_surv.graf 71

mlr_measures_surv.graf
Integrated Brier Score Survival Measure

Description

Calculates the Integrated Survival Brier Score (ISBS), Integrated Graf Score or squared survival
loss.

Details

This measure has two dimensions: (test set) observations and time points. For a specific individual
1 from the test set, with observed survival outcome (¢;, ;) (time and censoring indicator) and pre-
dicted survival function S;(t), the observation-wise loss integrated across the time dimension up to
the time cutoff 7%, is:

(ti<T,6=1) (1—=8i(7))%(t; > 1)

G(t:) * G i

™ a2
Lisps(Siti, 0;) =1(t; < T*)/ St
0

where G is the Kaplan-Meier estimate of the censoring distribution.
The re-weighted ISBS (RISBS) is:

T g2 < _q. 2Y(+.
Litsps(Sitio5) = 0il(t: < T*)/ St < 7) + (1= Si(r)"I{ti > 7)
0

G(t:)
which is always weighted by G(t;) and is equal to zero for a censored subject.
To get a single score across all N observations of the test set, we return the average of the time-

integrated observation-wise scores:

N

> L(Si,ti, 6;)/N

i=1

Dictionary

This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar
function msr():

MeasureSurvGraf$new()
mlr_measures$get(”surv.graf”)
msr("surv.graf”)

mlir_measures_surv.graf

Parameters
Id Type Default Levels Range
integrated logical =~ TRUE TRUE, FALSE -
times untyped - -
t_max numeric - [0, 00)
p_max numeric - [0,1]
method integer 2 [1,2]
se logical FALSE TRUE, FALSE -
proper logical FALSE TRUE, FALSE -
eps numeric 0.001 [0,1]
ERV logical FALSE TRUE, FALSE -
Meta Information
e Type: "surv”
* Range: [0, 00)

e Minimize: TRUE

* Required prediction: distr

Parameter details

* integrated (logical(1))
If TRUE (default), returns the integrated score (eg across time points); otherwise, not integrated
(eg at a single time point).

e times (numeric())
If integrated == TRUE then a vector of time-points over which to integrate the score. If
integrated == FALSE then a single time point at which to return the score.

e t_max (numeric(1))
Cutoff time 7* (i.e. time horizon) to evaluate the measure up to. Mutually exclusive with
p_max or times. This will effectively remove test observations for which the observed time
(event or censoring) is strictly more than t_max. It’s recommended to set t_max to avoid
division by eps, see Details. If t_max is not specified, an Inf time horizon is assumed.

e p_max (numeric(1))
The proportion of censoring to integrate up to in the given dataset. Mutually exclusive with
times or t_max.

* method (integer (1))
If integrate == TRUE, this selects the integration weighting method. method == 1 corre-
sponds to weighting each time-point equally and taking the mean score over discrete time-
points. method == 2 corresponds to calculating a mean weighted by the difference between
time-points. method == 2 is the default value, to be in line with other packages.

mlir_measures_surv.graf 73

e se (logical(1))
If TRUE then returns standard error of the measure otherwise returns the mean across all in-
dividual scores, e.g. the mean of the per observation scores. Default is FALSE (returns the
mean).

e proper (logical(1))
If TRUE then weights scores by the censoring distribution at the observed event time, which
results in a strictly proper scoring rule if censoring and survival time distributions are indepen-
dent and a sufficiently large dataset is used. If FALSE then weights scores by the Graf method
which is the more common usage but the loss is not proper.

* eps (numeric(1))
Very small number to substitute zero values in order to prevent errors in e.g. log(0) and/or
division-by-zero calculations. Default value is 0.001.

* ERV (logical(1))
If TRUE then the Explained Residual Variation method is applied, which means the score is
standardized against a Kaplan-Meier baseline. Default is FALSE.

Properness

RISBS is strictly proper when the censoring distribution is independent of the survival distribution
and when G(¢) is fit on a sufficiently large dataset. ISBS is never proper. Use proper = FALSE
for ISBS and proper = TRUE for RISBS. Results may be very different if many observations are
censored at the last observed time due to division by 1/eps in proper = TRUE.

Time points used for evaluation

If the times argument is not specified (NULL), then the unique (and sorted) time points from the
test set are used for evaluation of the time-integrated score. This was a design decision due to
the fact that different predicted survival distributions S(¢) usually have a discretized time domain
which may differ, i.e. in the case the survival predictions come from different survival learners.
Essentially, using the same set of time points for the calculation of the score minimizes the bias that
would come from using different time points. We note that S(t) is by default constantly interpolated
for time points that fall outside its discretized time domain.

Naturally, if the times argument is specified, then exactly these time points are used for evaluation.
A warning is given to the user in case some of the specified times fall outside of the time point
range of the test set. The assumption here is that if the test set is large enough, it should have a time
domain/range similar to the one from the train set, and therefore time points outside that domain
might lead to interpolation or extrapolation of S(t).

Implementation differences

If comparing the integrated graf score to other packages, e.g. pec, then method = 2 should be used.
However the results may still be very slightly different as this package uses survfit to estimate the
censoring distribution, in line with the Graf 1999 paper; whereas some other packages use prodlim
with reverse = TRUE (meaning Kaplan-Meier is not used).

https://CRAN.R-project.org/package=pec

74 mlir_measures_surv.graf

Data used for Estimating Censoring Distribution

If task and train_set are passed to $score then G(t) is fit on training data, otherwise testing
data. The first is likely to reduce any bias caused by calculating parts of the measure on the test data
it is evaluating. The training data is automatically used in scoring resamplings.

Time Cutoff Details

If t_max or p_max is given, then G(¢) will be fitted using all observations from the train set (or test
set) and only then the cutoff time will be applied. This is to ensure that more data is used for fitting
the censoring distribution via the Kaplan-Meier. Setting the t_max can help alleviate inflation of
the score when proper is TRUE, in cases where an observation is censored at the last observed time
point. This results in G(¢,,,4.) = 0 and the use of eps instead (when t_max is NULL).

Super classes

mlr3::Measure ->mlr3proba: :MeasureSurv -> MeasureSurvGraf

Methods

Public methods:

¢ MeasureSurvGraf$new()

* MeasureSurvGraf$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
MeasureSurvGraf$new(ERV = FALSE)
Arguments:

ERV (logical(1))
Standardize measure against a Kaplan-Meier baseline (Explained Residual Variation)

Method clone(): The objects of this class are cloneable with this method.

Usage:
MeasureSurvGraf$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

References

Graf E, Schmoor C, Sauerbrei W, Schumacher M (1999). “Assessment and comparison of prog-
nostic classification schemes for survival data.”” Statistics in Medicine, 18(17-18), 2529-2545.
doi:10.1002/(sici)10970258(19990915/30)18:17/18<2529::aidsim274>3.0.co;25.

https://doi.org/10.1002/%28sici%291097-0258%2819990915/30%2918%3A17/18%3C2529%3A%3Aaid-sim274%3E3.0.co%3B2-5

mlr_measures_surv.hung_auc 75

See Also

Other survival measures: mlr_measures_surv.calib_alpha, mlr_measures_surv.calib_beta,
mlr_measures_surv.chambless_auc, mlr_measures_surv.cindex, mlr_measures_surv.dcalib,
mlr_measures_surv.hung_auc, mlr_measures_surv.intlogloss, mlr_measures_surv.logloss,
mlr_measures_surv.mae, mlr_measures_surv.mse, mlr_measures_surv.nagelk_r2, mlr_measures_surv.oquigley_|
mlr_measures_surv.rcll, mlr_measures_surv.rmse, mlr_measures_surv.schmid, mlr_measures_surv.song_auc,
mlr_measures_surv.song_tnr,mlr_measures_surv.song_tpr,mlr_measures_surv.uno_auc,
mlr_measures_surv.uno_tnr, mlr_measures_surv.uno_tpr, mlr_measures_surv.xu_r2

Other Probabilistic survival measures: mlr_measures_surv.intlogloss, mlr_measures_surv.logloss,
mlr_measures_surv.rcll, mlr_measures_surv.schmid

Other distr survival measures: mlr_measures_surv.calib_alpha, mlr_measures_surv.dcalib,
mlr_measures_surv.intlogloss, mlr_measures_surv.logloss, mlr_measures_surv.rcll, mlr_measures_surv.schi

mlr_measures_surv.hung_auc
Hung and Chiang’s AUC Survival Measure

Description

Calls survAUC: : AUC. hc().

Assumes random censoring.

Details

All measures implemented from survAUC should be used with care, we are aware of problems in
implementation that sometimes cause fatal errors in R. In future updates some of these measures
may be re-written and implemented directly in mlr3proba.

Dictionary
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar

function msr():

MeasureSurvHungAUC$new()
mlr_measures$get("surv.hung_auc")
msr("surv.hung_auc"”)

Parameters

Id Type Default Levels
integrated logical TRUE TRUE, FALSE
times untyped -

https://CRAN.R-project.org/package=survAUC

76 mlr_measures_surv.hung_auc

Meta Information

e Type: "surv”
* Range: [0, 1]
* Minimize: FALSE

* Required prediction: 1p

Parameter details

* integrated (logical(1))
If TRUE (default), returns the integrated score (eg across time points); otherwise, not integrated

(eg at a single time point).

e times (numeric())
If integrated == TRUE then a vector of time-points over which to integrate the score. If

integrated == FALSE then a single time point at which to return the score.

Super classes

mlr3::Measure->mlr3proba: :MeasureSurv ->mlr3proba: :MeasureSurvAUC ->MeasureSurvHungAUC

Methods

Public methods:

¢ MeasureSurvHungAUC$new()
e MeasureSurvHungAUC$clone ()

Method new(): Creates a new instance of this R6 class.
Usage:
MeasureSurvHungAUC$new ()
Method clone(): The objects of this class are cloneable with this method.

Usage:
MeasureSurvHungAUC$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

References

Hung H, Chiang C (2010). “Estimation methods for time-dependent AUC models with survival
data.” The Canadian Journal of Statistics / La Revue Canadienne de Statistique, 38(1), 8-26.

https://www. jstor.org/stable/27805213.

https://www.jstor.org/stable/27805213

mlr_measures_surv.intlogloss 77

See Also

Other survival measures: mlr_measures_surv.calib_alpha, mlr_measures_surv.calib_beta,
mlr_measures_surv.chambless_auc, mlr_measures_surv.cindex, mlr_measures_surv.dcalib,
mlr_measures_surv.graf,mlr_measures_surv.intlogloss, mlr_measures_surv.logloss, mlr_measures_surv.mae,
mlr_measures_surv.mse, mlr_measures_surv.nagelk_r2, mlr_measures_surv.oquigley_r2,
mlr_measures_surv.rcll, mlr_measures_surv.rmse, mlr_measures_surv.schmid, mlr_measures_surv.song_auc,
mlr_measures_surv.song_tnr, mlr_measures_surv.song_tpr,mlr_measures_surv.uno_auc,
mlr_measures_surv.uno_tnr, mlr_measures_surv.uno_tpr, mlr_measures_surv.xu_r2

Other AUC survival measures: mlr_measures_surv.chambless_auc, mlr_measures_surv.song_auc,
mlr_measures_surv.song_tnr,mlr_measures_surv.song_tpr,mlr_measures_surv.uno_auc,
mlr_measures_surv.uno_tnr, mlr_measures_surv.uno_tpr

Other Ip survival measures: mlr_measures_surv.calib_beta, mlr_measures_surv.chambless_auc,
mlr_measures_surv.nagelk_r2, mlr_measures_surv.oquigley_r2,mlr_measures_surv.song_auc,
mlr_measures_surv.song_tnr, mlr_measures_surv.song_tpr,mlr_measures_surv.uno_auc,
mlr_measures_surv.uno_tnr, mlr_measures_surv.uno_tpr, mlr_measures_surv.xu_r2

mlr_measures_surv.intlogloss
Integrated Log-Likelihood Survival Measure

Description

Calculates the Integrated Survival Log-Likelihood (ISLL) or Integrated Logarithmic (log) Loss,
aka integrated cross entropy.

Details

This measure has two dimensions: (test set) observations and time points. For a specific individual
i from the test set, with observed survival outcome (¢;, d;) (time and censoring indicator) and pre-
dicted survival function .S;(t), the observation-wise loss integrated across the time dimension up to
the time cutoff 7%, is:

Lisrr(Si ti, 0;) = —1(t; < T*)/
0

where G is the Kaplan-Meier estimate of the censoring distribution.
The re-weighted ISLL (RISLL) is:

dr

LRISLL(Si7tia (51) = —(Sil(ti < 7—*) /OT log[l — SZ(T)])I(tl SGTE;_ log[Si(T)]I(ti > T)

which is always weighted by G(t;) and is equal to zero for a censored subject.

78 mlir_measures_surv.intlogloss

To get a single score across all [V observations of the test set, we return the average of the time-
integrated observation-wise scores:

N

> L(Siti, 6;)/N

i=1

Dictionary

This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar
function msr():

MeasureSurvIntLogloss$new()
mlr_measures$get(”surv.intlogloss")
msr(”surv.intlogloss")

Parameters

Id Type Default Levels Range
integrated logical = TRUE TRUE, FALSE -
times untyped - -
t_max numeric - [0, 00)
p_max numeric - [0,1]
method integer 2 [1,2]
se logical FALSE TRUE, FALSE -
proper logical FALSE TRUE, FALSE -

eps numeric 0.001 [0,1]
ERV logical FALSE TRUE, FALSE -

Meta Information

e Type: "surv”
* Range: [0, 00)
* Minimize: TRUE

* Required prediction: distr

Parameter details

* integrated (logical(1))
If TRUE (default), returns the integrated score (eg across time points); otherwise, not integrated
(eg at a single time point).

e times (numeric())
If integrated == TRUE then a vector of time-points over which to integrate the score. If
integrated == FALSE then a single time point at which to return the score.

mlr_measures_surv.intlogloss 79

e t_max (numeric(1))
Cutoff time 7* (i.e. time horizon) to evaluate the measure up to. Mutually exclusive with
p_max or times. This will effectively remove test observations for which the observed time
(event or censoring) is strictly more than t_max. It’s recommended to set t_max to avoid
division by eps, see Details. If t_max is not specified, an Inf time horizon is assumed.

e p_max (numeric(1))
The proportion of censoring to integrate up to in the given dataset. Mutually exclusive with
times or t_max.

* method (integer(1))
If integrate == TRUE, this selects the integration weighting method. method == 1 corre-
sponds to weighting each time-point equally and taking the mean score over discrete time-
points. method == 2 corresponds to calculating a mean weighted by the difference between
time-points. method == 2 is the default value, to be in line with other packages.

e se (logical(1))
If TRUE then returns standard error of the measure otherwise returns the mean across all in-
dividual scores, e.g. the mean of the per observation scores. Default is FALSE (returns the
mean).

e proper (logical(1))
If TRUE then weights scores by the censoring distribution at the observed event time, which
results in a strictly proper scoring rule if censoring and survival time distributions are indepen-
dent and a sufficiently large dataset is used. If FALSE then weights scores by the Graf method
which is the more common usage but the loss is not proper.

* eps (numeric(1))
Very small number to substitute zero values in order to prevent errors in e.g. log(0) and/or
division-by-zero calculations. Default value is 0.001.

* ERV (logical(1))
If TRUE then the Explained Residual Variation method is applied, which means the score is
standardized against a Kaplan-Meier baseline. Default is FALSE.

Properness

RISLL is strictly proper when the censoring distribution is independent of the survival distribution
and when G(t) is fit on a sufficiently large dataset. ISLL is never proper. Use proper = FALSE
for ISLL and proper = TRUE for RISLL. Results may be very different if many observations are
censored at the last observed time due to division by 1/eps in proper = TRUE.

Time points used for evaluation

If the times argument is not specified (NULL), then the unique (and sorted) time points from the
test set are used for evaluation of the time-integrated score. This was a design decision due to
the fact that different predicted survival distributions S(¢) usually have a discretized time domain
which may differ, i.e. in the case the survival predictions come from different survival learners.
Essentially, using the same set of time points for the calculation of the score minimizes the bias that

80

mlir_measures_surv.intlogloss

would come from using different time points. We note that S(t) is by default constantly interpolated
for time points that fall outside its discretized time domain.

Naturally, if the times argument is specified, then exactly these time points are used for evaluation.
A warning is given to the user in case some of the specified times fall outside of the time point
range of the test set. The assumption here is that if the test set is large enough, it should have a time
domain/range similar to the one from the train set, and therefore time points outside that domain
might lead to interpolation or extrapolation of S(t).

Implementation differences

If comparing the integrated graf score to other packages, e.g. pec, then method = 2 should be used.
However the results may still be very slightly different as this package uses survfit to estimate the
censoring distribution, in line with the Graf 1999 paper; whereas some other packages use prodlim
with reverse = TRUE (meaning Kaplan-Meier is not used).

Data used for Estimating Censoring Distribution

If task and train_set are passed to $score then G(t) is fit on training data, otherwise testing
data. The first is likely to reduce any bias caused by calculating parts of the measure on the test data
it is evaluating. The training data is automatically used in scoring resamplings.

Time Cutoff Details

If t_max or p_max is given, then G(t) will be fitted using all observations from the train set (or test
set) and only then the cutoff time will be applied. This is to ensure that more data is used for fitting
the censoring distribution via the Kaplan-Meier. Setting the t_max can help alleviate inflation of
the score when proper is TRUE, in cases where an observation is censored at the last observed time
point. This results in G(¢,,,4.) = 0 and the use of eps instead (when t_max is NULL).

Super classes

mlr3::Measure ->mlr3proba: :MeasureSurv ->MeasureSurvIntLogloss

Methods

Public methods:

* MeasureSurvIntLogloss$new()
* MeasureSurvIntLogloss$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
MeasureSurvIntLogloss$new(ERV = FALSE)

Arguments:

ERV (logical(1))
Standardize measure against a Kaplan-Meier baseline (Explained Residual Variation)

Method clone(): The objects of this class are cloneable with this method.
Usage:

https://CRAN.R-project.org/package=pec

mlr_measures_surv.logloss 81

MeasureSurvIntLogloss$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

Graf E, Schmoor C, Sauerbrei W, Schumacher M (1999). “Assessment and comparison of prog-
nostic classification schemes for survival data.” Statistics in Medicine, 18(17-18), 2529-2545.
doi:10.1002/(sici)10970258(19990915/30)18:17/18<2529::aidsim274>3.0.co;25.

See Also

Other survival measures: mlr_measures_surv.calib_alpha, mlr_measures_surv.calib_beta,
mlr_measures_surv.chambless_auc, mlr_measures_surv.cindex, mlr_measures_surv.dcalib,

mlr_measures_surv.graf,mlr_measures_surv.hung_auc, mlr_measures_surv.logloss, mlr_measures_surv.mae,

mlr_measures_surv.mse, mlr_measures_surv.nagelk_r2,mlr_measures_surv.oquigley_r2,

mlr_measures_surv.rcll, mlr_measures_surv.rmse, mlr_measures_surv.schmid, mlr_measures_surv.song_auc,

mlr_measures_surv.song_tnr,mlr_measures_surv.song_tpr,mlr_measures_surv.uno_auc,
mlr_measures_surv.uno_tnr, mlr_measures_surv.uno_tpr, mlr_measures_surv.xu_r2

Other Probabilistic survival measures: mlr_measures_surv.graf, mlr_measures_surv.logloss,
mlr_measures_surv.rcll, mlr_measures_surv.schmid

Other distr survival measures: mlr_measures_surv.calib_alpha, mlr_measures_surv.dcalib,

mlr_measures_surv.graf,mlr_measures_surv.logloss, mlr_measures_surv.rcll, mlr_measures_surv.schmid

mlr_measures_surv.logloss
Negative Log-Likelihood Survival Measure

Description

Calculates the cross-entropy, or negative log-likelihood (NLL) or logarithmic (log), loss.

Details

The Log Loss, in the context of probabilistic predictions, is defined as the negative log probability
density function, f, evaluated at the observation time (event or censoring), ¢,

Lypr(f,t) = —log[f(t)]
The standard error of the Log Loss, L, is approximated via,
se(L) = sd(L)/vVN

where N are the number of observations in the test set, and sd is the standard deviation.

https://doi.org/10.1002/%28sici%291097-0258%2819990915/30%2918%3A17/18%3C2529%3A%3Aaid-sim274%3E3.0.co%3B2-5

82 mlr_measures_surv.logloss

The Re-weighted Negative Log-Likelihood (RNLL) or IPCW (Inverse Probability Censoring
Weighted) Log Loss is defined by

_ Slog[f ()]

Lrnrro(f,t,0) = 0

where ¢ is the censoring indicator and G(t) is the Kaplan-Meier estimator of the censoring distri-
bution. So only observations that have experienced the event are taking into account for RNLL (i.e.
d = 1) and both f(t), G(t) are calculated only at the event times. If only censored observations
exist in the test set, NaN is returned.

Dictionary

This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar
function msr():

MeasureSurvLogloss$new()
mlr_measures$get(”surv.logloss")
msr(”surv.logloss")

Parameters
Id Type Default Levels Range
eps numeric le-15 [0,1]
se logical FALSE TRUE, FALSE -

IPCW logical TRUE TRUE, FALSE -
ERV logical ~FALSE TRUE, FALSE

Meta Information

e Type: "surv”
* Range: [0, 00)
* Minimize: TRUE

* Required prediction: distr

Parameter details

e eps (numeric(1))
Very small number to substitute zero values in order to prevent errors in e.g. log(0) and/or
division-by-zero calculations. Default value is le-15.

e se (logical(1))
If TRUE then returns standard error of the measure otherwise returns the mean across all in-
dividual scores, e.g. the mean of the per observation scores. Default is FALSE (returns the
mean).

mlr_measures_surv.logloss 83

e ERV (logical(1))
If TRUE then the Explained Residual Variation method is applied, which means the score is
standardized against a Kaplan-Meier baseline. Default is FALSE.

e IPCW (logical(1))
If TRUE (default) then returns the Ly, score (which is proper), otherwise the L score
(improper).

Data used for Estimating Censoring Distribution

If task and train_set are passed to $score then G(t) is fit on training data, otherwise testing
data. The first is likely to reduce any bias caused by calculating parts of the measure on the test data
it is evaluating. The training data is automatically used in scoring resamplings.

Super classes

mlr3::Measure ->mlr3proba: :MeasureSurv -> MeasureSurvLogloss

Methods
Public methods:

¢ MeasureSurvLogloss$new()
¢ MeasureSurvLogloss$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
MeasureSurvLogloss$new(ERV = FALSE)

Arguments:

ERV (logical(1))
Standardize measure against a Kaplan-Meier baseline (Explained Residual Variation)

Method clone(): The objects of this class are cloneable with this method.

Usage:
MeasureSurvLogloss$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other survival measures: mlr_measures_surv.calib_alpha, mlr_measures_surv.calib_beta,
mlr_measures_surv.chambless_auc, mlr_measures_surv.cindex, mlr_measures_surv.dcalib,
mlr_measures_surv.graf, mlr_measures_surv.hung_auc, mlr_measures_surv.intlogloss,
mlr_measures_surv.mae, mlr_measures_surv.mse, mlr_measures_surv.nagelk_r2, mlr_measures_surv.oquigley_|
mlr_measures_surv.rcll, mlr_measures_surv.rmse, mlr_measures_surv.schmid, mlr_measures_surv.song_auc,
mlr_measures_surv.song_tnr, mlr_measures_surv.song_tpr,mlr_measures_surv.uno_auc,
mlr_measures_surv.uno_tnr, mlr_measures_surv.uno_tpr, mlr_measures_surv.xu_r2

84 mlir _measures_surv.mae

Other Probabilistic survival measures: mlr_measures_surv.graf, mlr_measures_surv.intlogloss,
mlr_measures_surv.rcll, mlr_measures_surv.schmid

Other distr survival measures: mlr_measures_surv.calib_alpha, mlr_measures_surv.dcalib,
mlr_measures_surv.graf,mlr_measures_surv.intlogloss, mlr_measures_surv.rcll, mlr_measures_surv.schmid

mlr_measures_surv.mae Mean Absolute Error Survival Measure

Description

Calculates the mean absolute error (MAE).

The MAE is defined by
1 .
=3 jt—1
n

where ¢ is the true value and £ is the prediction.

Censored observations in the test set are ignored.

Dictionary

This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar
function msr():

MeasureSurvMAE $new ()
mlr_measures$get("surv.mae")
msr("surv.mae")

Parameters

Id Type Default Levels
se logical FALSE TRUE, FALSE

Meta Information
e Type: "surv”
* Range: [0, 00)
* Minimize: TRUE

* Required prediction: response

mlir_measures_surv.mae 85

Parameter details

e se (logical(1))
If TRUE then returns standard error of the measure otherwise returns the mean across all in-
dividual scores, e.g. the mean of the per observation scores. Default is FALSE (returns the
mean).

Super classes

mlr3::Measure ->mlr3proba: :MeasureSurv -> MeasureSurvMAE

Methods

Public methods:

* MeasureSurvMAE$new()

¢ MeasureSurvMAE$clone()

Method new(): Creates a new instance of this R6 class.

Usage:

MeasureSurvMAE$new ()

Method clone(): The objects of this class are cloneable with this method.

Usage:
MeasureSurvMAE$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other survival measures: mlr_measures_surv.calib_alpha, mlr_measures_surv.calib_beta,
mlr_measures_surv.chambless_auc, mlr_measures_surv.cindex, mlr_measures_surv.dcalib,
mlr_measures_surv.graf, mlr_measures_surv.hung_auc, mlr_measures_surv.intlogloss,
mlr_measures_surv.logloss, mlr_measures_surv.mse, mlr_measures_surv.nagelk_r2, mlr_measures_surv.oquig.
mlr_measures_surv.rcll, mlr_measures_surv.rmse, mlr_measures_surv.schmid, mlr_measures_surv.song_auc,
mlr_measures_surv.song_tnr, mlr_measures_surv.song_tpr,mlr_measures_surv.uno_auc,
mlr_measures_surv.uno_tnr, mlr_measures_surv.uno_tpr, mlr_measures_surv.xu_r2

Other response survival measures: mlr_measures_surv. mse, mlr_measures_surv.rmse

86 mlir_measures_surv.mse

mlr_measures_surv.mse Mean Squared Error Survival Measure

Description

Calculates the mean squared error (MSE).

The MSE is defined by
1 N2
— t—1
S (- ?)

where ¢ is the true value and £ is the prediction.

Censored observations in the test set are ignored.

Dictionary
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar

function msr():

MeasureSurvMSE$new ()
mlr_measures$get("surv.mse")
msr("surv.mse")

Parameters

Id Type Default Levels
se logical FALSE TRUE, FALSE

Meta Information
e Type: "surv”
* Range: [0, 00)
e Minimize: TRUE

* Required prediction: response

Parameter details

e se (logical(1))
If TRUE then returns standard error of the measure otherwise returns the mean across all in-
dividual scores, e.g. the mean of the per observation scores. Default is FALSE (returns the
mean).

Super classes

mlr3::Measure ->mlr3proba: :MeasureSurv -> MeasureSurvMSE

mlr_measures_surv.nagelk_r2 87

Methods

Public methods:

* MeasureSurvMSE$new()
* MeasureSurvMSE$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
MeasureSurvMSE$new ()

Method clone(): The objects of this class are cloneable with this method.

Usage:
MeasureSurvMSE$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other survival measures: mlr_measures_surv.calib_alpha, mlr_measures_surv.calib_beta,
mlr_measures_surv.chambless_auc, mlr_measures_surv.cindex, mlr_measures_surv.dcalib,
mlr_measures_surv.graf, mlr_measures_surv.hung_auc, mlr_measures_surv.intlogloss,

mlr_measures_surv.logloss, mlr_measures_surv.mae, mlr_measures_surv.nagelk_r2,mlr_measures_surv.oquig.
mlr_measures_surv.rcll, mlr_measures_surv.rmse, mlr_measures_surv.schmid, mlr_measures_surv.song_auc,

mlr_measures_surv.song_tnr,mlr_measures_surv.song_tpr,mlr_measures_surv.uno_auc,
mlr_measures_surv.uno_tnr, mlr_measures_surv.uno_tpr, mlr_measures_surv.xu_r2

Other response survival measures: mlr_measures_surv.mae, mlr_measures_surv.rmse

mlr_measures_surv.nagelk_r2
Nagelkerke’s R2 Survival Measure

Description

Calls survAUC: :Nagelk ().

Assumes Cox PH model specification.

Details

All measures implemented from survAUC should be used with care, we are aware of problems in
implementation that sometimes cause fatal errors in R. In future updates some of these measures
may be re-written and implemented directly in mlr3proba.

https://CRAN.R-project.org/package=survAUC

88 mlr_measures_surv.nagelk_r2

Dictionary

This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar
function msr():

MeasureSurvNagelkR2$new()
mlr_measures$get(”surv.nagelk_r2")
msr("surv.nagelk_r2")

Parameters

Empty ParamSet

Meta Information
* Type: "surv”
* Range: [0, 1]
* Minimize: FALSE
* Required prediction: 1p

Super classes

mlr3::Measure ->mlr3proba: :MeasureSurv -> MeasureSurvNagelkR2

Methods

Public methods:

¢ MeasureSurvNagelkR2$new()
e MeasureSurvNagelkR2%$clone()

Method new(): Creates a new instance of this R6 class.
Usage:
MeasureSurvNagelkR2$new()
Method clone(): The objects of this class are cloneable with this method.

Usage:
MeasureSurvNagelkR2$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

Nagelkerke, JD N, others (1991). “A note on a general definition of the coefficient of determina-
tion.” Biometrika, 78(3), 691-692.

mlir_measures_surv.oquigley_r2 89

See Also

Other survival measures: mlr_measures_surv.calib_alpha, mlr_measures_surv.calib_beta,

mlr_measures_surv.
mlr_measures_surv.
mlr_measures_surv.
mlr_measures_surv.

chambless_auc, mlr_measures_surv.cindex, mlr_measures_surv.dcalib,

graf, mlr_measures_surv.hung_auc, mlr_measures_surv.intlogloss,

logloss, mlr_measures_surv.mae, mlr_measures_surv.mse, mlr_measures_surv.oquigley_r2,
rcll, mlr_measures_surv.rmse, mlr_measures_surv.schmid, mlr_measures_surv.song_auc,

mlr_measures_surv. song_tnr, mlr_measures_surv. song_tpr, mlr_measures_surv.uno_auc,
mlr_measures_surv.uno_tnr, mlr_measures_surv.uno_tpr, mlr_measures_surv.xu_r2

Other R2 survival measures: mlr_measures_surv.oquigley_r2, mlr_measures_surv.xu_r2

Other Ip survival measures: mlr_measures_surv.calib_beta, mlr_measures_surv.chambless_auc,
mlr_measures_surv.hung_auc, mlr_measures_surv.oquigley_r2,mlr_measures_surv.song_auc,

mlr_measures_surv.song_tnr,mlr_measures_surv.song_tpr,mlr_measures_surv.uno_auc,
mlr_measures_surv.uno_tnr, mlr_measures_surv.uno_tpr, mlr_measures_surv.xu_r2

mlr_measures_surv.oquigley_r2
O’Quigley, Xu, and Stare’s R2 Survival Measure

Description

Calls survAUC: :0XS().

Assumes Cox PH model specification.

Details

All measures implemented from survAUC should be used with care, we are aware of problems in
implementation that sometimes cause fatal errors in R. In future updates some of these measures
may be re-written and implemented directly in mlr3proba.

Dictionary
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar

function msr():

MeasureSurvOQuigleyR2$new()
mlr_measures$get(”surv.oquigley_r2")
msr("surv.oquigley_r2")

Parameters

Empty ParamSet

https://CRAN.R-project.org/package=survAUC

90 mlr_measures_surv.oquigley_r2

Meta Information

* Type: "surv”

* Range: [0, 1]

* Minimize: FALSE

* Required prediction: 1p

Super classes

mlr3::Measure ->mlr3proba: :MeasureSurv -> MeasureSurvOQuigleyR2

Methods

Public methods:
* MeasureSurvOQuigleyR2$new()
e MeasureSurvOQuigleyR2%$clone()

Method new(): Creates a new instance of this R6 class.
Usage:
MeasureSurvOQuigleyR2$new()

Method clone(): The objects of this class are cloneable with this method.
Usage:
MeasureSurvOQuigleyR2%$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

References

O’Quigley J, Xu R, Stare J (2005). “Explained randomness in proportional hazards models.” Statis-
tics in Medicine, 24(3), 479-489. doi:10.1002/sim.1946.

See Also

Other survival measures: mlr_measures_surv.calib_alpha, mlr_measures_surv.calib_beta,

mlr_measures_surv.chambless_auc, mlr_measures_surv.cindex, mlr_measures_surv.dcalib,

mlr_measures_surv.graf, mlr_measures_surv.hung_auc, mlr_measures_surv.intlogloss,

mlr_measures_surv.logloss,mlr_measures_surv.mae, mlr_measures_surv.mse, mlr_measures_surv.nagelk_r2,
mlr_measures_surv.rcll, mlr_measures_surv.rmse, mlr_measures_surv.schmid, mlr_measures_surv.song_auc,

mlr_measures_surv.song_tnr, mlr_measures_surv.song_tpr, mlr_measures_surv.uno_auc,
mlr_measures_surv.uno_tnr, mlr_measures_surv.uno_tpr, mlr_measures_surv.xu_r2

Other R2 survival measures: mlr_measures_surv.nagelk_r2, mlr_measures_surv.xu_r2

Other lp survival measures: mlr_measures_surv.calib_beta, mlr_measures_surv.chambless_auc,
mlr_measures_surv.hung_auc, mlr_measures_surv.nagelk_r2,mlr_measures_surv.song_auc,

mlr_measures_surv. song_tnr, mlr_measures_surv. song_tpr, mlr_measures_surv.uno_auc,
mlr_measures_surv.uno_tnr, mlr_measures_surv.uno_tpr, mlr_measures_surv.xu_r2

https://doi.org/10.1002/sim.1946

mlir_measures_surv.rcll 91

mlr_measures_surv.rcll
Right-Censored Log Loss Survival Measure

Description

Calculates the right-censored logarithmic (log), loss.

Details

The RCLL, in the context of probabilistic predictions, is defined by
L(f,t,A) = —log(Af(t) + (1 — A)S(t))

where A is the censoring indicator, f the probability density function and S the survival function.
RCLL is proper given that censoring and survival distribution are independent, see Rindt et al.
(2022).

Note: Even though RCLL is a proper scoring rule, the calculation of f(¢) (which in our case is
discrete, i.e. it is a probability mass function) for time points in the test set that don’t exist in
the predicted survival matrix (distr), results in O values, which are substituted by "eps” in our
implementation, therefore skewing the result towards —log(eps). This problem is also discussed
in Rindt et al. (2022), where the authors perform interpolation to get non-zero values for the f(¢).
Until this is handled in mlr3proba some way, we advise against using this measure for model
evaluation.

Dictionary
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar

function msr():

MeasureSurvRCLL$new()
mlr_measures$get("”surv.rcll")
msr("surv.rcll")

Parameters
Id Type Default Levels Range
eps numeric le-15 [0,1]
se logical FALSE TRUE, FALSE -

ERV logical FALSE TRUE, FALSE -
narm logical TRUE TRUE, FALSE -

92 mlir_measures_surv.rcll

Meta Information

* Type: "surv”
* Range: [0, 00)
¢ Minimize: TRUE

* Required prediction: distr

Parameter details

e eps (numeric(1))
Very small number to substitute zero values in order to prevent errors in e.g. log(0) and/or
division-by-zero calculations. Default value is le-15.

* se (logical(1))
If TRUE then returns standard error of the measure otherwise returns the mean across all in-
dividual scores, e.g. the mean of the per observation scores. Default is FALSE (returns the
mean).

* ERV (logical(1))
If TRUE then the Explained Residual Variation method is applied, which means the score is
standardized against a Kaplan-Meier baseline. Default is FALSE.

* na.rm(logical(1))
If TRUE (default) then removes any NAs in individual score calculations.

Super classes

mlr3::Measure ->mlr3proba: :MeasureSurv -> MeasureSurvRCLL

Methods

Public methods:

* MeasureSurvRCLL$new()
¢ MeasureSurvRCLL$clone()

Method new(): Creates a new instance of this R6 class.
Usage:
MeasureSurvRCLL$new(ERV = FALSE)

Arguments:
ERV (logical(1))
Standardize measure against a Kaplan-Meier baseline (Explained Residual Variation)
Method clone(): The objects of this class are cloneable with this method.
Usage:
MeasureSurvRCLL$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

mlir_measures_surv.rmse 93

References

Avati, Anand, Duan, Tony, Zhou, Sharon, Jung, Kenneth, Shah, HN, Ng, Y A (2020). “Countdown
Regression: Sharp and Calibrated Survival Predictions.” Proceedings of The 35th Uncertainty in
Artificial Intelligence Conference, 115(4), 145-155. https://proceedings.mlr.press/v115/
avati2@a.html.

Rindt, David, Hu, Robert, Steinsaltz, David, Sejdinovic, Dino (2022). “Survival regression with
proper scoring rules and monotonic neural networks.” Proceedings of The 25th International Con-
ference on Artificial Intelligence and Statistics, 151(4), 1190-1205. https://proceedings.mlr.
press/v151/rindt22a.html.

See Also

Other survival measures: mlr_measures_surv.calib_alpha, mlr_measures_surv.calib_beta,
mlr_measures_surv.chambless_auc, mlr_measures_surv.cindex, mlr_measures_surv.dcalib,
mlr_measures_surv.graf, mlr_measures_surv.hung_auc, mlr_measures_surv.intlogloss,
mlr_measures_surv.logloss, mlr_measures_surv.mae, mlr_measures_surv.mse, mlr_measures_surv.nagelk_r2,
mlr_measures_surv.oquigley_r2, mlr_measures_surv.rmse, mlr_measures_surv.schmid, mlr_measures_surv.son;
mlr_measures_surv.song_tnr, mlr_measures_surv.song_tpr,mlr_measures_surv.uno_auc,
mlr_measures_surv.uno_tnr, mlr_measures_surv.uno_tpr, mlr_measures_surv.xu_r2

Other Probabilistic survival measures: mlr_measures_surv.graf, mlr_measures_surv.intlogloss,
mlr_measures_surv.logloss, mlr_measures_surv.schmid

Other distr survival measures: mlr_measures_surv.calib_alpha, mlr_measures_surv.dcalib,
mlr_measures_surv.graf,mlr_measures_surv.intlogloss, mlr_measures_surv.logloss, mlr_measures_surv.schi

mlr_measures_surv.rmse
Root Mean Squared Error Survival Measure

Description

Calculates the root mean squared error (RMSE).

The RMSE is defined by
1 .
— t—1)2
Ve S -ip)

where ¢ is the true value and £ is the prediction.

Censored observations in the test set are ignored.

Dictionary

This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar
function msr():

MeasureSurvRMSE$new()
mlr_measures$get("surv.rmse")
msr("surv.rmse")

https://proceedings.mlr.press/v115/avati20a.html
https://proceedings.mlr.press/v115/avati20a.html
https://proceedings.mlr.press/v151/rindt22a.html
https://proceedings.mlr.press/v151/rindt22a.html

94 mlir_measures_surv.rmse

Parameters

Id Type Default Levels
se logical FALSE TRUE, FALSE

Meta Information
e Type: "surv”
* Range: [0, 00)
* Minimize: TRUE

* Required prediction: response

Parameter details

e se (logical(1))
If TRUE then returns standard error of the measure otherwise returns the mean across all in-
dividual scores, e.g. the mean of the per observation scores. Default is FALSE (returns the
mean).

Super classes

mlr3::Measure ->mlr3proba: :MeasureSurv -> MeasureSurvRMSE

Methods

Public methods:

* MeasureSurvRMSES$new()
* MeasureSurvRMSE$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
MeasureSurvRMSES$new()

Method clone(): The objects of this class are cloneable with this method.

Usage:
MeasureSurvRMSE$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

mlir_measures_surv.schmid 95

See Also

Other survival measures: mlr_measures_surv.calib_alpha, mlr_measures_surv.calib_beta,
mlr_measures_surv.chambless_auc, mlr_measures_surv.cindex, mlr_measures_surv.dcalib,
mlr_measures_surv.graf, mlr_measures_surv.hung_auc, mlr_measures_surv.intlogloss,
mlr_measures_surv.logloss,mlr_measures_surv.mae, mlr_measures_surv.mse, mlr_measures_surv.nagelk_r2,
mlr_measures_surv.oquigley_r2,mlr_measures_surv.rcll, mlr_measures_surv.schmid, mlr_measures_surv.son;
mlr_measures_surv.song_tnr,mlr_measures_surv.song_tpr,mlr_measures_surv.uno_auc,
mlr_measures_surv.uno_tnr, mlr_measures_surv.uno_tpr, mlr_measures_surv.xu_r2

Other response survival measures: mlr_measures_surv.mae, mlr_measures_surv.mse

mlr_measures_surv.schmid
Integrated Schmid Score Survival Measure

Description

Calculates the Integrated Schmid Score (ISS), aka integrated absolute loss.

Details

This measure has two dimensions: (test set) observations and time points. For a specific individual
i from the test set, with observed survival outcome (¢;, ;) (time and censoring indicator) and pre-
dicted survival function S;(t), the observation-wise loss integrated across the time dimension up to
the time cutoff 7%, is:

TSIt <7, 6=1) | (1—Si(r)I(t; > 7)
ISS(S) (T)A G(tl) + G(T) T
where G is the Kaplan-Meier estimate of the censoring distribution.
The re-weighted ISS (RISS) is:
™G < 1 — S (+)I(¢:
Lrrss(Si,ti, 0;) = 61(t; < T*)/ Si(m)I < 7) +G((t] Si(r)I(t: > 7) dr
0 i

which is always weighted by G(¢;) and is equal to zero for a censored subject.

To get a single score across all IV observations of the test set, we return the average of the time-
integrated observation-wise scores:

N

> L(Si,ti, 6;)/N
Liss(S,t[t") = (SN < t%,0 = 1)(A/G#)] + [(1 = SE)))I(E > t7)(1/G(t7))]

where G is the Kaplan-Meier estimate of the censoring distribution.
The re-weighted ISS, RISS is given by

Lrrss(S,t[t") = [(SE)I(E <t",0 = 1)(1/G@))] + [(1 = SE)))I(E > t7)(1/G(1))]

96

Dictionary

mlr_measures_surv.schmid

This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar

function msr():

MeasureSurvSchmid$new()
mlr_measures$get(”surv.schmid")
msr("surv.schmid")

Parameters
Id Type
integrated logical
times untyped
t_max numeric
p_max numeric
method integer
se logical
proper logical
eps numeric
ERV logical
Meta Information
e Type: "surv”
* Range: [0, 00)

e Minimize: TRUE

* Required prediction: distr

Parameter details

e integrated (logical(1))

FALSE
FALSE
0.001

FALSE

Levels
TRUE, FALSE

TRUE, FALSE
TRUE, FALSE

TRUE, FALSE

If TRUE (default), returns the integrated score (eg across time points); otherwise, not integrated

(eg at a single time point).

e times (numeric())

If integrated == TRUE then a vector of time-points over which to integrate the score. If
integrated == FALSE then a single time point at which to return the score.

e t_max (numeric(1))

Cutoff time 7* (i.e. time horizon) to evaluate the measure up to. Mutually exclusive with
p_max or times. This will effectively remove test observations for which the observed time
(event or censoring) is strictly more than t_max. It’s recommended to set t_max to avoid
division by eps, see Details. If t_max is not specified, an Inf time horizon is assumed.

mlir_measures_surv.schmid 97

e p_max (numeric(1))
The proportion of censoring to integrate up to in the given dataset. Mutually exclusive with
times or t_max.

* method (integer (1))
If integrate == TRUE, this selects the integration weighting method. method == 1 corre-
sponds to weighting each time-point equally and taking the mean score over discrete time-
points. method == 2 corresponds to calculating a mean weighted by the difference between
time-points. method == 2 is the default value, to be in line with other packages.

e se (logical(1))
If TRUE then returns standard error of the measure otherwise returns the mean across all in-
dividual scores, e.g. the mean of the per observation scores. Default is FALSE (returns the
mean).

e proper (logical(1))
If TRUE then weights scores by the censoring distribution at the observed event time, which
results in a strictly proper scoring rule if censoring and survival time distributions are indepen-
dent and a sufficiently large dataset is used. If FALSE then weights scores by the Graf method
which is the more common usage but the loss is not proper.

e eps (numeric(1))
Very small number to substitute zero values in order to prevent errors in e.g. log(0) and/or
division-by-zero calculations. Default value is 0.001.

* ERV (logical(1))
If TRUE then the Explained Residual Variation method is applied, which means the score is
standardized against a Kaplan-Meier baseline. Default is FALSE.

Properness

RISS is strictly proper when the censoring distribution is independent of the survival distribution
and when G(t) is fit on a sufficiently large dataset. ISS is never proper. Use proper = FALSE for
ISS and proper = TRUE for RISS. Results may be very different if many observations are censored
at the last observed time due to division by 1/eps in proper = TRUE.

Time points used for evaluation

If the times argument is not specified (NULL), then the unique (and sorted) time points from the
test set are used for evaluation of the time-integrated score. This was a design decision due to
the fact that different predicted survival distributions S(¢) usually have a discretized time domain
which may differ, i.e. in the case the survival predictions come from different survival learners.
Essentially, using the same set of time points for the calculation of the score minimizes the bias that
would come from using different time points. We note that S(t) is by default constantly interpolated
for time points that fall outside its discretized time domain.

Naturally, if the times argument is specified, then exactly these time points are used for evaluation.
A warning is given to the user in case some of the specified times fall outside of the time point
range of the test set. The assumption here is that if the test set is large enough, it should have a time
domain/range similar to the one from the train set, and therefore time points outside that domain
might lead to interpolation or extrapolation of S(t).

98 mlr_measures_surv.schmid

Implementation differences

If comparing the integrated graf score to other packages, e.g. pec, then method = 2 should be used.
However the results may still be very slightly different as this package uses survfit to estimate the
censoring distribution, in line with the Graf 1999 paper; whereas some other packages use prodlim
with reverse = TRUE (meaning Kaplan-Meier is not used).

Data used for Estimating Censoring Distribution

If task and train_set are passed to $score then G(t) is fit on training data, otherwise testing
data. The first is likely to reduce any bias caused by calculating parts of the measure on the test data
it is evaluating. The training data is automatically used in scoring resamplings.

Time Cutoff Details

If t_max or p_max is given, then G(t) will be fitted using all observations from the train set (or test
set) and only then the cutoff time will be applied. This is to ensure that more data is used for fitting
the censoring distribution via the Kaplan-Meier. Setting the t_max can help alleviate inflation of
the score when proper is TRUE, in cases where an observation is censored at the last observed time
point. This results in G(¢,,,4.) = 0 and the use of eps instead (when t_max is NULL).

Super classes

mlr3::Measure ->mlr3proba: :MeasureSurv ->MeasureSurvSchmid

Methods

Public methods:

¢ MeasureSurvSchmid$new()

¢ MeasureSurvSchmid$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
MeasureSurvSchmid$new(ERV = FALSE)

Arguments:
ERV (logical(1))

Standardize measure against a Kaplan-Meier baseline (Explained Residual Variation)
Method clone(): The objects of this class are cloneable with this method.

Usage:
MeasureSurvSchmid$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

https://CRAN.R-project.org/package=pec

mlr_measures_surv.song_auc 99

References

Schemper, Michael, Henderson, Robin (2000). “Predictive Accuracy and Explained Variation in
Cox Regression.” Biometrics, 56, 249-255. doi:10.1002/sim.1486.

Schmid, Matthias, Hielscher, Thomas, Augustin, Thomas, Gefeller, Olaf (2011). “A Robust Al-
ternative to the Schemper-Henderson Estimator of Prediction Error.” Biometrics, 67(2), 524-535.
doi:10.1111/j.15410420.2010.01459.x.

See Also

Other survival measures: mlr_measures_surv.calib_alpha, mlr_measures_surv.calib_beta,

mlr_measures_surv.chambless_auc, mlr_measures_surv.cindex, mlr_measures_surv.dcalib,

mlr_measures_surv.graf, mlr_measures_surv.hung_auc, mlr_measures_surv.intlogloss,

mlr_measures_surv.logloss, mlr_measures_surv.mae, mlr_measures_surv.mse, mlr_measures_surv.nagelk_r2,
mlr_measures_surv.oquigley_r2,mlr_measures_surv.rcll, mlr_measures_surv.rmse, mlr_measures_surv.song_:

mlr_measures_surv. song_tnr, mlr_measures_surv. song_tpr, mlr_measures_surv.uno_auc,
mlr_measures_surv.uno_tnr, mlr_measures_surv.uno_tpr, mlr_measures_surv.xu_r2

Other Probabilistic survival measures: mlr_measures_surv.graf, mlr_measures_surv.intlogloss,

mlr_measures_surv.logloss, mlr_measures_surv.rcll

Other distr survival measures: mlr_measures_surv.calib_alpha, mlr_measures_surv.dcalib,

mlr_measures_surv.graf,mlr_measures_surv.intlogloss, mlr_measures_surv.logloss, mlr_measures_surv.rcl.

mlr_measures_surv.song_auc
Song and Zhou’s AUC Survival Measure

Description

Calls survAUC: : AUC.sh().

Assumes Cox PH model specification.

Details

All measures implemented from survAUC should be used with care, we are aware of problems in
implementation that sometimes cause fatal errors in R. In future updates some of these measures
may be re-written and implemented directly in mlr3proba.

Dictionary
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar

function msr():

MeasureSurvSongAUC$new()
mlr_measures$get("surv.song_auc")
msr(”surv.song_auc")

https://doi.org/10.1002/sim.1486
https://doi.org/10.1111/j.1541-0420.2010.01459.x
https://CRAN.R-project.org/package=survAUC

100 mlr_measures_surv.song_auc

Parameters
Id Type Default Levels
times untyped -
integrated logical TRUE TRUE, FALSE
type character incident incident, cumulative
Meta Information
* Type: "surv”

* Range: [0, 1]
* Minimize: FALSE
* Required prediction: 1p

Parameter details

e times (numeric())
If integrated == TRUE then a vector of time-points over which to integrate the score. If
integrated == FALSE then a single time point at which to return the score.

* integrated (logical(1))
If TRUE (default), returns the integrated score (eg across time points); otherwise, not integrated
(eg at a single time point).

e type (character(1))
A string defining the type of true positive rate (TPR): incident refers to incident TPR,
cumulative refers to cumulative TPR.

Super classes

mlr3::Measure->mlr3proba: :MeasureSurv->mlr3proba: :MeasureSurvAUC ->MeasureSurvSongAUC

Methods

Public methods:
¢ MeasureSurvSongAUC$new()
e MeasureSurvSongAUC$clone()

Method new(): Creates a new instance of this R6 class.
Usage:
MeasureSurvSongAUC$new()
Method clone(): The objects of this class are cloneable with this method.
Usage:
MeasureSurvSongAUC$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

mlr_measures_surv.song_tnr 101

References

Song, Xiao, Zhou, Xiao-Hua (2008). “A semiparametric approach for the covariate specific ROC
curve with survival outcome.” Statistica Sinica, 18(3), 947-65. https://www. jstor.org/stable/
24308524.

See Also

Other survival measures: mlr_measures_surv.calib_alpha, mlr_measures_surv.calib_beta,
mlr_measures_surv.chambless_auc, mlr_measures_surv.cindex, mlr_measures_surv.dcalib,
mlr_measures_surv.graf, mlr_measures_surv.hung_auc, mlr_measures_surv.intlogloss,

mlr_measures_surv.logloss,mlr_measures_surv.mae, mlr_measures_surv.mse, mlr_measures_surv.nagelk_r2,
mlr_measures_surv.oquigley_r2,mlr_measures_surv.rcll, mlr_measures_surv.rmse, mlr_measures_surv.schmi

mlr_measures_surv. song_tnr, mlr_measures_surv. song_tpr, mlr_measures_surv.uno_auc,
mlr_measures_surv.uno_tnr, mlr_measures_surv. uno_tpr, mlr_measures_surv.xu_r2

Other AUC survival measures: mlr_measures_surv.chambless_auc, mlr_measures_surv.hung_auc,
mlr_measures_surv.song_tnr,mlr_measures_surv.song_tpr,mlr_measures_surv.uno_auc,
mlr_measures_surv.uno_tnr, mlr_measures_surv.uno_tpr

Other lp survival measures: mlr_measures_surv.calib_beta, mlr_measures_surv.chambless_auc,
mlr_measures_surv.hung_auc, mlr_measures_surv.nagelk_r2, mlr_measures_surv.oquigley_r2,
mlr_measures_surv.song_tnr, mlr_measures_surv.song_tpr,mlr_measures_surv.uno_auc,
mlr_measures_surv.uno_tnr, mlr_measures_surv.uno_tpr, mlr_measures_surv.xu_r2

mlr_measures_surv.song_tnr
Song and Zhou’s TNR Survival Measure

Description

Calls survAUC: :spec.sh().
Assumes Cox PH model specification.

times and lp_thresh are arbitrarily set to @ to prevent crashing, these should be further specified.

Details

All measures implemented from survAUC should be used with care, we are aware of problems in
implementation that sometimes cause fatal errors in R. In future updates some of these measures
may be re-written and implemented directly in mlr3proba.

Dictionary

This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar
function msr():

MeasureSurvSongTNR$new()
mlr_measures$get("surv.song_tnr")
msr("surv.song_tnr")

https://www.jstor.org/stable/24308524
https://www.jstor.org/stable/24308524
https://CRAN.R-project.org/package=survAUC

102 mlr_measures_surv.song_tnr

Parameters
1d Type Default Range
times numeric - [0, 00)
lp_thresh numeric 0 (—00, 00)

Meta Information

* Type: "surv”

* Range: [0, 1]

* Minimize: FALSE

* Required prediction: 1p

Parameter details

e times (numeric())
If integrated == TRUE then a vector of time-points over which to integrate the score. If
integrated == FALSE then a single time point at which to return the score.

e lp_thresh (numeric(1))
Determines the cutoff threshold of the linear predictor in the calculation of the TPR/TNR
scores.

Super classes

mlr3::Measure->mlr3proba: :MeasureSurv->mlr3proba: :MeasureSurvAUC ->MeasureSurvSongTNR

Methods
Public methods:

* MeasureSurvSongTNR$new()
* MeasureSurvSongTNR$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
MeasureSurvSongTNR$new()

Method clone(): The objects of this class are cloneable with this method.
Usage:
MeasureSurvSongTNR$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

mlr_measures_surv.song_tpr 103

References

Song, Xiao, Zhou, Xiao-Hua (2008). “A semiparametric approach for the covariate specific ROC
curve with survival outcome.” Statistica Sinica, 18(3), 947-65. https://www. jstor.org/stable/
24308524.

See Also

Other survival measures: mlr_measures_surv.calib_alpha, mlr_measures_surv.calib_beta,
mlr_measures_surv.chambless_auc, mlr_measures_surv.cindex, mlr_measures_surv.dcalib,
mlr_measures_surv.graf, mlr_measures_surv.hung_auc, mlr_measures_surv.intlogloss,

mlr_measures_surv.logloss,mlr_measures_surv.mae, mlr_measures_surv.mse, mlr_measures_surv.nagelk_r2,
mlr_measures_surv.oquigley_r2,mlr_measures_surv.rcll, mlr_measures_surv.rmse, mlr_measures_surv.schmi

mlr_measures_surv. song_auc, mlr_measures_surv. song_tpr, mlr_measures_surv.uno_auc,
mlr_measures_surv.uno_tnr, mlr_measures_surv. uno_tpr, mlr_measures_surv.xu_r2

Other AUC survival measures: mlr_measures_surv.chambless_auc, mlr_measures_surv.hung_auc,
mlr_measures_surv.song_auc, mlr_measures_surv.song_tpr,mlr_measures_surv.uno_auc,
mlr_measures_surv.uno_tnr, mlr_measures_surv.uno_tpr

Other lp survival measures: mlr_measures_surv.calib_beta, mlr_measures_surv.chambless_auc,
mlr_measures_surv.hung_auc, mlr_measures_surv.nagelk_r2, mlr_measures_surv.oquigley_r2,
mlr_measures_surv.song_auc, mlr_measures_surv.song_tpr,mlr_measures_surv.uno_auc,
mlr_measures_surv.uno_tnr, mlr_measures_surv.uno_tpr, mlr_measures_surv.xu_r2

mlr_measures_surv.song_tpr
Song and Zhou’s TPR Survival Measure

Description

Calls survAUC: :sens.sh().
Assumes Cox PH model specification.

times and lp_thresh are arbitrarily set to @ to prevent crashing, these should be further specified.

Details

All measures implemented from survAUC should be used with care, we are aware of problems in
implementation that sometimes cause fatal errors in R. In future updates some of these measures
may be re-written and implemented directly in mlr3proba.

Dictionary

This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar
function msr():

MeasureSurvSongTPR$new()
mlr_measures$get("surv.song_tpr")
msr("surv.song_tpr")

https://www.jstor.org/stable/24308524
https://www.jstor.org/stable/24308524
https://CRAN.R-project.org/package=survAUC

104 mlr_measures_surv.song_tpr

Parameters
Id Type Default Levels Range
times numeric - [0, 0)
lp_thresh numeric 0 (—00,0)
type character incident incident, cumulative -

Meta Information

* Type: "surv”

* Range: [0, 1]

* Minimize: FALSE

* Required prediction: 1p

Parameter details

e times (numeric())
If integrated == TRUE then a vector of time-points over which to integrate the score. If
integrated == FALSE then a single time point at which to return the score.

e 1lp_thresh (numeric(1))
Determines the cutoff threshold of the linear predictor in the calculation of the TPR/TNR
scores.

Super classes

mlr3::Measure->mlr3proba: :MeasureSurv ->mlr3proba: :MeasureSurvAUC ->MeasureSurvSongTPR

Methods
Public methods:

e MeasureSurvSongTPR$new()
* MeasureSurvSongTPR$clone()

Method new(): Creates a new instance of this R6 class.
Usage:
MeasureSurvSongTPR$new()

Method clone(): The objects of this class are cloneable with this method.
Usage:
MeasureSurvSongTPR$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

mlr _measures_surv.uno_auc 105

References

Song, Xiao, Zhou, Xiao-Hua (2008). “A semiparametric approach for the covariate specific ROC
curve with survival outcome.” Statistica Sinica, 18(3), 947-65. https://www. jstor.org/stable/
24308524.

See Also

Other survival measures: mlr_measures_surv.calib_alpha, mlr_measures_surv.calib_beta,
mlr_measures_surv.chambless_auc, mlr_measures_surv.cindex, mlr_measures_surv.dcalib,
mlr_measures_surv.graf, mlr_measures_surv.hung_auc, mlr_measures_surv.intlogloss,
mlr_measures_surv.logloss, mlr_measures_surv.mae, mlr_measures_surv.mse, mlr_measures_surv.nagelk_r2,
mlr_measures_surv.oquigley_r2, mlr_measures_surv.rcll, mlr_measures_surv.rmse, mlr_measures_surv.schmi
mlr_measures_surv.song_auc, mlr_measures_surv.song_tnr,mlr_measures_surv.uno_auc,
mlr_measures_surv.uno_tnr, mlr_measures_surv.uno_tpr, mlr_measures_surv.xu_r2

Other AUC survival measures: mlr_measures_surv.chambless_auc, mlr_measures_surv.hung_auc,
mlr_measures_surv.song_auc, mlr_measures_surv.song_tnr,mlr_measures_surv.uno_auc,
mlr_measures_surv.uno_tnr, mlr_measures_surv.uno_tpr

Other lp survival measures: mlr_measures_surv.calib_beta, mlr_measures_surv.chambless_auc,
mlr_measures_surv.hung_auc, mlr_measures_surv.nagelk_r2, mlr_measures_surv.oquigley_r2,
mlr_measures_surv.song_auc, mlr_measures_surv.song_tnr,mlr_measures_surv.uno_auc,
mlr_measures_surv.uno_tnr, mlr_measures_surv.uno_tpr, mlr_measures_surv.xu_r2

mlr_measures_surv.uno_auc
Uno’s AUC Survival Measure

Description

Calls survAUC: : AUC.uno().

Assumes random censoring.

Details

All measures implemented from survAUC should be used with care, we are aware of problems in
implementation that sometimes cause fatal errors in R. In future updates some of these measures
may be re-written and implemented directly in mlr3proba.

Dictionary
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar

function msr():

MeasureSurvUnoAUC$new ()
mlr_measures$get(”surv.uno_auc")
msr("surv.uno_auc")

https://www.jstor.org/stable/24308524
https://www.jstor.org/stable/24308524
https://CRAN.R-project.org/package=survAUC

106 mlir_measures_surv.uno_auc

Parameters
Id Type Default Levels
integrated logical TRUE TRUE, FALSE
times untyped -

Meta Information
* Type: "surv”
* Range: [0, 1]
* Minimize: FALSE
* Required prediction: 1p

Parameter details

* integrated (logical(1))
If TRUE (default), returns the integrated score (eg across time points); otherwise, not integrated
(eg at a single time point).

e times (numeric())
If integrated == TRUE then a vector of time-points over which to integrate the score. If
integrated == FALSE then a single time point at which to return the score.

Super classes

mlr3::Measure->mlr3proba: :MeasureSurv->mlr3proba: :MeasureSurvAUC ->MeasureSurvUnoAUC

Methods
Public methods:

* MeasureSurvUnoAUC$new()
* MeasureSurvUnoAUC$clone()

Method new(): Creates a new instance of this R6 class.
Usage:
MeasureSurvUnoAUC$new()

Method clone(): The objects of this class are cloneable with this method.
Usage:
MeasureSurvUnoAUC$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

mlir _measures_surv.uno_tnr 107

References

Uno H, Cai T, Tian L, Wei LJ (2007). “Evaluating Prediction Rules fort-Year Survivors With
Censored Regression Models.” Journal of the American Statistical Association, 102(478), 527-
537. doi:10.1198/016214507000000149.

See Also

Other survival measures: mlr_measures_surv.calib_alpha, mlr_measures_surv.calib_beta,
mlr_measures_surv.chambless_auc, mlr_measures_surv.cindex, mlr_measures_surv.dcalib,
mlr_measures_surv.graf, mlr_measures_surv.hung_auc, mlr_measures_surv.intlogloss,

mlr_measures_surv.logloss, mlr_measures_surv.mae, mlr_measures_surv.mse, mlr_measures_surv.nagelk_r2,
mlr_measures_surv.oquigley_r2, mlr_measures_surv.rcll, mlr_measures_surv.rmse, mlr_measures_surv.schmi

mlr_measures_surv.song_auc, mlr_measures_surv.song_tnr,mlr_measures_surv.song_tpr,
mlr_measures_surv.uno_tnr, mlr_measures_surv.uno_tpr, mlr_measures_surv.xu_r2

Other AUC survival measures: mlr_measures_surv.chambless_auc, mlr_measures_surv.hung_auc,
mlr_measures_surv.song_auc, mlr_measures_surv.song_tnr, mlr_measures_surv.song_tpr,
mlr_measures_surv.uno_tnr, mlr_measures_surv.uno_tpr

Other Ip survival measures: mlr_measures_surv.calib_beta, mlr_measures_surv.chambless_auc,
mlr_measures_surv.hung_auc, mlr_measures_surv.nagelk_r2,mlr_measures_surv.oquigley_r2,
mlr_measures_surv.song_auc, mlr_measures_surv.song_tnr,mlr_measures_surv.song_tpr,
mlr_measures_surv.uno_tnr, mlr_measures_surv.uno_tpr, mlr_measures_surv.xu_r2

mlr_measures_surv.uno_tnr
Uno’s TNR Survival Measure

Description

Calls survAUC: :spec.uno().
Assumes random censoring.

times and lp_thresh are arbitrarily set to @ to prevent crashing, these should be further specified.

Details

All measures implemented from survAUC should be used with care, we are aware of problems in
implementation that sometimes cause fatal errors in R. In future updates some of these measures
may be re-written and implemented directly in mlr3proba.

Dictionary

This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar
function msr():

MeasureSurvUnoTNR$new()
mlr_measures$get(”surv.uno_tnr")
msr("surv.uno_tnr")

https://doi.org/10.1198/016214507000000149
https://CRAN.R-project.org/package=survAUC

108 mlir measures_surv.uno_tnr

Parameters
Id Type Default Range
times numeric - [0, c0)
lp_thresh numeric 0 (—00,0)

Meta Information
* Type: "surv”
* Range: [0, 1]
* Minimize: FALSE
* Required prediction: 1p

Parameter details
e times (numeric())

A vector of time-points at which we calculate the TPR/TNR scores.

e 1p_thresh (numeric(1))
Determines the cutoff threshold of the linear predictor in the calculation of the TPR/TNR
scores.

Super classes

mlr3::Measure->mlr3proba: :MeasureSurv->mlr3proba: :MeasureSurvAUC ->MeasureSurvUnoTNR

Methods

Public methods:

¢ MeasureSurvUnoTNR$new()
e MeasureSurvUnoTNR$clone ()

Method new(): Creates a new instance of this R6 class.

Usage:
MeasureSurvUnoTNR$new()

Method clone(): The objects of this class are cloneable with this method.

Usage:
MeasureSurvUnoTNR$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

mlr_measures_surv.uno_tpr 109

References

Uno H, Cai T, Tian L, Wei LJ (2007). “Evaluating Prediction Rules fort-Year Survivors With
Censored Regression Models.” Journal of the American Statistical Association, 102(478), 527-
537. doi:10.1198/016214507000000149.

See Also

Other survival measures: mlr_measures_surv.calib_alpha, mlr_measures_surv.calib_beta,
mlr_measures_surv.chambless_auc, mlr_measures_surv.cindex, mlr_measures_surv.dcalib,
mlr_measures_surv.graf, mlr_measures_surv.hung_auc, mlr_measures_surv.intlogloss,

mlr_measures_surv.logloss, mlr_measures_surv.mae, mlr_measures_surv.mse, mlr_measures_surv.nagelk_r2,
mlr_measures_surv.oquigley_r2, mlr_measures_surv.rcll, mlr_measures_surv.rmse, mlr_measures_surv.schmi

mlr_measures_surv.song_auc, mlr_measures_surv.song_tnr,mlr_measures_surv.song_tpr,
mlr_measures_surv.uno_auc, mlr_measures_surv.uno_tpr, mlr_measures_surv.xu_r2

Other AUC survival measures: mlr_measures_surv.chambless_auc, mlr_measures_surv.hung_auc,
mlr_measures_surv.song_auc, mlr_measures_surv.song_tnr, mlr_measures_surv.song_tpr,
mlr_measures_surv.uno_auc, mlr_measures_surv.uno_tpr

Other Ip survival measures: mlr_measures_surv.calib_beta, mlr_measures_surv.chambless_auc,
mlr_measures_surv.hung_auc, mlr_measures_surv.nagelk_r2,mlr_measures_surv.oquigley_r2,
mlr_measures_surv.song_auc, mlr_measures_surv.song_tnr,mlr_measures_surv.song_tpr,
mlr_measures_surv.uno_auc, mlr_measures_surv.uno_tpr, mlr_measures_surv.xu_r2

mlr_measures_surv.uno_tpr
Uno’s TPR Survival Measure

Description

Calls survAUC: :sens.uno().
Assumes random censoring.

times and lp_thresh are arbitrarily set to @ to prevent crashing, these should be further specified.

Details

All measures implemented from survAUC should be used with care, we are aware of problems in
implementation that sometimes cause fatal errors in R. In future updates some of these measures
may be re-written and implemented directly in mlr3proba.

Dictionary

This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar
function msr():

MeasureSurvUnoTPR$new()
mlr_measures$get(”surv.uno_tpr")
msr("surv.uno_tpr")

https://doi.org/10.1198/016214507000000149
https://CRAN.R-project.org/package=survAUC

110 mlr_measures_surv.uno_tpr

Parameters
Id Type Default Range
times numeric - [0, c0)
lp_thresh numeric 0 (—00,0)

Meta Information
* Type: "surv”
* Range: [0, 1]
* Minimize: FALSE
* Required prediction: 1p

Parameter details

e times (numeric())
A vector of time-points at which we calculate the TPR/TNR scores.

e 1p_thresh (numeric(1))
Determines the cutoff threshold of the linear predictor in the calculation of the TPR/TNR
scores.

Super classes

mlr3::Measure->mlr3proba: :MeasureSurv->mlr3proba: :MeasureSurvAUC ->MeasureSurvUnoTPR

Methods

Public methods:

* MeasureSurvUnoTPR$new()
¢ MeasureSurvUnoTPR$clone ()

Method new(): Creates a new instance of this R6 class.

Usage:
MeasureSurvUnoTPR$new()

Method clone(): The objects of this class are cloneable with this method.
Usage:
MeasureSurvUnoTPR$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

milr_measures_surv.xu_r2 111

References

Uno H, Cai T, Tian L, Wei LJ (2007). “Evaluating Prediction Rules fort-Year Survivors With
Censored Regression Models.” Journal of the American Statistical Association, 102(478), 527—
537. doi:10.1198/016214507000000149.

See Also

Other survival measures: mlr_measures_surv.calib_alpha, mlr_measures_surv.calib_beta,
mlr_measures_surv.chambless_auc, mlr_measures_surv.cindex, mlr_measures_surv.dcalib,
mlr_measures_surv.graf, mlr_measures_surv.hung_auc, mlr_measures_surv.intlogloss,

mlr_measures_surv.logloss, mlr_measures_surv.mae, mlr_measures_surv.mse, mlr_measures_surv.nagelk_r2,
mlr_measures_surv.oquigley_r2, mlr_measures_surv.rcll, mlr_measures_surv.rmse, mlr_measures_surv.schmi

mlr_measures_surv. song_auc, mlr_measures_surv. song_tnr, mlr_measures_surv. song_tpr,
mlr_measures_surv.uno_auc, mlr_measures_surv.uno_tnr, mlr_measures_surv.xu_r2

Other AUC survival measures: mlr_measures_surv.chambless_auc, mlr_measures_surv.hung_auc,
mlr_measures_surv.song_auc, mlr_measures_surv.song_tnr,mlr_measures_surv.song_tpr,
mlr_measures_surv.uno_auc, mlr_measures_surv.uno_tnr

Other Ip survival measures: mlr_measures_surv.calib_beta, mlr_measures_surv.chambless_auc,
mlr_measures_surv.hung_auc, mlr_measures_surv.nagelk_r2, mlr_measures_surv.oquigley_r2,
mlr_measures_surv.song_auc, mlr_measures_surv.song_tnr,mlr_measures_surv.song_tpr,
mlr_measures_surv.uno_auc, mlr_measures_surv.uno_tnr, mlr_measures_surv.xu_r2

mlr_measures_surv.xu_r2
Xu and O’Quigley’s R2 Survival Measure

Description

Calls survAUC: : X0().

Assumes Cox PH model specification.

Details

All measures implemented from survAUC should be used with care, we are aware of problems in
implementation that sometimes cause fatal errors in R. In future updates some of these measures
may be re-written and implemented directly in mlr3proba.

Dictionary
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar

function msr():

MeasureSurvXuR2$new()
mlr_measures$get("surv.xu_r2")
msr("surv.xu_r2")

https://doi.org/10.1198/016214507000000149
https://CRAN.R-project.org/package=survAUC

112 mlir_measures_surv.xu_r2

Parameters

Empty ParamSet

Meta Information

e Type: "surv”

* Range: [0, 1]

* Minimize: FALSE

* Required prediction: 1p

Super classes

mlr3::Measure ->mlr3proba: :MeasureSurv ->MeasureSurvXuR?2

Methods
Public methods:

* MeasureSurvXuR2$new()
¢ MeasureSurvXuR2$clone()

Method new(): Creates a new instance of this R6 class.
Usage:
MeasureSurvXuR2$new()

Method clone(): The objects of this class are cloneable with this method.
Usage:
MeasureSurvXuR2$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

References

Xu R, O’Quigley J (1999). “A R2 type measure of dependence for proportional hazards models.”
Journal of Nonparametric Statistics, 12(1), 83—107. doi:10.1080/10485259908832799.

See Also

Other survival measures: mlr_measures_surv.calib_alpha, mlr_measures_surv.calib_beta,
mlr_measures_surv.chambless_auc, mlr_measures_surv.cindex, mlr_measures_surv.dcalib,
mlr_measures_surv.graf, mlr_measures_surv.hung_auc, mlr_measures_surv.intlogloss,
mlr_measures_surv.logloss, mlr_measures_surv.mae, mlr_measures_surv.mse, mlr_measures_surv.nagelk_r2,
mlr_measures_surv.oquigley_r2, mlr_measures_surv.rcll, mlr_measures_surv.rmse, mlr_measures_surv.schmi
mlr_measures_surv.song_auc, mlr_measures_surv.song_tnr,mlr_measures_surv.song_tpr,
mlr_measures_surv.uno_auc, mlr_measures_surv.uno_tnr, mlr_measures_surv.uno_tpr

Other R2 survival measures: mlr_measures_surv.nagelk_r2, mlr_measures_surv.oquigley_r2

https://doi.org/10.1080/10485259908832799

mlr_pipeops_compose_breslow_distr 113

Other Ip survival measures: mlr_measures_surv.calib_beta, mlr_measures_surv.chambless_auc,
mlr_measures_surv.hung_auc, mlr_measures_surv.nagelk_r2, mlr_measures_surv.oquigley_r2,
mlr_measures_surv.song_auc, mlr_measures_surv.song_tnr, mlr_measures_surv.song_tpr,
mlr_measures_surv.uno_auc, mlr_measures_surv.uno_tnr, mlr_measures_surv.uno_tpr

mlr_pipeops_compose_breslow_distr
Wrap a learner into a PipeOp with survival predictions estimated by
the Breslow estimator

Description

Composes a survival distribution (distr) using the linear predictor predictions (1p) from a given
LearnerSurv during training and prediction, utilizing the breslow estimator. The specified 1learner
must be capable of generating 1p-type predictions (e.g., a Cox-type model).

Dictionary
This PipeOp can be instantiated via the Dictionary mlr_pipeops or with the associated sugar func-

tion po():

PipeOpBreslow$new(learner)
mlr_pipeops$get("breslowcompose”, learner)
po("breslowcompose”, learner, breslow.overwrite = TRUE)

Input and Output Channels
PipeOpBreslow is like a LearnerSurv. It has one input channel, named input that takes a TaskSurv
during training and another TaskSurv during prediction. PipeOpBreslow has one output channel
named output, producing NULL during training and a PredictionSurv during prediction.

State
The $state slot stores the times and status survival target variables of the train TaskSurv as well
as the 1p predictions on the train set.

Parameters
The parameters are:

* breslow.overwrite :: logical(1)
If FALSE (default) then the compositor does nothing and returns the input learner’s Predic-
tionSurv. If TRUE or in the case that the input learner doesn’t have distr predictions, then
the distr is overwritten with the distr composed from 1p and the train set information using
breslow. This is useful for changing the prediction distr from one model form to another.

Super class

mlr3pipelines: :PipeOp -> PipeOpBreslow

114 mlr_pipeops_compose_breslow_distr

Active bindings

learner (mlir3::Learner)
The input survival learner.

Methods

Public methods:

¢ PipeOpBreslow$new()
* PipeOpBreslow$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
PipeOpBreslow$new(learner, id = NULL, param_vals = list())

Arguments:

learner (LearnerSurv)
Survival learner which must provide 1p-type predictions

id (character(1))
Identifier of the resulting object. If NULL (default), it will be set as the id of the input

learner.

param_vals (list())
List of hyperparameter settings, overwriting the hyperparameter settings that would other-

wise be set during construction.
Method clone(): The objects of this class are cloneable with this method.

Usage:
PipeOpBreslow$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

Cox DR (1972). “Regression Models and Life-Tables.” Journal of the Royal Statistical Society:
Series B (Methodological), 34(2), 187-202. doi:10.1111/§.25176161.1972.tb00899.x.

Lin, Y. D (2007). “On the Breslow estimator.” Lifetime Data Analysis, 13(4), 471-480. doi:10.1007/
$109850079048y.

See Also

pipeline_distrcompositor

Other survival compositors: mlr_pipeops_crankcompose, mlr_pipeops_distrcompose, mlr_pipeops_responsecompose

https://doi.org/10.1111/j.2517-6161.1972.tb00899.x
https://doi.org/10.1007/s10985-007-9048-y
https://doi.org/10.1007/s10985-007-9048-y

mlr_pipeops_compose_probregr 115

Examples

Not run:
library(mlr3)
library(mlr3pipelines)
task = tsk("rats")
part = partition(task, ratio = 0.8)
train_task = task$clone()$filter(part$train)
test_task = task$clone()$filter(part$test)

learner = 1lrn("surv.coxph”) # learner with lp predictions
b = po("breslowcompose”, learner = learner, breslow.overwrite = TRUE)

b$train(list(train_task))
p = b$predict(list(test_task))[[1L]]

End(Not run)

mlr_pipeops_compose_probregr
PipeOpProbregr

Description

[Experimental]

Combines a predicted response and se from PredictionRegr with a specified probability distribu-
tion to estimate (or ’compose’) a distr prediction.

Dictionary
This PipeOp can be instantiated via the dictionary mlr3pipelines::mlr_pipeops or with the associated

sugar function mlr3pipelines: :po():

PipeOpProbregr$new()
mlr_pipeops$get(”compose_probregr")
po("compose_probregr")

Input and Output Channels

PipeOpProbregr has two input channels named "input_response” and "input_se”, which take
NULL during training and two PredictionRegrs during prediction, these should respectively contain
the response and se return type, the same object can be passed twice.

The output during prediction is a PredictionRegr with the "response” from input_response, the
"se" from input_se and a "distr" created from combining the two.

State

The $state is left empty (1ist()).

116 mlr_pipeops_compose_probregr

Parameters

e dist :: character(1)
Location-scale distribution to use for composition. Current choices are "Uniform” (default),
"Normal”, "Cauchy”, "Gumbel”, "Laplace”, "Logistic”. All implemented via distr6.

Internals

The composition is created by substituting the response and se predictions into the distribution
location and scale parameters respectively.

Super class

mlr3pipelines: :PipeOp -> PipeOpProbregr

Methods

Public methods:

¢ PipeOpProbregr$new()
e PipeOpProbregr$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
PipeOpProbregr$new(id = "compose_probregr"”, param_vals = list())

Arguments:
id (character(1))
Identifier of the resulting object.

param_vals (list())
List of hyperparameter settings, overwriting the hyperparameter settings that would other-
wise be set during construction.

Method clone(): The objects of this class are cloneable with this method.

Usage:
PipeOpProbregr$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

Not run:
library(mlr3)
library(mlr3pipelines)
set.seed(1)
task = tsk("boston_housing")

Option 1: Use a learner that can predict se
learn = 1lrn("regr.featureless”, predict_type =
pred = learn$train(task)$predict(task)

n

Se")

mlr_pipeops_crankcompose 117

poc = po("compose_probregr")
poc$predict(list(pred, pred))[[1]1]

Option 2: Use two learners, one for response and the other for se
learn_response = 1lrn("regr.rpart")

learn_se = 1rn("regr.featureless”, predict_type = "se")
pred_response = learn_response$train(task)$predict(task)

pred_se = learn_se$train(task)$predict(task)

poc = po("compose_probregr")

poc$predict(list(pred_response, pred_se))[[1]]

End(Not run)

mlr_pipeops_crankcompose
PipeOpCrankCompositor

Description

Uses a predicted distr in a PredictionSurv to estimate (or ’compose’) a crank prediction.

Dictionary

This PipeOp can be instantiated via the dictionary mlr3pipelines::mlr_pipeops or with the associated
sugar function mlr3pipelines: :po():

PipeOpCrankCompositor$new()
mlr_pipeops$get(”crankcompose”)
po("crankcompose")

Input and Output Channels

PipeOpCrankCompositor has one input channel named "input”, which takes NULL during training
and PredictionSurv during prediction.

PipeOpCrankCompositor has one output channel named "output”, producing NULL during training
and a PredictionSurv during prediction.

The output during prediction is the PredictionSurv from the input but with the crank predict type
overwritten by the given estimation method.

State

The $state is left empty (1ist()).

118 mlr_pipeops_crankcompose

Parameters

e method :: character(1)
Determines what method should be used to produce a continuous ranking from the distribu-
tion. Currently only mort is supported, which is the sum of the cumulative hazard, also called
expected/ensemble mortality, see Ishwaran et al. (2008). For more details, see get_mortality().

e overwrite :: logical(1)
If FALSE (default) and the prediction already has a crank prediction, then the compositor
returns the input prediction unchanged. If TRUE, then the crank will be overwritten.

Super class

mlr3pipelines: :PipeOp -> PipeOpCrankCompositor

Methods

Public methods:

* PipeOpCrankCompositor$new()
¢ PipeOpCrankCompositor$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
PipeOpCrankCompositor$new(id = "crankcompose”, param_vals = list())

Arguments:

id (character(1))
Identifier of the resulting object.

param_vals (list())
List of hyperparameter settings, overwriting the hyperparameter settings that would other-
wise be set during construction.

Method clone(): The objects of this class are cloneable with this method.
Usage:
PipeOpCrankCompositor$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

References

Sonabend, Raphael, Bender, Andreas, Vollmer, Sebastian (2022). “Avoiding C-hacking when eval-
uating survival distribution predictions with discrimination measures.” Bioinformatics. ISSN 1367-
4803, doi:10.1093/BIOINFORMATICS/BTAC451, https://academic.oup.com/bioinformatics/
advance-article/doi/10.1093/bioinformatics/btac451/6640155.

Ishwaran, Hemant, Kogalur, B U, Blackstone, H E, Lauer, S M, others (2008). “Random survival
forests.” The Annals of applied statistics, 2(3), 841-860.

https://doi.org/10.1093/BIOINFORMATICS/BTAC451
https://academic.oup.com/bioinformatics/advance-article/doi/10.1093/bioinformatics/btac451/6640155
https://academic.oup.com/bioinformatics/advance-article/doi/10.1093/bioinformatics/btac451/6640155

mlr_pipeops_distrcompose 119

See Also

pipeline_crankcompositor

Other survival compositors: mlr_pipeops_compose_breslow_distr,mlr_pipeops_distrcompose,
mlr_pipeops_responsecompose

Examples

Not run:
library(mlr3pipelines)
task = tsk("rats")

change the crank prediction type of a Cox's model predictions
pred = Irn("surv.coxph”)$train(task)$predict(task)

poc = po("”crankcompose”, param_vals = list(overwrite = TRUE))
poc$predict(list(pred))[[1L]]

End(Not run)

mlr_pipeops_distrcompose
PipeOpDistrCompositor

Description

[Experimental]

Estimates (or ’composes’) a survival distribution from a predicted baseline survival distribution
(distr) and a linear predictor (1p) from two PredictionSurvs.

Compositor Assumptions:

* The baseline distr is a discrete estimator, e.g. surv.kaplan.

* The composed distr is of a linear form

Dictionary

This PipeOp can be instantiated via the dictionary mlr3pipelines::mlr_pipeops or with the associated
sugar function mlr3pipelines::po():

PipeOpDistrCompositor$new()
mlr_pipeops$get("distrcompose”)
po("distrcompose")

120

mlr_pipeops_distrcompose

Input and Output Channels

PipeOpDistrCompositor has two input channels, "base” and "pred”. Both input channels take

NULL

during training and PredictionSurv during prediction.

PipeOpDistrCompositor has one output channel named "output”, producing NULL during training
and a PredictionSurv during prediction.

The output during prediction is the PredictionSurv from the "pred” input but with an extra (or
overwritten) column for the distr predict type; which is composed from the distr of "base”
and the 1p of "pred”. If no 1p predictions have been made or exist, then the "pred” is returned
unchanged.

State

The $state is left empty (1ist()).

Parameters

The parameters are:

Internals

form :: character(1)

Determines the form that the predicted linear survival model should take. This is either,
accelerated-failure time, aft, proportional hazards, ph, or proportional odds, po. Default
aft.

overwrite :: logical(1)

If FALSE (default) then if the "pred" input already has a distr, the compositor does nothing
and returns the given PredictionSurv. If TRUE, then the distr is overwritten with the distr
composed from 1p - this is useful for changing the prediction distr from one model form to
another.

scale_lp:: logical(1)

This option is only applicable to form equal to "aft"”. If TRUE, it min-max scales the linear
prediction scores to be in the interval [0, 1], avoiding extrapolation of the baseline Sy(t) on
the transformed time points ﬁ(lp)’ as these will be € [g, t], and so always smaller than the
maximum time point for which we have estimated Sy(¢). Note that this is just a heuristic to
get reasonable results in the case you observe survival predictions to be e.g. constant after the
AFT composition and it definitely provides no guarantee for creating calibrated distribution
predictions (as none of these methods do). Therefore, it is set to FALSE by default.

The respective forms above have respective survival distributions:

t
aft:S(t) = SO(eXp(lp))
ph:S(t) = S()(t)exp(lp)

So(t)

po: S(t) = exp(—Ip) + (1 — exp(—Ip))So(t)

where S is the estimated baseline survival distribution, and [p is the predicted linear predictor.

For an example use of the "aft"” composition using Kaplan-Meier as a baseline distribution, see
Norman et al. (2024).

mlr_pipeops_distrcompose 121

Super class

mlr3pipelines: :PipeOp -> PipeOpDistrCompositor

Methods

Public methods:

* PipeOpDistrCompositor$new()
e PipeOpDistrCompositor$clone()

Method new(): Creates a new instance of this R6 class.
Usage:
PipeOpDistrCompositor$new(id = "distrcompose”, param_vals = list())
Arguments:

id (character(1))
Identifier of the resulting object.

param_vals (1list())
List of hyperparameter settings, overwriting the hyperparameter settings that would other-
wise be set during construction.

Method clone(): The objects of this class are cloneable with this method.
Usage:
PipeOpDistrCompositor$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

Norman, A P, Li, Wanlu, Jiang, Wenyu, Chen, E B (2024). “deepAFT: A nonlinear accelerated
failure time model with artificial neural network.” Statistics in Medicine. doi:10.1002/sim.10152.

See Also

pipeline_distrcompositor

Other survival compositors: mlr_pipeops_compose_breslow_distr,mlr_pipeops_crankcompose,
mlr_pipeops_responsecompose

Examples

Not run:
library(mlr3)
library(mlr3pipelines)
task = tsk("rats")

base = 1Irn("surv.kaplan”)$train(task)$predict(task)

pred = 1rn("surv.coxph”)$train(task)$predict(task)

let's change the distribution prediction of Cox (Breslow-based) to an AFT form:
pod = po("distrcompose”, param_vals = list(form = "aft”, overwrite = TRUE))

https://doi.org/10.1002/sim.10152

122 mlr_pipeops_responsecompose

pod$predict(list(base = base, pred = pred))[[1]]

End(Not run)

mlr_pipeops_responsecompose
PipeOpResponseCompositor

Description

Uses a predicted survival distribution (distr) in a PredictionSurv to estimate (or ’compose’) an
expected survival time (response) prediction. Practically, this PipeOp summarizes an observation’s
survival curve/distribution to a single number which can be either the restricted mean survival time
or the median survival time.

Dictionary

This PipeOp can be instantiated via the dictionary mlr3pipelines::mlr_pipeops or with the associated
sugar function mlr3pipelines: :po():

PipeOpResponseCompositor$new()
mlr_pipeops$get (" responsecompose”)
po("responsecompose”)

Input and Output Channels

PipeOpResponseCompositor has one input channel named "input"”, which takes NULL during train-
ing and PredictionSurv during prediction.

PipeOpResponseCompositor has one output channel named "output”, producing NULL during
training and a PredictionSurv during prediction.

The output during prediction is the PredictionSurv from the input but with the response predict
type overwritten by the given method.

State

The $state is left empty (1ist()).

Parameters

e method :: character(1)
Determines what method should be used to produce a survival time (response) from the sur-
vival distribution. Available methods are "rmst” and "median”, corresponding to the re-
stricted mean survival time and the median survival time respectively.

e tau:: numeric(1)
Determines the time point up to which we calculate the restricted mean survival time (works
only for the "rmst"” method). If NULL (default), all the available time points in the predicted
survival distribution will be used.

mlr_pipeops_responsecompose 123

e add_crank :: logical(1)
If TRUE then crank predict type will be set as -response (as higher survival times correspond
to lower risk). Works only if overwrite is TRUE.

e overwrite :: logical(1)
If FALSE (default) and the prediction already has a response prediction, then the compos-
itor returns the input prediction unchanged. If TRUE, then the response (and the crank, if
add_crank is TRUE) will be overwritten.

Internals

The restricted mean survival time is the default/preferred method and is calculated as follows:

T rmst = Z (tj - tjfl)Si(tj)

t;€[0,7]

where T is the expected survival time, 7 is the time cutoff/horizon and S;(¢;) are the predicted
survival probabilities of observation ¢ for all the ¢; time points.

The T ;edian survival time is just the first time point for which the survival probability is less
than 0.5. If no such time point exists (e.g. when the survival distribution is not proper due to high
censoring) we return the last time point. This is not a good estimate to use in general, only a
reasonable substitute in such cases.

Super class

mlr3pipelines: :PipeOp -> PipeOpResponseCompositor

Methods
Public methods:

* PipeOpResponseCompositor$new()
* PipeOpResponseCompositor$clone()

Method new(): Creates a new instance of this R6 class.
Usage:
PipeOpResponseCompositor$new(id = "responsecompose”, param_vals = list())
Arguments:

id (character(1))
Identifier of the resulting object.

param_vals (list())
List of hyperparameter settings, overwriting the hyperparameter settings that would other-
wise be set during construction.

Method clone(): The objects of this class are cloneable with this method.
Usage:
PipeOpResponseCompositor$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.

124 mlr_pipeops_survavg

References

Zhao, Lihui, Claggett, Brian, Tian, Lu, Uno, Hajime, Pfeffer, A. M, Solomon, D. S, Trippa,
Lorenzo, Wei, J. L (2016). “On the restricted mean survival time curve in survival analysis.” Bio-
metrics, 72(1), 215-221. ISSN 1541-0420, doi:10.1111/BIOM.12384, https://onlinelibrary.
wiley.com/doi/full/10.1111/biom.12384.

See Also

pipeline_responsecompositor

Other survival compositors: mlr_pipeops_compose_breslow_distr,mlr_pipeops_crankcompose,
mlr_pipeops_distrcompose

Examples

Not run:
library(mlr3pipelines)
task = tsk("rats")

add survival time prediction type to the predictions of a Cox model

Median survival time as response

pred = Irn("surv.coxph”)$train(task)$predict(task)

por = po("responsecompose”, param_vals = list(method = "median”, overwrite = TRUE))
por$predict(list(pred))[[1L]]

mostly improper survival distributions, "median” sets the survival time

to the last time point

RMST (default) as response, while also changing the “crank™ to ~-response-
por = po("responsecompose”, param_vals = list(overwrite = TRUE, add_crank = TRUE))
por$predict(list(pred))[[1L]]

End(Not run)

mlr_pipeops_survavg PipeOpSurvAvg

Description
Perform (weighted) prediction averaging from survival PredictionSurvs by connecting PipeOpSurvAvg
to multiple PipeOpLearner outputs.

The resulting prediction will aggregate any predict types that are contained within all inputs. Any
predict types missing from at least one input will be set to NULL. These are aggregated as follows:

n o n

* "response”, "crank”, and "1p" are all a weighted average from the incoming predictions.

e "distr” is a distr6:: VectorDistribution containing distr6::MixtureDistributions.

Weights can be set as a parameter; if none are provided, defaults to equal weights for each predic-
tion.

https://doi.org/10.1111/BIOM.12384
https://onlinelibrary.wiley.com/doi/full/10.1111/biom.12384
https://onlinelibrary.wiley.com/doi/full/10.1111/biom.12384

mlr_pipeops_survavg 125

Input and Output Channels

Input and output channels are inherited from PipeOpEnsemble with a PredictionSurv for inputs and
outputs.

State
The $state is left empty (List()).

Parameters

The parameters are the parameters inherited from the PipeOpEnsemble.

Internals

Inherits from PipeOpEnsemble by implementing the private$weighted_avg_predictions() method.

Super classes

mlr3pipelines: :PipeOp ->mlr3pipelines: :PipeOpEnsemble -> PipeOpSurvAvg

Methods

Public methods:

* PipeOpSurvAvg$new()
e PipeOpSurvAvg$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
PipeOpSurvAvg$new(innum = @, id = "survavg", param_vals = list(), ...)

Arguments:

innum (numeric(1))
Determines the number of input channels. If innum is O (default), a vararg input channel is
created that can take an arbitrary number of inputs.

id (character(1))
Identifier of the resulting object.

param_vals (list())
List of hyperparameter settings, overwriting the hyperparameter settings that would other-
wise be set during construction.

... (ANY)
Additional arguments passed to mlr3pipelines::PipeOpEnsemble.
Method clone(): The objects of this class are cloneable with this method.
Usage:
PipeOpSurvAvg$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

126 mlr_pipeops_trafopred_classifsurv_disctime

See Also

Other PipeOps: PipeOpPredTransformer, PipeOpTaskTransformer, PipeOpTransformer, mlr_pipeops_trafopred_cl:
mlr_pipeops_trafopred_classifsurv_disctime, mlr_pipeops_trafopred_regrsurv,mlr_pipeops_trafopred_sur
mlr_pipeops_trafotask_regrsurv, mlr_pipeops_trafotask_survclassif_IPCW, mlr_pipeops_trafotask_survcla
mlr_pipeops_trafotask_survregr

Examples

Not run:
library(mlr3)
library(mlr3pipelines)

task = tsk("rats")

pl = lrn("surv.coxph”)$train(task)$predict(task)

p2 = lrn("surv.kaplan")$train(task)$predict(task)

poc = po("survavg”, param_vals = list(weights = c(0.2, 0.8)))
poc$predict(list(pl, p2))

End(Not run)

mlr_pipeops_trafopred_classifsurv_disctime
PipeOpPredClassifSurvDiscTime

Description

Transform PredictionClassif to PredictionSurv by converting event probabilities of a pseudo status
variable (discrete time hazards) to survival probabilities using the product rule (Tutz et al. 2016):

Py =pk-...-m
Where:

* We assume that continuous time is divided into time intervals [0, ¢1), [t1,t2), ..., [tn, 00)
* P, = P(T > ty) is the survival probability at time ¢,

* hy is the discrete-time hazard (classifier prediction), i.e. the conditional probability for an
event in the k-interval.

s pp=1—hy=P(T > t,|T > tr_1)

Dictionary

This PipeOp can be instantiated via the dictionary mlr3pipelines::mlr_pipeops or with the associated
sugar function mlr3pipelines: :po():

PipeOpPredClassifSurvDiscTime$new()
mlr_pipeops$get("trafopred_classifsurv_disctime")
po("trafopred_classifsurv_disctime”)

mlr_pipeops_trafopred_classitsurv_disctime 127

Input and Output Channels

The input is a PredictionClassif and a data.table with the transformed data both generated by
PipeOpTaskSurvClassifDiscTime. The output is the input PredictionClassif transformed to a Pre-
dictionSurv. Only works during prediction phase.

Super class

mlr3pipelines: :PipeOp -> PipeOpPredClassifSurvDiscTime

Methods

Public methods:

* PipeOpPredClassifSurvDiscTime$new()
e PipeOpPredClassifSurvDiscTime$clone()

Method new(): Creates a new instance of this R6 class.
Usage:
PipeOpPredClassifSurvDiscTime$new(id = "trafopred_classifsurv_disctime")

Arguments:

id (character(1))
Identifier of the resulting object.

Method clone(): The objects of this class are cloneable with this method.

Usage:
PipeOpPredClassifSurvDiscTime$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

Tutz, Gerhard, Schmid, Matthias (2016). Modeling Discrete Time-to-Event Data, series Springer
Series in Statistics. Springer International Publishing. ISBN 978-3-319-28156-8 978-3-319-28158-
2, http://1link.springer.com/10.1007/978-3-319-28158-2.

See Also

Other PipeOps: PipeOpPredTransformer, PipeOpTaskTransformer, PipeOpTransformer, mlr_pipeops_survavg,
mlr_pipeops_trafopred_classifsurv_IPCW,mlr_pipeops_trafopred_regrsurv,mlr_pipeops_trafopred_survreg
mlr_pipeops_trafotask_regrsurv,mlr_pipeops_trafotask_survclassif_IPCW, mlr_pipeops_trafotask_survcla
mlr_pipeops_trafotask_survregr

Other Transformation PipeOps: mlr_pipeops_trafopred_classifsurv_IPCW,mlr_pipeops_trafopred_regrsurv,

mlr_pipeops_trafopred_survregr,mlr_pipeops_trafotask_regrsurv,mlr_pipeops_trafotask_survclassif_IPC
mlr_pipeops_trafotask_survclassif_disctime, mlr_pipeops_trafotask_survregr

http://link.springer.com/10.1007/978-3-319-28158-2

128 mlr_pipeops_trafopred_classifsurv_IPCW

mlr_pipeops_trafopred_classifsurv_IPCW
PipeOpPredClassifSurvIPCW

Description

Transform PredictionClassif to PredictionSurv using the Inverse Probability of Censoring Weights
(IPCW) method by Vock et al. (2016).

Dictionary

This PipeOp can be instantiated via the dictionary mlr3pipelines::mlr_pipeops or with the associated
sugar function mlr3pipelines: :po():

PipeOpPredClassifSurvIPCW$new()
mlr_pipeops$get("”trafopred_classifsurv_IPCW")
po("trafopred_classifsurv_IPCW")

Input and Output Channels

The input is a PredictionClassif and a data.table containing observed times, censoring indicators
and row ids, all generated by PipeOpTaskSurvClassifIPCW during the prediction phase.

The output is the input PredictionClassif transformed to a PredictionSurv. Each input classification
probability prediction corresponds to the probability of having the event up to the specified cutoff
time 7(X;) = P(T; < 7|X;), see Vock et al. (2016) and PipeOpTaskSurvClassif[PCW. Therefore,
these predictions serve as continuous risk scores that can be directly interpreted as crank predic-
tions in the right-censored survival setting. We also map them to the survival distribution prediction
distr, at the specified cutoff time point 7, i.e. as S;(7) = 1 — #(X;). Survival measures that
use the survival distribution (eg ISBS) should be evaluated exactly at the cutoff time point 7, see
example.

Super class

mlr3pipelines: :PipeOp -> PipeOpPredClassifSurvIPCW

Methods

Public methods:

* PipeOpPredClassifSurvIPCW$new()
* PipeOpPredClassifSurvIPCW$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
PipeOpPredClassifSurvIPCW$new(id = "trafopred_classifsurv_IPCW")

Arguments:

mlr_pipeops_trafopred_regrsurv 129

id (character(1))
Identifier of the resulting object.

Method clone(): The objects of this class are cloneable with this method.

Usage:
PipeOpPredClassifSurvIPCW$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

Vock, M D, Wolfson, Julian, Bandyopadhyay, Sunayan, Adomavicius, Gediminas, Johnson, E
P, Vazquez-Benitez, Gabriela, O’Connor, J P (2016). “Adapting machine learning techniques
to censored time-to-event health record data: A general-purpose approach using inverse proba-
bility of censoring weighting.” Journal of Biomedical Informatics, 61, 119-131. doi:10.1016/
jjb1.2016.03.009, https://www.sciencedirect.com/science/article/pii/S1532046416000496.

See Also

Other PipeOps: PipeOpPredTransformer, PipeOpTaskTransformer, PipeOpTransformer, mlr_pipeops_survavg,
mlr_pipeops_trafopred_classifsurv_disctime, mlr_pipeops_trafopred_regrsurv,mlr_pipeops_trafopred_sur
mlr_pipeops_trafotask_regrsurv,mlr_pipeops_trafotask_survclassif_IPCW, mlr_pipeops_trafotask_survcla
mlr_pipeops_trafotask_survregr

Other Transformation PipeOps: mlr_pipeops_trafopred_classifsurv_disctime, mlr_pipeops_trafopred_regrsurv,
mlr_pipeops_trafopred_survregr,mlr_pipeops_trafotask_regrsurv,mlr_pipeops_trafotask_survclassif_IPC
mlr_pipeops_trafotask_survclassif_disctime, mlr_pipeops_trafotask_survregr

mlr_pipeops_trafopred_regrsurv
PipeOpPredRegrSurv

Description

Transform PredictionRegr to PredictionSurv.

Input and Output Channels

Input and output channels are inherited from PipeOpPredTransformer.

The output is the input PredictionRegr transformed to a PredictionSurv. Censoring can be added
with the status hyper-parameter. se is ignored.

State

The $state is a named list with the $state elements inherited from PipeOpPredTransformer.

https://doi.org/10.1016/j.jbi.2016.03.009
https://doi.org/10.1016/j.jbi.2016.03.009
https://www.sciencedirect.com/science/article/pii/S1532046416000496

130 mlr_pipeops_trafopred_regrsurv

Parameters
The parameters are

e status :: (numeric(1))
If NULL then assumed no censoring in the dataset. Otherwise should be a vector of @/1s of

same length as the prediction object, where 1 is dead and @ censored.

Super classes

mlr3pipelines: :PipeOp->mlr3proba: :PipeOpTransformer ->mlr3proba: :PipeOpPredTransformer
-> PipeOpPredRegrSuryv

Methods

Public methods:

¢ PipeOpPredRegrSurv$new()
e PipeOpPredRegrSurv$clone()

Method new(): Creates a new instance of this R6 class.
Usage:
PipeOpPredRegrSurv$new(id = "trafopred_regrsurv"”, param_vals = list())
Arguments:

id (character(1))
Identifier of the resulting object.

param_vals (list())
List of hyperparameter settings, overwriting the hyperparameter settings that would other-

wise be set during construction.
Method clone(): The objects of this class are cloneable with this method.

Usage:
PipeOpPredRegrSurv$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

Other PipeOps: PipeOpPredTransformer, PipeOpTaskTransformer, PipeOpTransformer, mlr_pipeops_survavg,

mlr_pipeops_trafopred_classifsurv_IPCW,mlr_pipeops_trafopred_classifsurv_disctime,

mlr_pipeops_trafopred_survregr,mlr_pipeops_trafotask_regrsurv,mlr_pipeops_trafotask_survclassif_IPC

mlr_pipeops_trafotask_survclassif_disctime, mlr_pipeops_trafotask_survregr

Other Transformation PipeOps: mlr_pipeops_trafopred_classifsurv_IPCW,mlr_pipeops_trafopred_classifsurv_c
mlr_pipeops_trafopred_survregr,mlr_pipeops_trafotask_regrsurv, mlr_pipeops_trafotask_survclassif_IPC

mlr_pipeops_trafotask_survclassif_disctime, mlr_pipeops_trafotask_survregr

mlr_pipeops_trafopred_survregr 131

Examples

Not run:
library(mlr3)
library(mlr3pipelines)

simple example
pred = PredictionRegr$new(row_ids = 1:10, truth = 1:10, response = 1:10)
po = po("trafopred_regrsurv")

assume no censoring

new_pred = po$predict(list(pred = pred, task = NULL))[[1]]
po$train(list(NULL, NULL))

print(new_pred)

add censoring

task_surv = tsk("rats")

task_regr = po("trafotask_survregr”, method = "omit")$train(list(task_surv, NULL))[[1]]
learn = 1lrn("regr.featureless"”)

pred = learn$train(task_regr)$predict(task_regr)

po = po("trafopred_regrsurv")

new_pred = po$predict(list(pred = pred, task = task_surv))[[1]]
all.equal(new_pred$truth, task_surv$truth())

End(Not run)

mlr_pipeops_trafopred_survregr
PipeOpPredSurvRegr

Description

Transform PredictionSurv to PredictionRegr.

Input and Output Channels

Input and output channels are inherited from PipeOpPredTransformer.

The output is the input PredictionSurv transformed to a PredictionRegr. Censoring is ignored.
crank and 1p predictions are also ignored.
State

The $state is a named 1ist with the $state elements inherited from PipeOpPredTransformer.

Super classes

mlr3pipelines: :PipeOp->mlr3proba: :PipeOpTransformer ->mlr3proba: :PipeOpPredTransformer
-> PipeOpPredSurvRegr

132 mlr_pipeops_trafopred_survregr

Methods

Public methods:

¢ PipeOpPredSurvRegr$new()
* PipeOpPredSurvRegr$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
PipeOpPredSurvRegr$new(id = "trafopred_survregr")

Arguments:

id (character(1))
Identifier of the resulting object.

Method clone(): The objects of this class are cloneable with this method.

Usage:
PipeOpPredSurvRegr$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other PipeOps: PipeOpPredTransformer, PipeOpTaskTransformer, PipeOpTransformer, mlr_pipeops_survavg,
mlr_pipeops_trafopred_classifsurv_IPCW,mlr_pipeops_trafopred_classifsurv_disctime,
mlr_pipeops_trafopred_regrsurv,mlr_pipeops_trafotask_regrsurv,mlr_pipeops_trafotask_survclassif_IPC
mlr_pipeops_trafotask_survclassif_disctime, mlr_pipeops_trafotask_survregr

Other Transformation PipeOps: mlr_pipeops_trafopred_classifsurv_IPCW,mlr_pipeops_trafopred_classifsurv_c
mlr_pipeops_trafopred_regrsurv,mlr_pipeops_trafotask_regrsurv,mlr_pipeops_trafotask_survclassif_IPC
mlr_pipeops_trafotask_survclassif_disctime, mlr_pipeops_trafotask_survregr

Examples

Not run:
library(mlr3)
library(mlr3pipelines)
library(survival)

simple example

pred = PredictionSurv$new(row_ids = 1:10, truth = Surv(1:10, rbinom(10, 1, 0.5)),
response = 1:10)

po = po("trafopred_survregr")

new_pred = po$predict(list(pred = pred))[[1]]

print(new_pred)

End(Not run)

mlr_pipeops_trafotask_regrsurv 133

mlr_pipeops_trafotask_regrsurv
PipeOpTaskRegrSurv

Description

Transform TaskRegr to TaskSurv.

Input and Output Channels

Input and output channels are inherited from PipeOpTaskTransformer.

The output is the input TaskRegr transformed to a TaskSurv.

State

The $state is a named 1ist with the $state elements inherited from PipeOpTaskTransformer.

Parameters

The parameters are

e status :: (numeric(1))
If NULL then assumed no censoring in the dataset. Otherwise should be a vector of @/1s of
same length as the prediction object, where 1 is dead and @ censored.

Super classes

mlr3pipelines: :PipeOp->mlr3proba: :PipeOpTransformer ->mlr3proba: :PipeOpTaskTransformer
-> PipeOpTaskRegrSurv

Methods

Public methods:
e PipeOpTaskRegrSurv$new()
e PipeOpTaskRegrSurv$clone()

Method new(): Creates a new instance of this R6 class.
Usage:
PipeOpTaskRegrSurv$new(id = "trafotask_regrsurv")
Arguments:

id (character(1))
Identifier of the resulting object.

Method clone(): The objects of this class are cloneable with this method.
Usage:
PipeOpTaskRegrSurv$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.

134 mlr_pipeops_trafotask_survclassif_disctime

See Also

Other PipeOps: PipeOpPredTransformer, PipeOpTaskTransformer, PipeOpTransformer, mlr_pipeops_survavg,
mlr_pipeops_trafopred_classifsurv_IPCW,mlr_pipeops_trafopred_classifsurv_disctime,
mlr_pipeops_trafopred_regrsurv, mlr_pipeops_trafopred_survregr,mlr_pipeops_trafotask_survclassif_IPC
mlr_pipeops_trafotask_survclassif_disctime, mlr_pipeops_trafotask_survregr

Other Transformation PipeOps: mlr_pipeops_trafopred_classifsurv_IPCW,mlr_pipeops_trafopred_classifsurv_c
mlr_pipeops_trafopred_regrsurv, mlr_pipeops_trafopred_survregr,mlr_pipeops_trafotask_survclassif_IPC
mlr_pipeops_trafotask_survclassif_disctime, mlr_pipeops_trafotask_survregr

Examples

Not run:
library(mlr3)
library(mlr3pipelines)

task = tsk("boston_housing")
po = po("trafotask_regrsurv")

assume no censoring
new_task = po$train(list(task_regr = task, task_surv = NULL))[[11]
print(new_task)

add censoring

task_surv = tsk("rats")

task_regr = po("trafotask_survregr”, method = "omit")$train(list(task_surv, NULL))[[1]1]
print(task_regr)

new_task = po$train(list(task_regr = task_regr, task_surv = task_surv))[[1]]
new_task$truth()

task_surv$truth()

End(Not run)

mlr_pipeops_trafotask_survclassif_disctime
PipeOpTaskSurvClassifDiscTime

Description

Transform TaskSurv to TaskClassif by dividing continuous time into multiple time intervals for each
observation. This transformation creates a new target variable disc_status that indicates whether
an event occurred within each time interval. This approach facilitates survival analysis within a
classification framework using discrete time intervals (Tutz et al. 2016).

Dictionary

This PipeOp can be instantiated via the dictionary mlr3pipelines::mlr_pipeops or with the associated
sugar function mlr3pipelines: :po():

mlr_pipeops_trafotask_survclassif_disctime 135

PipeOpTaskSurvClassifDiscTime$new()
mlr_pipeops$get("trafotask_survclassif_disctime")
po("trafotask_survclassif_disctime")

Input and Output Channels
PipeOpTaskSurvClassifDiscTime has one input channel named "input", and two output channels,
one named "output”" and the other "transformed_data".

During training, the "output" is the "input" TaskSurv transformed to a TaskClassif. The target col-
umn is named "disc_status” and indicates whether an event occurred in each time interval. An
additional feature named "tend"” contains the end time point of each interval. Lastly, the "output"
task has a column with the original observation ids, under the role "original_ids"”. The "trans-
formed_data" is an empty data.table.

During prediction, the "input" TaskSurv is transformed to the "output" TaskClassif with "disc_status”
as target and the "tend"” feature included. The "transformed_data" is a data.table with columns the
"disc_status” target of the "output" task, the "id" (original observation ids), "obs_times" (ob-
served times per "id") and "tend"” (end time of each interval). This "transformed_data" is only
meant to be used with the PipeOpPredClassifSurvDiscTime.

State

The $state contains information about the cut parameter used.

Parameters
The parameters are

e cut :: numeric()
Split points, used to partition the data into intervals based on the time column. If unspecified,
all unique event times will be used. If cut is a single integer, it will be interpreted as the
number of equidistant intervals from O until the maximum event time.

* max_time :: numeric(1)
If cut is unspecified, this will be the last possible event time. All event times after max_time
will be administratively censored at max_time. Needs to be greater than the minimum event
time in the given task.

Super class

mlr3pipelines: :PipeOp -> PipeOpTaskSurvClassifDiscTime

Methods

Public methods:

* PipeOpTaskSurvClassifDiscTime$new()
e PipeOpTaskSurvClassifDiscTime$clone()

Method new(): Creates a new instance of this R6 class.

Usage:

136 mlr_pipeops_trafotask_survclassif_disctime

PipeOpTaskSurvClassifDiscTime$new(id = "trafotask_survclassif_disctime”)

Arguments:

id (character(1))
Identifier of the resulting object.

Method clone(): The objects of this class are cloneable with this method.
Usage:
PipeOpTaskSurvClassifDiscTime$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

References

Tutz, Gerhard, Schmid, Matthias (2016). Modeling Discrete Time-to-Event Data, series Springer
Series in Statistics. Springer International Publishing. ISBN 978-3-319-28156-8 978-3-319-28158-
2, http://1link.springer.com/10.1007/978-3-319-28158-2.

See Also

Other PipeOps: PipeOpPredTransformer, PipeOpTaskTransformer, PipeOpTransformer, mlr_pipeops_survavg,
mlr_pipeops_trafopred_classifsurv_IPCW,mlr_pipeops_trafopred_classifsurv_disctime,
mlr_pipeops_trafopred_regrsurv, mlr_pipeops_trafopred_survregr,mlr_pipeops_trafotask_regrsurv,
mlr_pipeops_trafotask_survclassif_IPCW, mlr_pipeops_trafotask_survregr

Other Transformation PipeOps: mlr_pipeops_trafopred_classifsurv_IPCW,mlr_pipeops_trafopred_classifsurv_c
mlr_pipeops_trafopred_regrsurv,mlr_pipeops_trafopred_survregr,mlr_pipeops_trafotask_regrsurv,
mlr_pipeops_trafotask_survclassif_IPCW, mlr_pipeops_trafotask_survregr

Examples

Not run:
library(mlr3)
library(mlr3learners)
library(mlr3pipelines)

task = tsk("lung")

transform the survival task to a classification task
all unique event times are used as cutpoints
po_disc = po("trafotask_survclassif_disctime")
task_classif = po_disc$train(list(task))[[1L]]

the end time points of the discrete time intervals
unique(task_classif$data(cols = "tend"))[[1L]]

train a classification learner
learner = 1lrn("classif.log_reg"”, predict_type = "prob")

learner$train(task_classif)

End(Not run)

http://link.springer.com/10.1007/978-3-319-28158-2

mlr_pipeops_trafotask_survclassif_IPCW 137

mlr_pipeops_trafotask_survclassif_IPCW
PipeOpTaskSurvClassifIPCW

Description

Transform TaskSurv to TaskClassif using the Inverse Probability of Censoring Weights (IPCW)
method by Vock et al. (2016).

Let T; be the observed times (event or censoring) and §; the censoring indicators for each observa-
tion ¢ in the training set. The IPCW technique consists of two steps: first we estimate the censoring
distribution G (t) using the Kaplan-Meier estimator from the training data. Then we calculate the
observation weights given a cutoff time 7 as:

w; = 1/é(min(Ti,T))

Observations that are censored prior to 7 are assigned zero weights, i.e. w; = 0.

Dictionary

This PipeOp can be instantiated via the dictionary mlr3pipelines::mlr_pipeops or with the associated
sugar function mlr3pipelines: :po():

PipeOpTaskSurvClassifIPCW$new()
mlr_pipeops$get("trafotask_survclassif_IPCW")
po("trafotask_survclassif_IPCW")

Input and Output Channels

PipeOpTaskSurvClassifIPCW has one input channel named "input", and two output channels, one
named "output” and the other "data".

Training transforms the "input" TaskSurv to a TaskClassif, which is the "output". The target column
is named "status” and indicates whether an event occurred before the cutoff time 7 (1 = yes, 0
=no). The observed times column is removed from the "output" task. The transformed task has the
property "weights” (the w;). The "data" is NULL.

During prediction, the "input" TaskSurv is transformed to the "output" TaskClassif with "status”
as target (again indicating if the event occurred before the cutoff time). The "data" is a data.table
containing the observed times 7} and censoring indicators/status J; of each subject as well as
the corresponding row_ids. This "data" is only meant to be used with the PipeOpPredClassit-
SurvIPCW.

Parameters

The parameters are

e tau:: numeric()
Predefined time point for IPCW. Observations with time larger than 7 are censored. Must be
less or equal to the maximum event time.

138 mlr_pipeops_trafotask_survclassif_IPCW

e eps :: numeric()
Small value to replace G(t) = 0 censoring probabilities to prevent infinite weights (a warning
is triggered if this happens).

Super class

mlr3pipelines: :PipeOp -> PipeOpTaskSurvClassifIPCW

Methods

Public methods:

* PipeOpTaskSurvClassifIPCW$new()
* PipeOpTaskSurvClassifIPCW$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
PipeOpTaskSurvClassifIPCW$new(id = "trafotask_survclassif_IPCW")

Arguments:

id (character(1))
Identifier of the resulting object.

Method clone(): The objects of this class are cloneable with this method.

Usage:
PipeOpTaskSurvClassifIPCW$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

Vock, M D, Wolfson, Julian, Bandyopadhyay, Sunayan, Adomavicius, Gediminas, Johnson, E
P, Vazquez-Benitez, Gabriela, O’Connor, J P (2016). “Adapting machine learning techniques
to censored time-to-event health record data: A general-purpose approach using inverse proba-
bility of censoring weighting.” Journal of Biomedical Informatics, 61, 119—131. doi:10.1016/
jjb1.2016.03.009, https://www.sciencedirect.com/science/article/pii/S1532046416000496.

See Also

Other PipeOps: PipeOpPredTransformer, PipeOpTaskTransformer, PipeOpTransformer, mlr_pipeops_survavg,
mlr_pipeops_trafopred_classifsurv_IPCW,mlr_pipeops_trafopred_classifsurv_disctime,
mlr_pipeops_trafopred_regrsurv,mlr_pipeops_trafopred_survregr,mlr_pipeops_trafotask_regrsurv,
mlr_pipeops_trafotask_survclassif_disctime, mlr_pipeops_trafotask_survregr

Other Transformation PipeOps: mlr_pipeops_trafopred_classifsurv_IPCW,mlr_pipeops_trafopred_classifsurv_c
mlr_pipeops_trafopred_regrsurv, mlr_pipeops_trafopred_survregr,mlr_pipeops_trafotask_regrsurv,
mlr_pipeops_trafotask_survclassif_disctime, mlr_pipeops_trafotask_survregr

https://doi.org/10.1016/j.jbi.2016.03.009
https://doi.org/10.1016/j.jbi.2016.03.009
https://www.sciencedirect.com/science/article/pii/S1532046416000496

mlr_pipeops_trafotask_survregr 139

Examples

Not run:
library(mlr3)
library(mlr3learners)
library(mlr3pipelines)

task = tsk("lung")

split task to train and test subtasks
part = partition(task)

task_train = task$clone()$filter(part$train)
task_test = task$clone()$filter(part$test)

define IPCW pipeop
po_ipcw = po("trafotask_survclassif_IPCW", tau = 365)

during training, output is a classification task with weights
task_classif_train = po_ipcw$train(list(task_train))[[1]]
task_classif_train

during prediction, output is a classification task (no weights)
task_classif_test = po_ipcw$predict(list(task_test))[[1]]
task_classif_test

train classif learner on the train task with weights
learner = lrn("classif.rpart”, predict_type = "prob")
learner$train(task_classif_train)

predict using the test output task
p = learner$predict(task_classif_test)

use classif measures for evaluation
p$confusion

p$score()

p$score(msr("classif.auc"))

End(Not run)

mlr_pipeops_trafotask_survregr
PipeOpTaskSurvRegr

Description

Transform TaskSurv to TaskRegr.

140

mlr_pipeops_trafotask_survregr

Input and Output Channels

Input and output channels are inherited from PipeOpTaskTransformer.

The output is the input TaskSurv transformed to a TaskRegr.

State

The $state is a named 1ist with the $state elements

* instatus: Censoring status from input training task.

* outstatus : Censoring status from input prediction task.

Parameters

The parameters are

method :: character(1)

Method to use for dealing with censoring. Options are "ipcw” (Vock et al., 2016): cen-
soring column is removed and a weights column is added, weights are inverse estimated
survival probability of the censoring distribution evaluated at survival time; "mrl” (Klein
and Moeschberger, 2003): survival time of censored observations is transformed to the ob-
served time plus the mean residual life-time at the moment of censoring; "bj" (Buckley and
James, 1979): Buckley-James imputation assuming an AFT model form, calls bujar::bujar;
"delete": censored observations are deleted from the data-set - should be used with caution
if censoring is informative; "omit": the censoring status column is deleted - again should be
used with caution; "reorder”: selects features and targets and sets the target in the new task
object. Note that "mrl” and "ipcw" will perform worse with Type I censoring.

estimator :: character(1)

Method for calculating censoring weights or mean residual lifetime in "mrl"”, current op-
tions are: "kaplan”: unconditional Kaplan-Meier estimator; "akritas"”: conditional non-
parameteric nearest-neighbours estimator; "cox".

alpha :: numeric(1)

When ipcw is used, optional hyper-parameter that adds an extra penalty to the weighting
for censored observations. If set to @ then censored observations are given zero weight and
deleted, weighting only the non-censored observations. A weight for an observation is then
(6 + a(1 — 9))/G(t) where § is the censoring indicator.

eps :: numeric(1)
Small value to replace @ survival probabilities with in IPCW to prevent infinite weights.

lambda :: numeric(1)
Nearest neighbours parameter for the "akritas” estimator in the mlr3extralearners package,
default @. 5.

features, target :: character()
For "reorder” method, specify which columns become features and targets.

learner cneter, mimpu, iter.bj, max.cycle, mstop, nu
Passed to bujar::bujar.

https://mlr3extralearners.mlr-org.com/

mlr_pipeops_trafotask_survregr 141

Super classes

mlr3pipelines: :PipeOp->mlr3proba: :PipeOpTransformer ->mlr3proba: :PipeOpTaskTransformer
-> PipeOpTaskSurvRegr

Methods

Public methods:
e PipeOpTaskSurvRegr$new()
e PipeOpTaskSurvRegr$clone()

Method new(): Creates a new instance of this R6 class.

Usage:

PipeOpTaskSurvRegr$new(id = "trafotask_survregr"”, param_vals = list())

Arguments:

id (character(1))
Identifier of the resulting object.

param_vals (list())
List of hyperparameter settings, overwriting the hyperparameter settings that would other-
wise be set during construction.

Method clone(): The objects of this class are cloneable with this method.

Usage:
PipeOpTaskSurvRegr$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

References

Buckley, Jonathan, James, Ian (1979). “Linear Regression with Censored Data.” Biometrika, 66(3),
429-436. doi:10.2307/2335161, https://www. jstor.org/stable/2335161.

Klein, P J, Moeschberger, L M (2003). Survival analysis: techniques for censored and truncated
data, 2 edition. Springer Science & Business Media. ISBN 0387216456.

Vock, M D, Wolfson, Julian, Bandyopadhyay, Sunayan, Adomavicius, Gediminas, Johnson, E
P, Vazquez-Benitez, Gabriela, O’Connor, J P (2016). “Adapting machine learning techniques
to censored time-to-event health record data: A general-purpose approach using inverse proba-
bility of censoring weighting.” Journal of Biomedical Informatics, 61, 119—131. doi:10.1016/
j-jb1.2016.03.009, https://www.sciencedirect.com/science/article/pii/S1532046416000496.

See Also

Other PipeOps: PipeOpPredTransformer, PipeOpTaskTransformer, PipeOpTransformer, mlr_pipeops_survavg,
mlr_pipeops_trafopred_classifsurv_IPCW,mlr_pipeops_trafopred_classifsurv_disctime,
mlr_pipeops_trafopred_regrsurv,mlr_pipeops_trafopred_survregr,mlr_pipeops_trafotask_regrsurv,
mlr_pipeops_trafotask_survclassif_IPCW, mlr_pipeops_trafotask_survclassif_disctime

Other Transformation PipeOps: mlr_pipeops_trafopred_classifsurv_IPCW,mlr_pipeops_trafopred_classifsurv_c
mlr_pipeops_trafopred_regrsurv, mlr_pipeops_trafopred_survregr,mlr_pipeops_trafotask_regrsurv,
mlr_pipeops_trafotask_survclassif_IPCW, mlr_pipeops_trafotask_survclassif_disctime

https://doi.org/10.2307/2335161
https://www.jstor.org/stable/2335161
https://doi.org/10.1016/j.jbi.2016.03.009
https://doi.org/10.1016/j.jbi.2016.03.009
https://www.sciencedirect.com/science/article/pii/S1532046416000496

142 mlr_pipeops_trafotask_survregr

Examples

Not run:
library(mlr3)
library(mlr3pipelines)

these methods are generally only successful if censoring is not too high
create survival task by undersampling
task = tsk("rats")$filter(
c(which(tsk("rats")$truth()[, 2] == 1),
sample(which(tsk("rats")$truth()[, 2] == @), 42))
)

deletion
po = po("trafotask_survregr"”, method = "delete")
po$train(list(task, NULL))[L[1]] # 42 deleted

omission
po = po("trafotask_survregr"”, method = "omit")
po$train(list(task, NULL))[[11]

if (requireNamespace(”"mlr3extralearners”, quietly = TRUE)) {
ipcw with Akritas
po = po("trafotask_survregr”, method = "ipcw"”, estimator = "akritas"”, lambda = 0.4, alpha = 0)
new_task = po$train(list(task, NULL))[[1]1]
print(new_task)
new_task$weights

}

mrl with Kaplan-Meier

po = po("trafotask_survregr”, method = "mrl")

new_task = po$train(list(task, NULL))[[1]]
data.frame(new = new_task$truth(), old = task$truth())

Buckley-James imputation
if (requireNamespace("bujar”, quietly = TRUE)) {
po = po("trafotask_survregr”, method = "bj")
new_task = po$train(list(task, NULL))[[1]]
data.frame(new = new_task$truth(), old = task$truth())
}

reorder - in practice this will be only be used in a few graphs

po = po("trafotask_survregr”, method = "reorder”, features = c("sex", "rx", "time", "status"),
target = "litter")

new_task = po$train(list(task, NULL))[[1]]

print(new_task)

reorder using another task for feature names

po = po("trafotask_survregr”, method = "reorder”, target = "litter")
new_task = po$train(list(task, task))[[1]]

print(new_task)

End(Not run)

mlr_tasks_actg 143

mlr_tasks_actg ACTG 320 Survival Task

Description

A survival task for the actg data set.

Format

R6::R6Class inheriting from TaskSurv.

Dictionary

This Task can be instantiated via the dictionary mlr_tasks or with the associated sugar function
tsk():

mlr_tasks$get("actg"”)
tsk("actg")

Meta Information

 Task type: “surv”

* Dimensions: 1151x13
* Properties: -

* Has Missings: FALSE

 Target: “time”, “status”

* Features: “age”, “cd4”, “hemophil”, “ivdrug”, “karnof™, “priorzdv”, “raceth”, “sexF”, “strat2”,

EEIT3

“ex , txgrpn

Pre-processing

¢ Column sex has been renamed to sexF and censor has been renamed to status.

e Columns id, time_d, and censor_d have been removed so target is time to AIDS diagnosis
(in days).

See Also
» Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_
and_basic_modeling.html
* Dictionary of Tasks: mlr3::mlr_tasks
* as.data.table(mlr_tasks) for a table of available Tasks in the running session

Other Task: TaskDens, TaskSurv, mlr_tasks_faithful, mlr_tasks_gbcs, mlr_tasks_gbsg,
mlr_tasks_grace, mlr_tasks_lung, mlr_tasks_mgus, mlr_tasks_pbc, mlr_tasks_precip, mlr_tasks_rats,
mlr_tasks_unemployment, mlr_tasks_veteran, mlr_tasks_whas

https://mlr3book.mlr-org.com/
https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html
https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html

144 mlr_tasks_faithful

mlr_tasks_faithful Old Faithful Eruptions Density Task

Description

A density task for the faithful data set.

Format

R6::R6Class inheriting from TaskDens.

Dictionary

This Task can be instantiated via the dictionary mlr_tasks or with the associated sugar function
tsk():

mlr_tasks$get("faithful”)
tsk("faithful”)

Meta Information

* Task type: “dens”

* Dimensions: 272x1
* Properties: -

* Has Missings: FALSE
* Target: -

* Features: “eruptions”

Preprocessing

* Only the eruptions column is kept in this task.

See Also

» Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_
and_basic_modeling.html

* Dictionary of Tasks: mlr3::mlr_tasks
* as.data.table(mlr_tasks) for a table of available Tasks in the running session

Other Task: TaskDens, TaskSurv, mlr_tasks_actg, mlr_tasks_gbcs, mlr_tasks_gbsg, mlr_tasks_grace,
mlr_tasks_lung, mlr_tasks_mgus, mlr_tasks_pbc, mlr_tasks_precip,mlr_tasks_rats, mlr_tasks_unemployment,
mlr_tasks_veteran, mlr_tasks_whas

https://mlr3book.mlr-org.com/
https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html
https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html

mlr_tasks_gbcs 145

mlr_tasks_gbcs German Breast Cancer Study Survival Task

Description

A survival task for the gbcs data set.

Format

R6::R6Class inheriting from TaskSurv.

Dictionary

This Task can be instantiated via the dictionary mlr_tasks or with the associated sugar function
tsk():

mlr_tasks$get("gbcs")
tsk("gbcs")

Meta Information

* Task type: “surv”

* Dimensions: 686x10
* Properties: -

» Has Missings: FALSE

LEINT3

 Target: “time”, “status”

113 CE RT3 EE TS

» Features: “age”, “estrg_recp”,
“Size”

CEINTS

grade”, “hormone”, “menopause”’, ‘“nodes”, “prog_recp”,

Preprocessing

¢ Column id and all date columns have been removed, as well as rectime and censrec.

* Target columns (survtime, censdead) have been renamed to (time, status).

See Also

» Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_
and_basic_modeling.html

* Dictionary of Tasks: mlr3::mlr_tasks
* as.data.table(mlr_tasks) for a table of available Tasks in the running session

Other Task: TaskDens, TaskSurv, mlr_tasks_actg, mlr_tasks_faithful, mlr_tasks_gbsg,
mlr_tasks_grace,mlr_tasks_lung, mlr_tasks_mgus, mlr_tasks_pbc, mlr_tasks_precip,mlr_tasks_rats,
mlr_tasks_unemployment, mlr_tasks_veteran, mlr_tasks_whas

https://mlr3book.mlr-org.com/
https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html
https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html

146 mlr_tasks_gbsg

mlr_tasks_gbsg German Breast Cancer Study Survival Task

Description

A survival task for the gbsg data set.

Format

R6::R6Class inheriting from TaskSurv.

Dictionary

This Task can be instantiated via the dictionary mlr_tasks or with the associated sugar function
tsk():

mlr_tasks$get("gbsg")
tsk("gbsg")

Meta Information

* Task type: “surv”

* Dimensions: 686x10
* Properties: -

* Has Missings: FALSE

LEINT3

* Target: “time”, “status”

9% GG 9% G ELINNT3 EEINT3 9 <. CEINNT

* Features: “age”, “er”, “grade”, “hormon”, “meno”, “nodes”, “pgr”, “size”

Pre-processing

¢ Removed column pid.

* Column meno has been converted to factor and 0/1 values have been replaced with premenopausal
and postmenopausal respectively.

* Column hormon has been converted to factor and 0/1 values have been replaced with no and
yes respectively.

e Column grade has been converted to factor.

* Renamed target column rfstime to time.

mlr_tasks_grace 147

See Also

e Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_
and_basic_modeling.html

* Dictionary of Tasks: mlr3::mlr_tasks
* as.data.table(mlr_tasks) for a table of available Tasks in the running session

Other Task: TaskDens, TaskSurv, mlr_tasks_actg, mlr_tasks_faithful, mlr_tasks_gbcs,
mlr_tasks_grace,mlr_tasks_lung, mlr_tasks_mgus, mlr_tasks_pbc, mlr_tasks_precip,mlr_tasks_rats,
mlr_tasks_unemployment, mlr_tasks_veteran, mlr_tasks_whas

mlr_tasks_grace GRACE 1000 Survival Task

Description

A survival task for the grace data set.

Format

R6::R6Class inheriting from TaskSurv.

Dictionary

This Task can be instantiated via the dictionary mlr_tasks or with the associated sugar function
tsk():

mlr_tasks$get("grace”)
tsk("grace”)

Meta Information

* Task type: “surv”

e Dimensions: 1000x8
* Properties: -

* Has Missings: FALSE

LEINT3

 Target: “time”, “status”

LEINT3 CLIT3 ELINNT3 LLINNT3

 Features: “age”, “los”, “revasc”, “revascdays”, “stchange”, “sysbp”

Preprocessing

e Column id is removed.

* Target columns (days, death) have been renamed to (time, status).

https://mlr3book.mlr-org.com/
https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html
https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html

148 mlr_tasks_lung

See Also

e Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_
and_basic_modeling.html

* Dictionary of Tasks: mlr3::mlr_tasks
* as.data.table(mlr_tasks) for a table of available Tasks in the running session

Other Task: TaskDens, TaskSurv, mlr_tasks_actg, mlr_tasks_faithful, mlr_tasks_gbcs,
mlr_tasks_gbsg, mlr_tasks_lung, mlr_tasks_mgus, mlr_tasks_pbc, mlr_tasks_precip, mlr_tasks_rats,
mlr_tasks_unemployment, mlr_tasks_veteran, mlr_tasks_whas

mlr_tasks_lung Lung Cancer Survival Task

Description

A survival task for the lung data set.

Format

R6::R6Class inheriting from TaskSurv.

Dictionary

This Task can be instantiated via the dictionary mlr_tasks or with the associated sugar function
tsk():

mlr_tasks$get("lung"”)
tsk("lung")

Meta Information

* Task type: “surv”

* Dimensions: 168x9
* Properties: -

* Has Missings: FALSE

LEINT3

 Target: “time”, “status”

9% EEIT3 CLINNY3 EEINT3 ELINT3

* Features: “age”, “meal.cal”, “pat.karno”, “ph.ecog”, “ph.karno”, “sex”, “wt.loss”

Pre-processing
e Column inst has been removed.
¢ Column sex has been converted to a factor, all others have been converted to integer.

* Kept only complete cases (no missing values).

https://mlr3book.mlr-org.com/
https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html
https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html

mlr_tasks_mgus 149

See Also

e Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_
and_basic_modeling.html

* Dictionary of Tasks: mlr3::mlr_tasks
* as.data.table(mlr_tasks) for a table of available Tasks in the running session

Other Task: TaskDens, TaskSurv, mlr_tasks_actg, mlr_tasks_faithful, mlr_tasks_gbcs,
mlr_tasks_gbsg, mlr_tasks_grace, mlr_tasks_mgus, mlr_tasks_pbc, mlr_tasks_precip, mlr_tasks_rats,
mlr_tasks_unemployment, mlr_tasks_veteran, mlr_tasks_whas

mlr_tasks_mgus Monoclonal Gammopathy Survival Task

Description

A survival task for the mgus data set.

Format

R6::R6Class inheriting from TaskSurv.

Dictionary

This Task can be instantiated via the dictionary mlr_tasks or with the associated sugar function
tsk():

mlr_tasks$get("mgus”)
tsk("mgus")

Meta Information

* Task type: “surv”

* Dimensions: 176x9
* Properties: -

* Has Missings: FALSE

LEINT3

 Target: “time”, “status”

CLINT3 i1

* Features: “age”, “alb”, “creat”, “dxyr”, “hgb”, “mspike”, “sex

Pre-processing
e Removed columns id, pcdx and pctime.
* Renamed target columns from (fultime, death) to (time, status).

* Kept only complete cases (no missing values).

https://mlr3book.mlr-org.com/
https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html
https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html

150 mlr_tasks_pbc

See Also

e Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_
and_basic_modeling.html

* Dictionary of Tasks: mlr3::mlr_tasks
* as.data.table(mlr_tasks) for a table of available Tasks in the running session

Other Task: TaskDens, TaskSurv, mlr_tasks_actg, mlr_tasks_faithful, mlr_tasks_gbcs,
mlr_tasks_gbsg, mlr_tasks_grace,mlr_tasks_lung, mlr_tasks_pbc, mlr_tasks_precip,mlr_tasks_rats,
mlr_tasks_unemployment, mlr_tasks_veteran, mlr_tasks_whas

mlr_tasks_pbc Primary Biliary Cholangitis Survival Task

Description

A survival task for the pbc data set.

Format

R6::R6Class inheriting from TaskSurv.

Dictionary

This Task can be instantiated via the dictionary mlr_tasks or with the associated sugar function
tsk():

mlr_tasks$get ("pbc”)
tsk("pbc")

Meta Information

 Task type: “surv”

* Dimensions: 276x19
* Properties: -

* Has Missings: FALSE

9 <

* Target: “time”, “status”

LLIT3 ELIT) EL T3 9 < CLINTI

 Features: “age”, “albumin”, “alk.phos”, “ascites”, “ast”, “bili”, “chol”, “copper”, “edema”,

“hepato”, “platelet”, “protime”, “sex”, “spiders”, “stage”, “trig”, “trt”

Pre-processing

* Removed column id.

* Kept only complete cases (no missing values).

¢ Column age has been converted to integer.

¢ Columns trt, stage, hepato, edema and ascites have been converted to factors.
¢ Column trt has levels Dpenicillmain and placebo instead of 1 and 2.

* Column status has 1 for death and 0 for censored or transplant.

https://mlr3book.mlr-org.com/
https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html
https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html

mlr_tasks_precip 151

See Also

e Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data
and_basic_modeling.html

* Dictionary of Tasks: mlr3::mlr_tasks
* as.data.table(mlr_tasks) for a table of available Tasks in the running session

Other Task: TaskDens, TaskSurv, mlr_tasks_actg, mlr_tasks_faithful, mlr_tasks_gbcs,
mlr_tasks_gbsg, mlr_tasks_grace, mlr_tasks_lung, mlr_tasks_mgus, mlr_tasks_precip,
mlr_tasks_rats, mlr_tasks_unemployment, mlr_tasks_veteran, mlr_tasks_whas

mlr_tasks_precip Annual Precipitation Density Task

Description

A density task for the precip data set.

Format

R6::R6Class inheriting from TaskDens.

Dictionary

This Task can be instantiated via the dictionary mlr_tasks or with the associated sugar function
tsk():

mlr_tasks$get("precip”)
tsk("precip")

Meta Information
* Task type: “dens”
e Dimensions: 70x1
* Properties: -
* Has Missings: FALSE
 Target: -

* Features: “precip”

Preprocessing

* Only the precip column is kept in this task.

https://mlr3book.mlr-org.com/
https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html
https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html

152 mlir_tasks_rats

See Also

* Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_
and_basic_modeling.html

* Dictionary of Tasks: mlr3::mlr_tasks
* as.data.table(mlr_tasks) for a table of available Tasks in the running session

Other Task: TaskDens, TaskSurv, mlr_tasks_actg, mlr_tasks_faithful, mlr_tasks_gbcs,
mlr_tasks_gbsg, mlr_tasks_grace, mlr_tasks_lung, mlr_tasks_mgus, mlr_tasks_pbc, mlr_tasks_rats,
mlr_tasks_unemployment, mlr_tasks_veteran, mlr_tasks_whas

mlr_tasks_rats Rats Survival Task

Description

A survival task for the rats data set.

Format

R6::R6Class inheriting from TaskSurv.

Dictionary

This Task can be instantiated via the dictionary mlr_tasks or with the associated sugar function
tsk():

mlr_tasks$get("rats")
tsk("rats")

Meta Information

* Task type: “surv”

* Dimensions: 300x5
* Properties: -

* Has Missings: FALSE

LEIT3

e Target: “time”, “status”

CE I TSN L TS ’

» Features: “litter”, “rx”, “sex

Pre-processing

¢ Column sex has been converted to a factor, all others have been converted to integer.

https://mlr3book.mlr-org.com/
https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html
https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html

mlr_tasks_unemployment 153

See Also

e Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_
and_basic_modeling.html
* Dictionary of Tasks: mlr3::mlr_tasks

* as.data.table(mlr_tasks) for a table of available Tasks in the running session

Other Task: TaskDens, TaskSurv, mlr_tasks_actg, mlr_tasks_faithful, mlr_tasks_gbcs,
mlr_tasks_gbsg, mlr_tasks_grace, mlr_tasks_lung, mlr_tasks_mgus, mlr_tasks_pbc, mlr_tasks_precip,
mlr_tasks_unemployment, mlr_tasks_veteran, mlr_tasks_whas

mlr_tasks_unemployment
Unemployment Duration Survival Task

Description

A survival task for the Ecdat::UnempDur data set.

Format

R6::R6Class inheriting from TaskSurv.

Dictionary

This Task can be instantiated via the dictionary mlr_tasks or with the associated sugar function
tsk():

mlr_tasks$get("unemployment™)
tsk("unemployment™”)

Meta Information

 Task type: “surv”

* Dimensions: 3343x6
* Properties: -

* Has Missings: FALSE

9% <

* Target: “time”, “status”

LEINT3 LLENTELE)

* Features: “age”, “logwage”, “tenure”, “ui

Preprocessing

* Only the columns spell, censor1, age, logwage, tenure, ui are kept in this task.

* Renamed target columns from (spell, censor1) to (time, status), so outcome is the duration
until re-employment in a full-time job.

https://mlr3book.mlr-org.com/
https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html
https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html

154 mlir _tasks_veteran

See Also

e Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_
and_basic_modeling.html

* Dictionary of Tasks: mlr3::mlr_tasks
e as.data.table(mlr_tasks) for a table of available Tasks in the running session

Other Task: TaskDens, TaskSurv, mlr_tasks_actg, mlr_tasks_faithful, mlr_tasks_gbcs,
mlr_tasks_gbsg, mlr_tasks_grace, mlr_tasks_lung, mlr_tasks_mgus, mlr_tasks_pbc,mlr_tasks_precip,
mlr_tasks_rats, mlr_tasks_veteran, mlr_tasks_whas

mlr_tasks_veteran Veteran Survival Task

Description

A survival task for the veteran data set.

Format

R6::R6Class inheriting from TaskSurv.

Dictionary

This Task can be instantiated via the dictionary mlr_tasks or with the associated sugar function
tsk():

mlr_tasks$get("veteran")
tsk("veteran")

Meta Information

* Task type: “surv”

* Dimensions: 137x8
* Properties: -

» Has Missings: FALSE

9«

* Target: “time”, “status”

9% EEIT3

* Features: “age”, “celltype”, “diagtime”, “karno”, “prior”, “trt”

Pre-processing

e Columns age, time, status, diagtime and karno have been converted to integer.

* Columns trt, prior have been converted to factors. Prior therapy values are no/yes instead
of 0/10.

https://mlr3book.mlr-org.com/
https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html
https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html

mlir _tasks_whas 155

See Also

e Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data
and_basic_modeling.html

* Dictionary of Tasks: mlr3::mlr_tasks
* as.data.table(mlr_tasks) for a table of available Tasks in the running session

Other Task: TaskDens, TaskSurv, mlr_tasks_actg, mlr_tasks_faithful, mlr_tasks_gbcs,
mlr_tasks_gbsg, mlr_tasks_grace, mlr_tasks_lung, mlr_tasks_mgus, mlr_tasks_pbc, mlr_tasks_precip,
mlr_tasks_rats, mlr_tasks_unemployment, mlr_tasks_whas

mlr_tasks_whas Worcester Heart Attack Study (WHAS) Survival Task

Description

A survival task for the whas data set.

Format

R6::R6Class inheriting from TaskSurv.

Dictionary

This Task can be instantiated via the dictionary mlr_tasks or with the associated sugar function
tsk():

mlr_tasks$get("whas")
tsk("whas")

Meta Information

* Task type: “surv”

* Dimensions: 481x11
* Properties: -

* Has Missings: FALSE

LEINT3

 Target: “time”, “status”

9 CEINT3

* Features: “age”, “chf”, “cpk”, “lenstay”, “miord”, “mitype”, “sexF”, “sho

93 ¢ (L}
k)

year

Preprocessing

e Columns id, yrgrp, and dstat are removed.
¢ Column sex is renamed to sexF, lenfol to time, and fstat to status.

* Target is total follow-up time from hospital admission.

https://mlr3book.mlr-org.com/
https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html
https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html

156 mlir_task_generators_coxed

See Also
e Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_
and_basic_modeling.html
* Dictionary of Tasks: mlr3::mlr_tasks
* as.data.table(mlr_tasks) for a table of available Tasks in the running session

Other Task: TaskDens, TaskSurv, mlr_tasks_actg, mlr_tasks_faithful, mlr_tasks_gbcs,
mlr_tasks_gbsg, mlr_tasks_grace, mlr_tasks_lung, mlr_tasks_mgus, mlr_tasks_pbc, mlr_tasks_precip,
mlr_tasks_rats, mlr_tasks_unemployment, mlr_tasks_veteran

mlr_task_generators_coxed
Survival Task Generator for Package 'coxed’

Description

A mlr3::TaskGenerator calling coxed: : sim. survdata().

This generator creates a survival dataset using coxed, and exposes some parameters from the
sim. survdata() function. We don’t include the parameters X (user-specified variables), covariate,
low, high, compare, beta and hazard.fun for this generator. The latter means that no user-
specified hazard function can be used and the generated datasets always use the flexible-hazard
method from the package.

Dictionary

This TaskGenerator can be instantiated via the dictionary mlr_task_generators or with the associated
sugar function tgen():

mlr_task_generators$get("coxed")
tgen("coxed")

Parameters

Id Type Default Levels Range
T numeric 100 [1,00)
type character none none, tve, tvbeta -
knots integer 8 [1,00)
spline logical TRUE TRUE, FALSE -
xvars integer 3 [1,00)
mu untyped 0 -

sd untyped 0.5 -
censor numeric 0.1 [0,1]

censor.cond logical FALSE TRUE, FALSE -

https://mlr3book.mlr-org.com/
https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html
https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html
https://CRAN.R-project.org/package=coxed

mlr_task_generators_coxed 157
Super class

mlr3::TaskGenerator -> TaskGeneratorCoxed

Methods

Public methods:
¢ TaskGeneratorCoxed$new()
e TaskGeneratorCoxed$help()
e TaskGeneratorCoxed$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
TaskGeneratorCoxed$new()

Method help(): Opens the corresponding help page referenced by field $man.

Usage:
TaskGeneratorCoxed$help()

Method clone(): The objects of this class are cloneable with this method.

Usage:
TaskGeneratorCoxed$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

References

Harden, J. J, Kropko, Jonathan (2019). “Simulating Duration Data for the Cox Model.” Political
Science Research and Methods, 7(4), 921-928. doi:10.1017/PSRM.2018.19.

See Also

* Dictionary of TaskGenerators: mlr3::mlr_task_generators
e as.data.table(mlr_task_generators) for a table of available TaskGenerators in the run-
ning session
Other TaskGenerator: mlr_task_generators_simdens, mlr_task_generators_simsurv

Examples

library(mlr3)

time horizon = 365 days, censoring proportion = 60%, 6 covariates normally
distributed with mean = 1 and sd = 2, independent censoring, no time-varying
effects
gen = tgen("coxed”, T = 365, type = "none”, censor = 0.6, xvars = 6,
mu = 1, sd = 2, censor.cond = FALSE)
gen$generate(50)

https://doi.org/10.1017/PSRM.2018.19

158 mlr_task_generators_simdens

same as above, but with time-varying coefficients (counting process format)
gen$param_set$set_values(type = "tvc")
gen$generate(50)

mlr_task_generators_simdens
Density Task Generator for Package 'distr6’

Description

A mlr3::TaskGenerator calling distr6::distrSimulate(). See distr6::distrSimulate() for

an explanation of the hyperparameters. See distr6::1listDistributions() for the names of the
available distributions.

Dictionary

This TaskGenerator can be instantiated via the dictionary mlr_task_generators or with the associated
sugar function tgen():

mlr_task_generators$get("simdens”)
tgen("simdens™)

Parameters

Id Type Default Levels

distribution character Normal Arcsine, Arrdist, Bernoulli, Beta, BetaNoncentral, Binomial, Categorical, Cauchy, ChiSq
pars untyped -

Super class

mlr3::TaskGenerator -> TaskGeneratorSimdens

Methods
Public methods:

* TaskGeneratorSimdens$new()
¢ TaskGeneratorSimdens$help()
* TaskGeneratorSimdens$clone()

Method new(): Creates a new instance of this R6 class.
Usage:
TaskGeneratorSimdens$new()

mlr_task_generators_simsurv 159

Method help(): Opens the corresponding help page referenced by field $man.
Usage:
TaskGeneratorSimdens$help()

Method clone(): The objects of this class are cloneable with this method.
Usage:
TaskGeneratorSimdens$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

See Also

* Dictionary of TaskGenerators: mlr3::mlr_task_generators
e as.data.table(mlr_task_generators) for a table of available TaskGenerators in the run-
ning session

Other TaskGenerator: mlr_task_generators_coxed, mlr_task_generators_simsurv

Examples

generate 20 samples from a standard Normal distribution
dens_gen = tgen("simdens")
dens_gen$param_set

task = dens_gen$generate(20)
head(task)

generate 50 samples from a Binomial distribution with specific parameters
dens_gen = tgen("simdens"”, distribution = "Bernoulli”, pars = list(prob = 0.8))
task = dens_gen$generate(50)

task$data()[["x"]1]

mlr_task_generators_simsurv
Survival Task Generator for Package 'simsurv’

Description

A mlr3::TaskGenerator calling simsurv: :simsurv() from package simsurv.
This generator currently only exposes a small subset of the flexibility of simsurv, and just creates a
small dataset with the following numerical covariates:
* treatment: Bernoulli distributed with hazard ratio @. 5.
* height: Normally distributed with hazard ratio 1.
* weight: normally distributed with hazard ratio 1.
See simsurv::simsurv() for an explanation of the hyperparameters. Initial values for hyperpa-

rameters are lambdas = 0.1, gammas = 1.5 and maxt = 5. The last one, by default generates samples
which are administratively censored at 7 = 5, so increase this value if you want to change this.

https://CRAN.R-project.org/package=simsurv
https://CRAN.R-project.org/package=simsurv

160 mlr_task_generators_simsurv

Dictionary

This TaskGenerator can be instantiated via the dictionary mlr_task_generators or with the associated
sugar function tgen():

mlr_task_generators$get(”"simsurv"”)
tgen("simsurv")

Parameters

Id Type Default Levels Range
dist character weibull weibull, exponential, gompertz
lambdas numeric -
gammas numeric -
maxt numeric -

===
388

Super class

mlr3::TaskGenerator -> TaskGeneratorSimsurv

Methods

Public methods:
¢ TaskGeneratorSimsurv$new()
* TaskGeneratorSimsurv$help()
e TaskGeneratorSimsurv$clone()

Method new(): Creates a new instance of this R6 class.
Usage:
TaskGeneratorSimsurv$new()

Method help(): Opens the corresponding help page referenced by field $man.
Usage:
TaskGeneratorSimsurv$help()

Method clone(): The objects of this class are cloneable with this method.
Usage:
TaskGeneratorSimsurv$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.

References

Brilleman, L. S, Wolfe, Rory, Moreno-Betancur, Margarita, Crowther, J. M (2021). “Simulat-

ing Survival Data Using the simsurv R Package.” Journal of Statistical Software, 97(3), 1-27.
doi:10.18637/JSS.V097.103.

https://doi.org/10.18637/JSS.V097.I03

pecs 161

See Also

* Dictionary of TaskGenerators: mlr3::mlr_task_generators

e as.data.table(mlr_task_generators) for a table of available TaskGenerators in the run-
ning session

Other TaskGenerator: mlr_task_generators_coxed, mlr_task_generators_simdens

Examples

generate 20 samples with Weibull survival distribution
gen = tgen("simsurv")

task = gen$generate(20)

head(task)

generate 100 samples with exponential survival distribution and tau = 40

gen = tgen("simsurv”, dist = "exponential”, gammas = NULL, maxt = 40)
task = gen$generate(100)
head(task)
pecs Prediction Error Curves for PredictionSurv and LearnerSurv
Description

Methods to plot prediction error curves (pecs) for either a PredictionSurv object or a list of trained

LearnerSurvs.
Usage
pecs(x, measure = c("graf”, "logloss"), times, n, eps = NULL, ...)

S3 method for class 'list'
pecs(

X,

measure = c("graf”, "logloss"),

times,

n,

eps = NULL,

task = NULL,

row_ids = NULL,

newdata = NULL,

train_task = NULL,

train_set = NULL,

proper = TRUE,

162

pecs

S3 method for class 'PredictionSurv'

pecs(
X,
measure
times,
n)

eps = le-15,

c("graf”, "logloss"),

train_task = NULL,
train_set = NULL,
proper = TRUE,

Arguments

X

measure

times

eps

task
row_ids

newdata

train_task
train_set
proper

Details

(PredictionSurv or 1ist of LearnerSurvs)

(character(1))

Either "graf"” for MeasureSurvGraf, or "logloss"” for MeasureSurvIntLogloss
(numeric())

If provided then either a vector of time-points to evaluate measure or a range of
time-points.

(integer())

If times is missing or given as a range, then n provide number of time-points to
evaluate measure over.

(numeric())

Small error value to prevent errors resulting from a log(0) or 1/0 calculation.
Default is 1e-15 for log loss and 1e-3 for Graf.

Additional arguments.

(TaskSurv)

(integer())

Passed to Learner$predict.

(data.frame())

If not missing Learner$predict_newdatais called instead of Learner$predict.
(TaskSurv)

If not NULL then passed to measures for computing estimate of censoring dis-
tribution on training data.

(numeric())

If not NULL then passed to measures for computing estimate of censoring dis-
tribution on training data.

(logical(1))

Passed to MeasureSurvGraf or MeasureSurvIntLogloss.

If times and n are missing then measure is evaluated over all observed time-points from the Pre-
dictionSurv or TaskSurv object. If a range is provided for times without n, then all time-points
between the range are returned.

PipeOpPredTransformer 163

Examples

Not run:
#' library(mlr3)
task = tsk("rats")

Prediction Error Curves for prediction object

learn = 1lrn("surv.coxph")

p = learn$train(task)$predict(task)

pecs(p)

pecs(p, measure = "logloss”, times = c(20, 40, 60, 80)) +
ggplot2: :geom_point() +
ggplot2::ggtitle(”"Logloss Prediction Error Curve for Cox PH")

Access underlying data
x = pecs(p)
x$data

Prediction Error Curves for fitted learners

learns = lrns(c("surv.kaplan”, "surv.coxph"))

lapply(learns, function(x) x$train(task))

pecs(learns, task = task, measure = "logloss”, times = c(20, 90), n = 10)

End(Not run)

PipeOpPredTransformer PipeOpPredTransformer

Description

Parent class for PipeOps that transform Prediction objects to different types.

Input and Output Channels

PipeOpPredTransformer has one input and output channel named "input” and "output”. In
training and testing these expect and produce mlr3::Prediction objects with the type depending on
the transformers.

State

The $state is a named 1ist with the $state elements

* inpredtypes: Predict types in the input prediction object during training.
» outpredtypes : Predict types in the input prediction object during prediction, checked against

inpredtypes.
Internals

Classes inheriting from PipeOpPredTransformer transform Prediction objects from one class (e.g.
regr, classif) to another.

164

Super classes

PipeOpPredTransformer

mlr3pipelines: :PipeOp -> mlr3proba: :PipeOpTransformer -> PipeOpPredTransformer

Methods

Public methods:

e PipeOpPredTransformer$new()
* PipeOpPredTransformer$clone()

Method new(): Creates a new instance of this R6 class.

Usage:

PipeOpPredTransformer$new(
id,
param_set = ps(),
param_vals = list(),
packages = character(9),
input = data.table(),
output = data.table()

)

Arguments:

id (character(1))
Identifier of the resulting object.

param_set (paradox::ParamSet)
Set of hyperparameters.

param_vals (list())

List of hyperparameter settings, overwriting the hyperparameter settings that would other-

wise be set during construction.
packages (character())

Set of required packages. A warning is signaled by the constructor if at least one of the pack-
ages is not installed, but loaded (not attached) later on-demand via requireNamespace().

input data.table::data.table

data. table with columns name (character), train (character), predict (character).

Sets the $input slot, see PipeOp.
output data.table::data.table

data. table with columns name (character), train (character), predict (character).

Sets the $output slot, see PipeOp.

Method clone(): The objects of this class are cloneable with this method.

Usage:
PipeOpPredTransformer$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

PipeOpTaskTransformer 165

See Also

Other PipeOps: PipeOpTaskTransformer, PipeOpTransformer, mlr_pipeops_survavg, mlr_pipeops_trafopred_clas:
mlr_pipeops_trafopred_classifsurv_disctime, mlr_pipeops_trafopred_regrsurv,mlr_pipeops_trafopred_sur
mlr_pipeops_trafotask_regrsurv, mlr_pipeops_trafotask_survclassif_IPCW, mlr_pipeops_trafotask_survcla
mlr_pipeops_trafotask_survregr

Other Transformers: PipeOpTaskTransformer, PipeOpTransformer

PipeOpTaskTransformer PipeOpTaskTransformer

Description

Parent class for PipeOps that transform task objects to different types.

Input and Output Channels

PipeOpTaskTransformer has one input and output channel named "input” and "output”. In
training and testing these expect and produce mlr3::Task objects with the type depending on the
transformers.

State

The $state is left empty (List()).

Internals

The commonality of methods using PipeOpTaskTransformer is that they take a mlr3::Task of one
class and transform it to another class. This usually involves transformation of the data, which can
be controlled via parameters.

Super classes

mlr3pipelines: :PipeOp ->mlr3proba: :PipeOpTransformer -> PipeOpTaskTransformer

Methods

Public methods:

* PipeOpTaskTransformer$new()
e PipeOpTaskTransformer$clone()

Method new(): Creates a new instance of this R6 class.

Usage:

166 PipeOpTaskTransformer

PipeOpTaskTransformer$new(
id,
param_set = ps(),
param_vals = list(),
packages = character(9),
input,
output

)

Arguments:

id (character(1))
Identifier of the resulting object.

param_set (paradox::ParamSet)
Set of hyperparameters.

param_vals (list())
List of hyperparameter settings, overwriting the hyperparameter settings that would other-
wise be set during construction.

packages (character())
Set of required packages. A warning is signaled by the constructor if at least one of the pack-
ages is not installed, but loaded (not attached) later on-demand via requireNamespace().

input data.table::data.table
data.table with columns name (character), train (character), predict (character).
Sets the $input slot, see PipeOp.

output data.table::data.table
data.table with columns name (character), train (character), predict (character).
Sets the $output slot, see PipeOp.

Method clone(): The objects of this class are cloneable with this method.
Usage:
PipeOpTaskTransformer$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other PipeOps: PipeOpPredTransformer, PipeOpTransformer, mlr_pipeops_survavg, mlr_pipeops_trafopred_clas:
mlr_pipeops_trafopred_classifsurv_disctime, mlr_pipeops_trafopred_regrsurv,mlr_pipeops_trafopred_sur
mlr_pipeops_trafotask_regrsurv, mlr_pipeops_trafotask_survclassif_IPCW, mlr_pipeops_trafotask_survcla
mlr_pipeops_trafotask_survregr

Other Transformers: PipeOpPredTransformer, PipeOpTransformer

PipeOpTransformer 167

PipeOpTransformer PipeOpTransformer

Description

Parent class for PipeOps that transform Task and Prediction objects to different types.

Input and Output Channels

Determined by child classes.

State
The $state is left empty (1ist()).

Internals

The commonality of methods using PipeOpTransformer is that they take a Task or Prediction of one
type (e.g. regr or classif) and transform it to another type.

Super class

mlr3pipelines: :PipeOp -> PipeOpTransformer

Methods
Public methods:

e PipeOpTransformer$new()
* PipeOpTransformer$clone()

Method new(): Creates a new instance of this R6 class.

Usage:

PipeOpTransformer$new(
id,
param_set = ps(),
param_vals = list(),
packages = character(),
input = data.table(),
output = data.table()

)

Arguments:

id (character(1))
Identifier of the resulting object.

param_set (paradox::ParamSet)
Set of hyperparameters.

168 plot.LearnerSurv

param_vals (list())
List of hyperparameter settings, overwriting the hyperparameter settings that would other-
wise be set during construction.

packages (character())
Set of required packages. A warning is signaled by the constructor if at least one of the pack-
ages is not installed, but loaded (not attached) later on-demand via requireNamespace().

input data.table::data.table
data.table with columns name (character), train (character), predict (character).
Sets the $input slot, see PipeOp.

output data.table::data.table
data.table with columns name (character), train (character), predict (character).
Sets the $output slot, see PipeOp.

Method clone(): The objects of this class are cloneable with this method.
Usage:
PipeOpTransformer$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

See Also

Other PipeOps: PipeOpPredTransformer, PipeOpTaskTransformer, mlr_pipeops_survavg, mlr_pipeops_trafopred_c
mlr_pipeops_trafopred_classifsurv_disctime, mlr_pipeops_trafopred_regrsurv,mlr_pipeops_trafopred_sur
mlr_pipeops_trafotask_regrsurv, mlr_pipeops_trafotask_survclassif_IPCW, mlr_pipeops_trafotask_survcla
mlr_pipeops_trafotask_survregr

Other Transformers: PipeOpPredTransformer, PipeOpTaskTransformer

plot.LearnerSurv Visualization of fitted LearnerSurv objects

Description

Wrapper around predict.LearnerSurv and plot.Matdist.

Usage

S3 method for class 'LearnerSurv'

plot(
X)
task,
fun = c("survival”, "pdf", "cdf”, "quantile"”, "hazard", "cumhazard"),
row_ids = NULL,
newdata,

plot_probregr 169

Arguments
X (LearnerSurv)
task (TaskSurv)
fun (character)
Passed to distr6::plot.Matdist
row_ids (integer())
Passed to Learner$predict
newdata (data.frame())
If not missing Learner$predict_newdata is called instead of Learner$predict.
Additional arguments passed to distr6::plot.Matdist
Examples
Not run:
library(mlr3)

task = tsk("rats")

Prediction Error Curves for prediction object
learn = 1rn("surv.coxph”)
learn$train(task)

plot(learn, task, "survival”, ind = 10)

plot(learn, task, "survival”, row_ids = 1:5)

plot(learn, task, "survival”, newdata = task$data()[1:5, 1)

plot(learn, task, "survival”, newdata = task$data()[1:5, 1, ylim = c(0, 1))

End(Not run)

plot_probregr Visualise probabilistic regression distribution predictions

Description

Plots probability density functions from n predicted probability distributions.

Usage

plot_probregr(
P,
n,
type = c("point”, "line”, "both”, "none"),
which_plot = c(”"random”, "top"),
rm_zero = TRUE,

170

Arguments
p (PredictionRegr)
With at least column distr.
n (integer(1))
Number of predictions to plot.
type (character(1))
One of "point” (default), "1ine"”, "both", "none".
which_plot (character(1))
One of "random” (default) or "top"”. See details.
rm_zero (logical(1))
If TRUE (default) does not plot points where f(x) = 0.
Unused
Details
type:

e "point” (default) - Truth plotted as point (truth, predicted_pdf(truth))
e "line"” - Truth plotted as vertical line intercepting x-axis at the truth.
* "both"” - Plots both the above options.

* "none” - Truth not plotted (default if p$truth is missing).

which_plot:

e "random"(default) - Random selection ofn‘ distributions are plotted.

* "top"- Topn* distributions are plotted.

It is unlikely the plot will be interpretable when n >> 5.

Examples

Not run:

library(mlr3verse)

task = tsk("boston_housing")

pipe = as_learner(ppl("probregr”, lrn("regr.ranger”), dist = "Normal”))
p = pipe$train(task)$predict(task)

plot_probregr(p, 10, "point”, "top")

End(Not run)

plot_probregr

PredictionDens 171

PredictionDens Prediction Object for Density

Description

This object stores the predictions returned by a learner of class LearnerDens.

The task_type is set to "dens”.

Super class

mlr3::Prediction ->PredictionDens

Active bindings

pdf (numeric())
Access the stored predicted probability density function.

cdf (numeric())
Access the stored predicted cumulative distribution function.

distr (Distribution)
Access the stored estimated distribution.

Methods
Public methods:

e PredictionDens$new()
e PredictionDens$clone()

Method new(): Creates a new instance of this R6 class.
Usage:
PredictionDens$new(
task = NULL,
row_ids = task$row_ids,
pdf = NULL,
cdf = NULL,
distr = NULL,
check = TRUE
)
Arguments:
task (TaskSurv)
Task, used to extract defaults for row_ids.
row_ids (integer())
Row ids of the predicted observations, i.e. the row ids of the test set.

pdf (numeric())
Numeric vector of estimated probability density function, evaluated at values in test set.
One element for each observation in the test set.

172 PredictionSurv

cdf (numeric())
Numeric vector of estimated cumulative distribution function, evaluated at values in test set.
One element for each observation in the test set.

distr (Distribution)
Distribution from distr6. The distribution from which pdf and cdf are derived.

check (logical(1))
If TRUE, performs argument checks and predict type conversions.
Method clone(): The objects of this class are cloneable with this method.

Usage:
PredictionDens$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other Prediction: PredictionSurv

Examples

library(mlr3)

task = mlr_tasks$get("precip”)

learner = mlr_learners$get(”dens.hist")
p = learner$train(task)$predict(task)
head(as.data. table(p))

PredictionSurv Prediction Object for Survival

Description

This object stores the predictions returned by a learner of class LearnerSurv.
The task_type is set to "surv”.

For accessing survival and hazard functions, as well as other complex methods from a Prediction-
Surv object, see public methods on distr6: :ExoticStatistics() and example below.

Super class

mlr3::Prediction ->PredictionSurv

PredictionSurv 173

Active bindings
truth (Surv)
True (observed) outcome.

crank (numeric())
Access the stored predicted continuous ranking.

distr (distr6::Matdistldistr6:: Arrdistldistr6:: VectorDistribution)
Convert the stored survival array or matrix to a survival distribution.

1p (numeric())
Access the stored predicted linear predictor.

response (numeric())
Access the stored predicted survival time.
Methods
Public methods:

* PredictionSurv$new()
* PredictionSurv$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
PredictionSurv$new(
task = NULL,

row_ids = task$row_ids,
truth = task$truth(),
crank = NULL,
distr = NULL,
1p = NULL,
response = NULL,
check = TRUE
)

Arguments:

task (TaskSurv)

Task, used to extract defaults for row_ids and truth.
row_ids (integer())

Row ids of the predicted observations, i.e. the row ids of the test set.
truth (survival::Surv())

True (observed) response.

crank (numeric())
Numeric vector of predicted continuous rankings (or relative risks). One element for each
observation in the test set. For a pair of continuous ranks, a higher rank indicates that the
observation is more likely to experience the event.

distr (matrix()|[distr6::Arrdist]|[distr6::Matdist]|[distr6::VectorDistribution])
Either a matrix of predicted survival probabilities, a distr6:: VectorDistribution, a distr6::Matdist
or an distr6::Arrdist. If a matrix/array then column names must be given and correspond
to survival times. Rows of matrix correspond to individual predictions. It is advised that

174 PredictionSurv
the first column should be time @ with all entries 1 and the last with all entries 0. If a
VectorDistribution then each distribution in the vector should correspond to a predicted
survival distribution.

1p (numeric())
Numeric vector of linear predictor scores. One element for each observation in the test set.
Ip = X 8 where X is a matrix of covariates and 3 is a vector of estimated coefficients.
response (numeric())
Numeric vector of predicted survival times. One element for each observation in the test
set.
check (logical(1))
If TRUE, performs argument checks and predict type conversions.
Details: Upon initialization, if the distr input is a Distribution, we try to coerce it either to a
survival matrix or a survival array and store it in the $data$distr slot for internal use.
If the stored $data$distr is a Distribution object, the active field $distr (external user API)
returns it without modification. Otherwise, if $data$distr is a survival matrix or array, $distr
constructs a distribution out of the $data$distr object, which will be a Matdist or Arrdist
respectively.
Note that if a survival 3d array is stored in $data$distr, the $distr field returns an Arrdist
initialized with which.curve = 0.5 by default (i.e. the median curve). This means that mea-
sures that require a distr prediction like MeasureSurvGraf, MeasureSurvRCLL, etc. will use
the median survival probabilities. Note that it is possible to manually change which. curve after
construction of the predicted distribution but we advise against this as it may lead to inconsistent
results.
Method clone(): The objects of this class are cloneable with this method.
Usage:
PredictionSurv$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.
See Also
Other Prediction: PredictionDens
Examples

library(mlr3)
task = tsk("rats")
learner = 1rn("surv.kaplan”)

= learner$train(task, row_ids = 1:26)$predict(task, row_ids = 27:30)

head(as.data.table(p))
p$distr # distr6::Matdist class (test obs x time points)

survival probabilities of the 4 test rats at two time points
p$distr$survival(c(20, 100))

TaskDens 175

TaskDens Density Task

Description

This task specializes TaskUnsupervised for density estimation problems. The data in backend
should be a numeric vector or a one column matrix-like object. The task_type is set to "density".

Predefined tasks are stored in the dictionary mlr_tasks.

Super classes

mlr3::Task ->mlr3::TaskUnsupervised -> TaskDens

Methods
Public methods:

* TaskDens$new()
* TaskDens$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
TaskDens$new(id, backend, label = NA_character_)

Arguments:
id (character(1))
Identifier for the new instance.

backend (DataBackend)
Either a DataBackend, a matrix-like object, or a numeric vector. If weights are used then

two columns expected, otherwise one column. The weight column must be clearly specified
(via [Task]$col_roles) or the learners will break.

label (character(1))
Label for the new instance.
Method clone(): The objects of this class are cloneable with this method.
Usage:
TaskDens$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.

See Also

Other Task: TaskSurv, mlr_tasks_actg, mlr_tasks_faithful, mlr_tasks_gbcs, mlr_tasks_gbsg,
mlr_tasks_grace, mlr_tasks_lung, mlr_tasks_mgus, mlr_tasks_pbc, mlr_tasks_precip, mlr_tasks_rats,
mlr_tasks_unemployment, mlr_tasks_veteran, mlr_tasks_whas

176 TaskSurv

Examples

task = TaskDens$new("precip”, backend = precip)
task$task_type

TaskSurv Survival Task

Description

This task specializes mlr3::Task and mlr3::TaskSupervised for possibly-censored survival problems.
The target is comprised of survival times and an event indicator. Predefined tasks are stored in
mlr3::mlr_tasks.

The task_type is set to "surv".

Super classes

mlr3::Task ->mlr3::TaskSupervised -> TaskSurv

Active bindings

censtype (character(1))
Returns the type of censoring, one of "right"”, "left”, "counting”, "interval”, "interval2"
or "mstate”. Currently, only the "right"-censoring type is fully supported, the rest are ex-
perimental and the API will change in the future.

Methods
Public methods:

e TaskSurv$new()

e TaskSurv$truth()

e TaskSurv$formula()

e TaskSurv$times()

e TaskSurv$status()

e TaskSurv$unique_times()

e TaskSurv$unique_event_times()
e TaskSurv$risk_set()

* TaskSurv$kaplan()

e TaskSurv$reverse()

* TaskSurv$cens_prop()

e TaskSurv$admin_cens_prop()
* TaskSurv$dep_cens_prop()

* TaskSurv$prop_haz()

e TaskSurv$clone()

Method new(): Creates a new instance of this R6 class.

TaskSurv 177

Usage:
TaskSurv$new(
id,
backend,
time = "time",
event = "event”,
time2,
type = c("right”, "left”, "interval”, "counting”, "interval2”, "mstate"),
label = NA_character_

)
Arguments:

id (character(1))
Identifier for the new instance.

backend (DataBackend)
Either a DataBackend, or any object which is convertible to a DataBackend with as_data_backend().
E.g., a data. frame() will be converted to a DataBackendDataTable.

time (character(1))
Name of the column for event time if data is right censored, otherwise starting time if
interval censored.

event (character(1))
Name of the column giving the event indicator. If data is right censored then "0"/FALSE
means alive (no event), "1"/TRUE means dead (event). If type is "interval” then "0"
means right censored, "1" means dead (event), "2" means left censored, and "3" means
interval censored. If type is "interval2"” then event is ignored.

time2 (character(1))
Name of the column for ending time of the interval for interval censored or counting process
data, otherwise ignored.

type (character(1))
Name of the column giving the type of censoring. Default is ‘right’ censoring.

label (character(1))
Label for the new instance.

n

Details: Depending on the censoring type (" type"), the output of a survival task’s "$target_names
is a character() vector with values the names of the columns given by the above initialization
arguments. Specifically, the output is as follows (and in the specified order):

e For type = "right”, "left” or "mstate"”: ("time”, "event")
e For type = "interval” or "counting”: ("time", "time2", "event”)

e For type = "interval2": ("time", "time2)
Method truth(): True response for specified row_ids. This is the survival outcome using the
Surv format and depends on the censoring type. Defaults to all rows with role "use”.
Usage:
TaskSurv$truth(rows = NULL)
Arguments:

rows (integer())
Row indices.

178 TaskSurv

Returns: survival::Surv().

Method formula(): Creates a formula for survival models with survival: :Surv() on the LHS
(left hand side).

Usage:

TaskSurv$formula(rhs = NULL, reverse = FALSE)

Arguments:

rhs If NULL, RHS (right hand side) is ”. ", otherwise RHS is "rhs".

reverse If TRUE then formula calculated with 1 - status.

Returns: stats::formula().

Method times(): Returns the (unsorted) outcome times.

Usage:
TaskSurv$times(rows = NULL)
Arguments:
rows (integer())

Row indices.

Returns: numeric()

Method status(): Returns the event indicator (aka censoring/survival indicator). If censtype is
"right” or "left” then 1 is event and @ is censored. If censtype is "mstate"” then 0 is censored
and all other values are different events. If censtype is "interval” then @ is right-censored, 1 is
event, 2 is left-censored, 3 is interval-censored. See survival::Surv().

Usage:

TaskSurv$status(rows = NULL)

Arguments:

rows (integer())

Row indices.

Returns: integer()
Method unique_times(): Returns the sorted unique outcome times for "right”, "left"” and
"mstate” types of censoring.

Usage:

TaskSurv$unique_times(rows = NULL)

Arguments:

rows (integer())
Row indices.

Returns: numeric()

Method unique_event_times(): Returns the sorted unique event (or failure) outcome times
for "right”, "left"” and "mstate” types of censoring.

Usage:
TaskSurv$unique_event_times(rows = NULL)

TaskSurv 179

Arguments:
rows (integer())
Row indices.

Returns: numeric()

Method risk_set(): Returns the row_ids of the observations at risk (not dead or censored or
had other events in case of multi-state tasks) at the specified time.
Only designed for "right”, "left"” and "mstate” types of censoring.

Usage:

TaskSurv$risk_set(time = NULL)

Arguments:

time (numeric(1))

Time to return risk set for, if NULL returns all row_ids.

Returns: integer()

Method kaplan(): Calls survival::survfit() to calculate the Kaplan-Meier estimator.

Usage:
TaskSurv$kaplan(strata = NULL, rows = NULL, reverse = FALSE, ...)
Arguments:

strata (character())
Stratification variables to use.

rows (integer())
Subset of row indices.

reverse (logical())
If TRUE calculates Kaplan-Meier of censoring distribution (1-status). Default FALSE.

... (any)
Additional arguments passed down to survival: :survfit.formula().

Returns: survival::survfit.object.
Method reverse(): Returns the same task with the status variable reversed, i.e., 1 - status. Only
designed for "left" and "right” censoring.

Usage:
TaskSurv$reverse()

Returns: TaskSurv.
Method cens_prop(): Returns the proportion of censoring for this survival task. By default,
this is returned for all observations, otherwise only the specified ones (rows).
Only designed for "right"” and "left"” censoring.

Usage:

TaskSurv$cens_prop(rows = NULL)

Arguments:

rows (integer())
Row indices.

180

TaskSurv

Returns: numeric()

Method admin_cens_prop(): Returns an estimated proportion of administratively censored
observations (i.e. censored at or after a user-specified time point). Our main assumption here
is that in an administratively censored dataset, the maximum censoring time is likely close to the
maximum event time and so we expect higher proportion of censored subjects near the study end
date.

Only designed for "right” and "left"” censoring.

Usage:
TaskSurv$admin_cens_prop(rows = NULL, admin_time = NULL, quantile_prob = ©.99)

Arguments:

rows (integer())
Row indices.

admin_time (numeric(1))
Administrative censoring time (in case it is known a priori).

quantile_prob (numeric(1))
Quantile probability value with which we calculate the cutoff time for administrative cen-
soring. Ignored, if admin_time is given. By default, quantile_prob is equal to 0.99,
which translates to a time point very close to the maximum outcome time in the dataset. A
lower value will result in an earlier time point and therefore in a more relaxed definition
(i.e. higher proportion) of administrative censoring.

Returns: numeric()

Method dep_cens_prop(): Returns the proportion of covariates (task features) that are found
to be significantly associated with censoring. This function fits a logistic regression model via
glm with the censoring status as the response and using all features as predictors. If a covariate
is significantly associated with the censoring status, it suggests that censoring may be informative
(dependent) rather than random (non-informative). This methodology is more suitable for low-
dimensional datasets where the number of features is relatively small compared to the number
of observations.

Only designed for "right” and "left" censoring.

Usage:
TaskSurv$dep_cens_prop(rows = NULL, method = "holm", sign_level = 0.05)

Arguments:
rows (integer())
Row indices.
method (character(1))
Method to adjust p-values for multiple comparisons, see p.adjust.methods. Defaultis "holm".
sign_level (numeric(1))
Significance level for each coefficient’s p-value from the logistic regression model. Default
is 0.05.

Returns: numeric()

Method prop_haz(): Checks if the data satisfy the proportional hazards (PH) assumption using
the Grambsch-Therneau test, Grambsch (1994). Uses cox.zph. This method should be used only

TaskSurv 181

for low-dimensional datasets where the number of features is relatively small compared to the
number of observations.

Only designed for "right” and "left"” censoring.

Usage:
TaskSurv$prop_haz()

Returns: numeric()
If no errors, the p-value of the global chi-square test. A p-value < 0.05 is an indication of
possible PH violation.

Method clone(): The objects of this class are cloneable with this method.

Usage:
TaskSurv$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

Grambsch, Patricia, Therneau, Terry (1994). “Proportional hazards tests and diagnostics based on
weighted residuals.” Biometrika, 81(3), 515-526. doi:10.1093/biomet/81.3.515, https://doi.
org/10.1093/biomet/81.3.515.

See Also

Other Task: TaskDens, mlr_tasks_actg, mlr_tasks_faithful, mlr_tasks_gbcs, mlr_tasks_gbsg,
mlr_tasks_grace, mlr_tasks_lung, mlr_tasks_mgus, mlr_tasks_pbc, mlr_tasks_precip, mlr_tasks_rats,
mlr_tasks_unemployment, mlr_tasks_veteran, mlr_tasks_whas

Examples

library(mlr3)
task = tsk("lung")

meta data

task$target_names # target is always (time, status) for right-censoring tasks
task$feature_names

task$formula()

survival data

task$truth() # survival::Surv() object

task$times() # (unsorted) times

task$status() # event indicators (1 = death, @ = censored)

task$unique_times() # sorted unique times

task$unique_event_times() # sorted unique event times

task$risk_set(time = 700) # observation ids that are not censored or dead at t = 700
task$kaplan(strata = "sex") # stratified Kaplan-Meier

task$kaplan(reverse = TRUE) # Kaplan-Meier of the censoring distribution

proportion of censored observations across all dataset
task$cens_prop()

https://doi.org/10.1093/biomet/81.3.515
https://doi.org/10.1093/biomet/81.3.515
https://doi.org/10.1093/biomet/81.3.515

182 whas

proportion of censored observations at or after the 95% time quantile
task$admin_cens_prop(quantile_prob = 0.95)

proportion of variables that are significantly associated with the

censoring status via a logistic regression model

task$dep_cens_prop() # @ indicates independent censoring

data barely satisfies proportional hazards assumption (p > 0.05)
task$prop_haz()

veteran data is definitely non-PH (p << 0.05)
tsk("veteran"”)$prop_haz()

whas Worcester Heart Attack Study (WHAS) Dataset

Description

whas dataset from Hosmer et al. (2008)

Usage

whas

Format

id Identification Code

age Age (per chart) (years).

sex Sex. 0 =Male. 1 = Female.

cpk Peak cardiac enzyme (iu).

sho Cardiogenic shock complications. 1 = Yes. 0 = No.

chf Left heart failure complications. 1 = Yes. 0 = No.

miord MI Order. 1 = Recurrent. 0 = First.

mitype MI Type. 1 = Q-wave. 2 = Not Q-wave. 3 = Indeterminate.
year Cohort year.

yrgrp Grouped cohort year.

lenstay Days in hospital.

dstat Discharge status from hospital. 1 = Dead. 0 = Alive.
lenfol Total length of follow-up from hospital admission (days).
fstat Status as of last follow-up. 1 = Dead. 0 = Alive.

Source

https://onlinelibrary.wiley.com/doi/book/10.1002/9780470258019

References

Hosmer, D.W. and Lemeshow, S. and May, S. (2008) Applied Survival Analysis: Regression Mod-
eling of Time to Event Data: Second Edition, John Wiley and Sons Inc., New York, NY

https://onlinelibrary.wiley.com/doi/book/10.1002/9780470258019

Index

x AUC survival measures PipeOpTaskTransformer, 165
mlr_measures_surv.chambless_auc, PipeOpTransformer, 167
63 + Prediction
mlr_measures_surv.hung_auc, 75 PredictionDens, 171
mlr_measures_surv.song_auc, 99 PredictionSurv, 172
mlr_measures_surv.song_tnr, 101 * Probabilistic survival measures
mlr_measures_surv.song_tpr, 103 mlr_measures_surv.graf, 71
mlr_measures_surv.uno_auc, 105 mlr_measures_surv.intlogloss, 77
mlr_measures_surv.uno_tnr, 107 mlr_measures_surv.logloss, 81
mlr_measures_surv.uno_tpr, 109 mlr_measures_surv.rcll, 91
* Density estimation measures mlr_measures_surv.schmid, 95
mlr_measures_dens.logloss, 56 + R2 survival measures
* Ensembles mlr_measures_surv.nagelk_r2, 87
mlr_pipeops_survavg, 124 mlr_measures_surv.oquigley_r2, 89
* Learner mlr_measures_surv.xu_r2, 111
LearnerDens, 23 + TaskGenerator
LearnerSurv, 25 mlr_task_generators_coxed, 156
* Measure mlr_task_generators_simdens, 158
MeasureDens, 27 mlr_task_generators_simsurv, 159
MeasureSurv, 28 + Task
* PipeOps mlr_tasks_actg, 143
mlr_pipeops_survavg, 124 mlr_tasks_faithful, 144
mlr_pipeops_trafopred_classifsurv_disctime, mlr_tasks_gbcs, 145
126 mlr_tasks_gbsg, 146
mlr_pipeops_trafopred_classifsurv_IPCW, mlr_tasks_grace, 147
128 mlr_tasks_lung, 148
mlr_pipeops_trafopred_regrsurv, mlr_tasks_mgus, 149
129 mlr_tasks_pbc, 150
mlr_pipeops_trafopred_survregr, mlr_tasks_precip, 151
131 mlr_tasks_rats, 152
mlr_pipeops_trafotask_regrsuryv, mlr_tasks_unemployment, 153
133 mlr_tasks_veteran, 154
mlr_pipeops_trafotask_survclassif_disctime, mlr_tasks_whas, 155
134 TaskDens, 175
mlr_pipeops_trafotask_survclassif_IPCW, TaskSurv, 176
137 * Transformation PipeOps
mlr_pipeops_trafotask_survregr, mlr_pipeops_trafopred_classifsurv_disctime,
139 126
PipeOpPredTransformer, 163 mlr_pipeops_trafopred_classifsurv_IPCW,

183

184

128

mlr_pipeops_trafopred_regrsurv,

129

mlr_pipeops_trafopred_survregr,

131

mlr_pipeops_trafotask_regrsurv,

133

mlr_pipeops_trafotask_survclassif_disctime,

134

mlr_pipeops_trafotask_survclassif_IPCW,

137

mlr_pipeops_trafotask_survregr,

139

* Transformers
PipeOpPredTransformer, 163
PipeOpTaskTransformer, 165

PipeOpTransformer,

167

x calibration survival measures

mlr_measures_surv.
mlr_measures_surv.
mlr_measures_surv.

x datasets

actg, 7

gbcs, 20
grace, 22
whas, 182

* density estimators

mlr_learners_dens.
mlr_learners_dens.

* density measures

mlr_measures_dens.

x distr survival measures

mlr_measures_surv.
mlr_measures_surv.
mlr_measures_surv.
mlr_measures_surv.
mlr_measures_surv.
mlr_measures_surv.
mlr_measures_surv.

* Ip survival measures

mlr_measures_surv.
mlr_measures_surv.
63
mlr_measures_surv.
mlr_measures_surv.
mlr_measures_surv.
mlr_measures_surv.
mlr_measures_surv.

calib_alpha, 59
calib_beta, 61
dcalib, 68

hist, 48
kde, 50

logloss, 56

calib_alpha, 59
dcalib, 68
graf, 71
intlogloss, 77
logloss, 81
rcll, 91
schmid, 95

calib_beta, 61
chambless_auc,

hung_auc, 75
nagelk_r2, 87
oquigley_r2, 89
song_auc, 99
song_tnr, 101

mlr_measures_surv.
mlr_measures_surv.
mlr_measures_surv.
mlr_measures_surv.
mlr_measures_surv.
* pipelines

INDEX

song_tpr, 103
uno_auc, 105
uno_tnr, 107
uno_tpr, 109
xu_r2, 111

mlr_graphs_crankcompositor, 32
mlr_graphs_distrcompositor, 33
mlr_graphs_probregr, 35
mlr_graphs_responsecompositor, 37
mlr_graphs_survaverager, 38
mlr_graphs_survbagging, 40
mlr_graphs_survtoclassif_disctime,

41

mlr_graphs_survtoclassif_IPCW, 43

* regression measures

mlr_measures_regr.
* response survival measures
mlr_measures_surv.
mlr_measures_surv.
mlr_measures_surv.
* survival compositors

logloss, 58

mae, 84
mse, 86
rmse, 93

mlr_pipeops_compose_breslow_distr,

113

mlr_pipeops_crankcompose, 117
mlr_pipeops_distrcompose, 119
mlr_pipeops_responsecompose, 122

* survival learners
mlr_learners_surv.
mlr_learners_surv.
mlr_learners_surv.
* survival measures
mlr_measures_surv.
mlr_measures_surv.
mlr_measures_surv.

63

mlr_measures_surv.
mlr_measures_surv.
mlr_measures_surv.
mlr_measures_surv.
mlr_measures_surv.
mlr_measures_surv.
mlr_measures_surv.
mlr_measures_surv.
mlr_measures_surv.
mlr_measures_surv.
mlr_measures_surv.
mlr_measures_surv.

coxph, 51
kaplan, 53
rpart, 54

calib_alpha, 59
calib_beta, 61
chambless_auc,

cindex, 65
dcalib, 68
graf, 71
hung_auc, 75
intlogloss, 77
logloss, 81
mae, 84

mse, 86
nagelk_r2, 87
oquigley_r2, 89
rcll, 91
rmse, 93

INDEX

mlr_measures_surv.schmid, 95
mlr_measures_surv.song_auc, 99
mlr_measures_surv.song_tnr, 101
mlr_measures_surv.song_tpr, 103
mlr_measures_surv.uno_auc, 105
mlr_measures_surv.uno_tnr, 107
mlr_measures_surv.uno_tpr, 109
mlr_measures_surv.xu_r2, 111

..., 158

.surv_return, 6

actg, 7, 143

Arrdist, 174
as_prediction_dens, 10
as_prediction_surv, 11
as_task_dens, 12
as_task_surv, 12
assert_surv, 8
assert_surv_matrix, 9, 2/
autoplot.PredictionSurv, 14
autoplot.TaskDens, 16
autoplot.TaskSurv, 17

Breslow, 34
breslow, 18, 113
breslow estimator, /73
bujar: :bujar, 140

cox.zph, 180
coxed: :sim.survdata(), 156

data.table, 127, 128, 135, 137
data.table::data.table, 164, 166, 168
DataBackend, 175, 177
DataBackendDataTable, 177
dens.logloss, 28
Dictionary, 113, 143—145, 147-157, 159,
161
dictionary, 27, 28, 32, 34, 36, 38, 39, 41, 42,
44, 49-51, 53, 54, 56, 59, 62, 64, 66,
69,71,75,78, 82,84, 86, 88, 89, 91,
93,96, 99, 101, 103, 105, 107, 109,
111,115,117,119, 122,126, 128,
134, 137, 143—-156, 158, 160, 175
distr6, 25, 50, 116, 172
distr6::Arrdist, 173
distr6::Distribution, 48, 50
distr6::distrSimulate(), 158
distr6::ExoticStatistics(), 172

185

distr6::1listDistributions(), /158
distr6::Matdist, 173
distr6::MixtureDistribution, /24
distr6::VectorDistribution, /124, 173
Distribution, 171, 172, 174

Ecdat: :UnempDur, 153
faithful, /144

ghcs, 20, 145

ghsg, 146

get_mortality, 6, 21

get_mortality(), 32,118

GGally: :ggduo(), 17

GGally: :ggpairs(), 17

GGally::ggsurv(), 17

ggplot2: :geom_density(), 16

ggplot2: :geom_histogram(), 16

ggplot2: :ggplot(), 16, 17

ggplot2: :theme(), 15-17

ggplot2: :theme_minimal (), 15-17

glm, 180

grace, 22, 147

Graph, 32-44, 47

graphics::hist(), 48

GraphlLearner, 32, 34, 35, 37, 39, 40, 42, 44,
47

ISBS, 128

Learner, 23-26, 28, 29, 31, 49-51, 53, 54
LearnerClassif, 42, 44
LearnerDens, 23, 26, 171
LearnerDensHistogram
(mlr_learners_dens.hist), 48
LearnerDenskDE (mlr_learners_dens.kde),
50
LearnerRegr, 35, 46, 47
LearnerSurv, 24, 25, 32, 34, 37, 39, 40, 46,
47,113, 114, 161, 162, 169, 172
LearnerSurvCoxPH, 66
LearnerSurvCoxPH
(mlr_learners_surv.coxph), 51
LearnerSurvKaplan
(mlr_learners_surv.kaplan), 53
LearnerSurvRpart
(mlr_learners_surv.rpart), 54
1rn(), 49-51, 53, 54

186

lung, 148

Matdist, /74
mean(), 28, 29

Measure, 27, 28, 56, 59, 62, 64, 66, 69, 71, 75,
78, 82, 84, 86, 88, 89, 91, 93, 96, 99,
101, 103, 105, 107, 109, 111

MeasureDens, 27, 30
MeasureDensLogloss

(mlr_measures_dens.

MeasureRegrLogloss

(mlr_measures_regr.

MeasureSuryv, 28, 28
MeasureSurvAUC, 30
MeasureSurvBrier

(mlr_measures_surv.

logloss), 56

logloss), 58

graf), 71

MeasureSurvCalibrationAlpha

(mlr_measures_surv.calib_alpha),

59
MeasureSurvCalibrationBeta

(mlr_measures_surv.

61
MeasureSurvChamblessAUC

(mlr_measures_surv.

63
MeasureSurvCindex

(mlr_measures_surv.

MeasureSurvDCalibration

(mlr_measures_surv.

MeasureSurvGraf, 162, 174
MeasureSurvGraf

(mlr_measures_surv.

MeasureSurvHungAUC

(mlr_measures_surv.

75
MeasureSurvIntLogloss, 162
MeasureSurvIntLogloss

(mlr_measures_surv.

77
MeasureSurvLogloss

(mlr_measures_surv.

calib_beta),

chambless_auc),

cindex), 65

dcalib), 68

graf), 71

hung_auc),

intlogloss),

logloss), 81

MeasureSurvMAE (mlr_measures_surv.mae),

84

MeasureSurvMSE (mlr_measures_surv.mse),

86
MeasureSurvNagelkR2

(mlr_measures_surv.

87

nagelk_r2),

MeasureSurvOQuigleyR?2
(mlr_measures_surv.
89
MeasureSurvRCLL, /74
MeasureSurvRCLL
(mlr_measures_surv.
MeasureSurvRMSE
(mlr_measures_surv.
MeasureSurvSchmid
(mlr_measures_surv.
MeasureSurvSongAUC
(mlr_measures_surv.
99
MeasureSurvSongTNR
(mlr_measures_surv.
101
MeasureSurvSongTPR
(mlr_measures_surv.
103
MeasureSurvUnoAUC
(mlr_measures_surv.
105
MeasureSurvUnoTNR
(mlr_measures_surv.
107
MeasureSurvUnoTPR
(mlr_measures_surv.
109
MeasureSurvXuR2
(mlr_measures_surv.
mgus, 149
MixtureDistribution, 40

INDEX

oquigley_r2),

rcll), 91
rmse), 93
schmid), 95

song_auc),

song_tnr),

song_tpr),

uno_auc),

uno_tnr),

uno_tpr),

xu_r2), 111

mlr3::Learner, 23, 25, 49, 50, 52, 53, 55, 114

mlr3::Measure, 27, 28, 30, 57, 58, 60, 62, 64,
67,70,74,76, 80, 83, 85, 86, 88, 90,
92,94, 98, 100, 102, 104, 106, 108,

110,112
mlr3::MeasureRegr, 58
mlr3::mlr_measures, 27, 28
mlr3::mlr_task_generators, 157, 159, 161
mlr3::mlr_tasks, 143-145, 147-156, 176
mlr3::Prediction, 163,171, 172
mlr3::Task, 165, 175, 176
mlr3::TaskGenerator, 156—-160
mlr3::TaskSupervised, 176
mlr3::TaskUnsupervised, 175

mlr3pipelines: :Graph, 32, 3442, 44
mlr3pipelines: :GraphlLearner, 32, 34, 36,

INDEX

38, 39,41, 42, 44
mlr3pipelines: :mlr_pipeops, 115, 117,
119,122,126, 128, 134, 137
mlr3pipelines: :PipeOp, /13, 116,118, 121,
123,125,127, 128, 130, 131, 133,
135,138, 141, 164, 165, 167
mlr3pipelines: :PipeOpEnsemble, 125
mlr3pipelines: :PipeOpLearner, 32, 34, 35,
37,40
mlr3pipelines::po(), 115,117,119, 122,
126, 128, 134, 137
mlr3proba (mlr3proba-package), 5
mlr3proba-package, 5
mlr3proba: :LearnerDens, 49, 50
mlr3proba: :LearnerSurv, 52, 53, 55
mlr3proba: :MeasureDens, 57
mlr3proba: :MeasureSurv, 30, 60, 62, 64, 67,
70, 74, 76, 80, 83, 85, 86, 88, 90, 92,
94,98, 100, 102, 104, 106, 108, 110,
112
mlr3proba: :MeasureSurvAUC, 64, 76, 100,
102, 104, 106, 108, 110
mlr3proba: :PipeOpPredTransformer, 130,
131
mlr3proba: :PipeOpTaskTransformer, 133,
141
mlr3proba: :PipeOpTransformer, 130, 131,
133,141, 164, 165
mlr_graphs, 32, 34, 36, 38, 39,41, 42, 44
mlr_graphs_crankcompositor, 32, 34, 36,
38, 39,41,43,45
mlr_graphs_distrcompositor, 33, 33, 36,
38, 39,41,43,45
mlr_graphs_probregr, 33, 34, 35, 38, 39, 41,
43,45
mlr_graphs_responsecompositor, 33, 34,
36,37,39,41,43,45
mlr_graphs_survaverager, 33, 34, 36, 38,
38,41,43,45
mlr_graphs_survbagging, 33, 34, 36, 38, 39,
40, 43,45
mlr_graphs_survtoclassif_disctime, 33,
34, 36, 38, 39,41, 41,45
mlr_graphs_survtoclassif_IPCW, 33, 34,
36, 38, 39,41,43,43
mlr_graphs_survtoregr, 45
mlr_learners, 49-51, 53, 54
mlr_learners_dens.hist, 48, 5/

187

mlr_learners_dens.kde, 49, 50
mlr_learners_surv.coxph, 51, 54, 56
mlr_learners_surv.kaplan, 52, 53, 56
mlr_learners_surv.rpart, 52, 54, 54
mlr_measures, 56, 59, 62, 64, 66, 69, 71, 75,
78, 82, 84, 86, 88, 89, 91, 93, 96, 99,
101, 103,105,107, 109, 111
mlr_measures_dens.logloss, 56
mlr_measures_regr.logloss, 58
mlr_measures_surv.brier
(mlr_measures_surv.graf), 71
mlr_measures_surv.calib_alpha, 59, 63,
65,68,70,75,77,81, 83-85, 87, 89,
90, 93, 95,99, 101, 103, 105, 107,
109,111,112
mlr_measures_surv.calib_beta, 61, 61, 65,
68,70,75,77,81, 83,85, 87,89, 90,
93,95,99, 101, 103, 105, 107, 109,
111-113
mlr_measures_surv.chambless_auc, 61, 63,
63,68, 70,75,77,81, 83,85, 87, 89,
90, 93, 95, 99, 101, 103, 105, 107,
109, 111-113
mlr_measures_surv.cindex, 61, 63, 65, 65,
70,75,77,81, 83,85, 87,89, 90, 93,
95,99, 101,103, 105,107,109, 111,
112
mlr_measures_surv.dcalib, 61, 63, 65, 68,
68,75,77,81,83-85, 87, 89, 90, 93,
95,99, 101, 103, 105, 107, 109, 111,
112
mlr_measures_surv.graf, 61, 63, 65, 68, 70,
71,77,81,83-85, 87,89, 90, 93, 95,
99,101, 103,105,107,109,111, 112
mlr_measures_surv.hung_auc, 61, 63, 65,
68, 70, 75,75, 81, 83, 85, 87, 89, 90,
93,95,99, 101, 103, 105, 107, 109,
111-113
mlr_measures_surv.intlogloss, 61, 63, 65,
68,70,75,77,77, 83-85, 87, 89, 90,
93,95,99, 101, 103, 105, 107, 109,
111,112
mlr_measures_surv.logloss, 61, 63, 65, 68,
70,75,77,81, 81,85, 87,89, 90, 93,
95,99, 101, 103, 105, 107, 109, 111,
112
mlr_measures_surv.mae, 61, 63,65, 68, 70,
75,77,81, 83, 84, 87, 89, 90, 93, 95,

188

99,101,103, 105,107,109, 111, 112
mlr_measures_surv.mse, 61, 63, 65, 68, 70,
75,77,81, 83, 85, 86, 89, 90, 93, 95,
99,101,103, 105,107,109, 111, 112
mlr_measures_surv.nagelk_r2, 61, 63,65,
68,70,75,77,81, 83,85, 87,87, 90,
93,95,99, 101, 103, 105, 107, 109,
111-113
mlr_measures_surv.oquigley_r2, 61, 63,
65,68,70,75,77,81, 83, 85,87, 89,
89, 93, 95,99, 101, 103, 105, 107,
109, 111-113
mlr_measures_surv.rcll, 61, 63, 65, 68, 70,
75,77,81,83-85, 87, 89, 90, 91, 95,
99,101, 103,105, 107,109,111, 112
mlr_measures_surv.rmse, 61, 63, 65, 68, 70,
75,77,81, 83,85, 87,89, 90, 93,93,
99,101,103, 105,107,109, 111, 112
mlr_measures_surv.schmid, 61, 63, 65, 68,
70,75,77,81,83-85, 87,89, 90, 93,
95,95, 101,103,105, 107,109, 111,
112
mlr_measures_surv.song_auc, 61, 63, 65,
68, 70,75,77,81, 83,85, 87,89, 90,
93, 95, 99,99, 103, 105, 107, 109,
111-113
mlr_measures_surv.song_tnr, 61, 63, 65,
68,70,75,77,81, 83,85, 87,89, 90,
93,95,99, 101, 101, 105, 107, 109,
111-113
mlr_measures_surv.song_tpr, 61, 63, 65,
68,70,75,77,81, 83,85, 87,89, 90,
93, 95,99, 101, 103, 103, 107, 109,
111-113
mlr_measures_surv.uno_auc, 61, 63, 65, 68,
70,75,77,81, 83, 85, 87,89, 90, 93,
95,99, 101, 103, 105, 105, 109,
111-113
mlr_measures_surv.uno_tnr, 61, 63, 65, 68,
70,75,77,81,83,85,87, 89, 90, 93,
95,99, 101, 103, 105, 107, 107,
111-113
mlr_measures_surv.uno_tpr, 61,63, 65, 68,
70,75,77,81, 83, 85, 87,89, 90, 93,
95,99, 101, 103, 105, 107, 109, 109,
112,113
mlr_measures_surv.xu_r2, 61, 63, 65, 68,
70,75,77,81, 83, 85,87, 89, 90, 93,

INDEX

95,99, 101, 103, 105, 107, 109, 111,
111
mlr_pipeops, 113
mlr_pipeops_compose_breslow_distr, 113,
119,121,124
mlr_pipeops_compose_probregr, 115
mlr_pipeops_crankcompose, 114,117, 121,
124
mlr_pipeops_distrcompose, 114,119, 119,
124
mlr_pipeops_responsecompose, 114, 119,
121,122
mlr_pipeops_survavg, 124, 127, 129, 130,
132,134, 136, 138, 141, 165, 166,
168
mlr_pipeops_trafopred_classifsurv_disctime
126, 126, 129, 130, 132, 134, 136,
138, 141, 165, 166, 168
mlr_pipeops_trafopred_classifsurv_IPCW,
126, 127,128, 130, 132, 134, 136,
138, 141, 165, 166, 168
mlr_pipeops_trafopred_regrsuryv, 126,
127,129,129, 132, 134, 136, 138,
141, 165, 166, 168
mlr_pipeops_trafopred_survregr, 126,
127,129, 130, 131, 134, 136, 138,
141, 165, 166, 168
mlr_pipeops_trafotask_regrsuryv, 126,
127,129, 130, 132, 133, 136, 138,
141, 165, 166, 168
mlr_pipeops_trafotask_survclassif_disctime
126, 127, 129, 130, 132, 134, 134,
138, 141, 165, 166, 168
mlr_pipeops_trafotask_survclassif_IPCW,
126, 127, 129, 130, 132, 134, 136,
137, 141, 165, 166, 168
mlr_pipeops_trafotask_survregr, 126,
127,129, 130, 132, 134, 136, 138,
139, 165, 166, 168
mlr_reflections$learner_predict_types,
24, 26, 28, 29
mlr_reflections$learner_properties, 24,
26
mlr_reflections$measure_properties, 28,
29, 31
mlr_reflections$task_feature_types, 24,
26
mlr_task_generators, 156, 158, 160

INDEX 189

mlr_task_generators_coxed, 156, 159, 161 pipeline_probregr
mlr_task_generators_simdens, 157, 158, (mlr_graphs_probregr), 35

161 pipeline_responsecompositor, 124
mlr_task_generators_simsurv, 157, 159, pipeline_responsecompositor

159 (mlr_graphs_responsecompositor),
mlr_tasks, 143-155, 175 37
mlr_tasks_actg, 143, 144, 145, 147-156, pipeline_survaverager

175,181 (mlr_graphs_survaverager), 38
mlr_tasks_faithful, /143, 144, 145, pipeline_survbagging

147-156, 175, 181 (mlr_graphs_survbagging), 40
mlr_tasks_gbcs, 143, 144, 145, 147156, pipeline_survtoclassif_disctime

175, 181 (mlr_graphs_survtoclassif_disctime),
mlr_tasks_gbsg, 143—145, 146, 148—156, 41

175,181 pipeline_survtoclassif_IPCW
mlr_tasks_grace, 143-145, 147, 147, (mlr_graphs_survtoclassif_IPCW),

149-156, 175, 181 43
mlr_tasks_lung, 143-145, 147, 148, 148, pipeline_survtoregr

150-156, 175, 181 (mlr_graphs_survtoregr), 45
mlr_tasks_mgus, 43-145, 147-149, 149, PipeOp, 45, 113, 115,117, 119, 122, 126, 128,

151-156, 175, 181 134,137, 163-168
mlr_tasks_pbc, 143—145, 147-150, 150, PipeOpBreslow, 33, 113

]52_15§’Z75’181 PipeOpBreslow
mlr_tasks_precip, 143-145, 147-151, 151, (mlr_pipeops_compose_breslow_distr),
153-156, 175, 181 113
mlr_tasks_rats, 143-145, 147-152, 152,
154-156, 175, 181
mlr_tasks_unemployment, /43-145,
147-153, 153, 155, 156, 175, 181
mlr_tasks_veteran, 143-145, 147—-154, 154,

PipeOpCrankCompositor, 32, 117
PipeOpCrankCompositor
(mlr_pipeops_crankcompose), 117
PipeOpDistrCompositor, 33, 34, 46, 47, 120
PipeOpDistrCompositor

120, 175 191 (mlr_pipeops_distrcompose), 119
mlr_tasks_whas, 143-145, 147-155, 155, , ~P1PEOPS_ pose),
175. 181 PipeOpEnsemble, 125

PipeOpLearner, 124

msr(), 56, 59, 62, 64, 66, 69, 71, 75, 78, 82, .
PipeOpLearnercCV, 47

84, 86, 88, 89, 91, 93, 96, 99, 101,

103, 105, 107, 109, 111 PipeOpModelMatrix, 42
PipeOpPredClassifSurvDiscTime, 41, 42,
p.adjust.methods, /180 135
paradox: : ParamSet, 24, 26, 27, 29, 31, 164, PipeOpPredClassifSurvDiscTime
166, 167 (mlr_pipeops_trafopred_classifsurv_disctime),
pbc, 150 126
pecs, 161 PipeOpPredClassifSurvIPCW, 43, 44, 137
pipeline_crankcompositor, /79 PipeOpPredClassifSurvIPCW
pipeline_crankcompositor (mlr_pipeops_trafopred_classifsurv_IPCW),
(mlr_graphs_crankcompositor), 128
32 PipeOpPredRegrSurv, 47
pipeline_distrcompositor, 114, 121 PipeOpPredRegrSurv
pipeline_distrcompositor (mlr_pipeops_trafopred_regrsurv),
(mlr_graphs_distrcompositor), 129

33 PipeOpPredSurvRegr

190

(mlr_pipeops_trafopred_survregr),

131
PipeOpPredTransformer, 126, 127, 129-132,
134,136, 138, 141, 163, 163, 166,
168
PipeOpProbregr, 35,46, 47, 115
PipeOpProbregr
(mlr_pipeops_compose_probregr),
115
PipeOpResponseCompositor, 37, 122
PipeOpResponseCompositor
(mlr_pipeops_responsecompose),
122
PipeOpSubsample, 40
PipeOpSurvAvg, 38—40
PipeOpSurvAvg (mlr_pipeops_survavg), 124
PipeOpTaskRegrSurv

(mlr_pipeops_trafotask_regrsurv),

133
PipeOpTaskSurvClassifDiscTime, 41, 42,

127,135
PipeOpTaskSurvClassifDiscTime

(mlr_pipeops_trafotask_survclassif_ dlSC{v

134
PipeOpTaskSurvClassifIPCW, 43, 44, 128,

137
PipeOpTaskSurvClassifIPCW

(mlr_pipeops_trafotask_survclassif_ IPgﬂ;

137
PipeOpTaskSurvRegr, 46, 47
PipeOpTaskSurvRegr

(mlr_pipeops_trafotask_survregr),

139
PipeOpTaskTransformer, 126, 127, 129, 130,
132-134, 136, 138, 140, 141, 165,
165, 168
PipeOpTransformer, 126, 127, 129, 130, 132,
134,136, 138, 141, 165-167, 167
plot.LearnerSurv, 168
plot_probregr, 169
po(), 113
ppl(), 32, 34, 36, 38, 39, 41, 42, 44
precip, 151
Prediction, 23, 25, 163, 167
PredictionClassif, 42, 44, 126—128
PredictionDens, 10, 23,171, 174
PredictionRegr, 47,115, 129, 131, 170
PredictionSurv, 11, 14, 15, 25,42, 44,47,

INDEX

113,117,119, 120, 122, 124-129,
131,161, 162,172,172

R6, 23, 25, 27, 29, 31, 49, 50, 52, 53, 55, 57,
59, 60, 62, 64, 70, 74, 76, 80, 83, 85,
87, 88, 90, 92, 94, 98, 100, 102, 104,
106,108, 110,112,114, 116,118,
121,123,125, 127, 128, 130, 132,
133,135,138, 141, 157, 158, 160,
164, 165,167,171, 173,175, 176

R6::R6Class, 143—-155

rats, 152

Rcpp, 9

requireNamespace(), 24, 26, 28, 30, 164,
166, 168

Resampling, 28, 29, 31

rpart::predict.rpart(), 54

rpart::rpart(), 54

simsurv::simsurv(), 159
stats::formula(), 178
Surv, 177
é}ndex 30

dplan, 119
survAUC::AUC.cd(),63
survAUC: :AUC.hc(), 75
survAUC: :AUC.sh(), 99
VAUC: : AUC.uno(), 105
'VAUC: :Nagelk(), 87
survAUC: :0XS(), 89
survAUC: :sens.sh(), 103
survAUC: :sens.uno(), 109
survAUC: : spec.sh(), 101
survAUC: : spec.uno(), 107
survAUC: : X0(), 111
survival: :concordance, 66
survival::coxph(), 51
survival::predict.coxph(), 51
survival: :Surv, 8
survival::Surv(), 178
survival::survfit(), 17,53, 179
survival::survfit.coxph(), 51
survival::survfit.formula(), 179
survival::survfit.object, 179

Task, 28, 29, 31, 143155, 167
TaskClassif, 42,44, 134, 135, 137
TaskDens, 12, 16, 143145, 147-156, 175, 181
TaskGenerator, 156, 158, 160

INDEX

TaskGeneratorCoxed
(mlr_task_generators_coxed),
156

TaskGenerators, 157, 159, 161

TaskGeneratorSimdens
(mlr_task_generators_simdens),
158

TaskGeneratorSimsurv
(mlr_task_generators_simsurv),
159

TaskRegr, 46, 47, 133, 139, 140

Tasks, 143145, 147-156

TaskSurv, 12, 15,17,42,44,47, 113,
133135, 137, 139, 140, 143—-156,
162,169, 171,173,175,176, 179

TaskUnsupervised, 175

tgen(), 156, 158, 160

tsk(), 143-155

Uniform, 46
veteran, 154

whas, 155, 182

191

	mlr3proba-package
	.surv_return
	actg
	assert_surv
	assert_surv_matrix
	as_prediction_dens
	as_prediction_surv
	as_task_dens
	as_task_surv
	autoplot.PredictionSurv
	autoplot.TaskDens
	autoplot.TaskSurv
	breslow
	gbcs
	get_mortality
	grace
	LearnerDens
	LearnerSurv
	MeasureDens
	MeasureSurv
	MeasureSurvAUC
	mlr_graphs_crankcompositor
	mlr_graphs_distrcompositor
	mlr_graphs_probregr
	mlr_graphs_responsecompositor
	mlr_graphs_survaverager
	mlr_graphs_survbagging
	mlr_graphs_survtoclassif_disctime
	mlr_graphs_survtoclassif_IPCW
	mlr_graphs_survtoregr
	mlr_learners_dens.hist
	mlr_learners_dens.kde
	mlr_learners_surv.coxph
	mlr_learners_surv.kaplan
	mlr_learners_surv.rpart
	mlr_measures_dens.logloss
	mlr_measures_regr.logloss
	mlr_measures_surv.calib_alpha
	mlr_measures_surv.calib_beta
	mlr_measures_surv.chambless_auc
	mlr_measures_surv.cindex
	mlr_measures_surv.dcalib
	mlr_measures_surv.graf
	mlr_measures_surv.hung_auc
	mlr_measures_surv.intlogloss
	mlr_measures_surv.logloss
	mlr_measures_surv.mae
	mlr_measures_surv.mse
	mlr_measures_surv.nagelk_r2
	mlr_measures_surv.oquigley_r2
	mlr_measures_surv.rcll
	mlr_measures_surv.rmse
	mlr_measures_surv.schmid
	mlr_measures_surv.song_auc
	mlr_measures_surv.song_tnr
	mlr_measures_surv.song_tpr
	mlr_measures_surv.uno_auc
	mlr_measures_surv.uno_tnr
	mlr_measures_surv.uno_tpr
	mlr_measures_surv.xu_r2
	mlr_pipeops_compose_breslow_distr
	mlr_pipeops_compose_probregr
	mlr_pipeops_crankcompose
	mlr_pipeops_distrcompose
	mlr_pipeops_responsecompose
	mlr_pipeops_survavg
	mlr_pipeops_trafopred_classifsurv_disctime
	mlr_pipeops_trafopred_classifsurv_IPCW
	mlr_pipeops_trafopred_regrsurv
	mlr_pipeops_trafopred_survregr
	mlr_pipeops_trafotask_regrsurv
	mlr_pipeops_trafotask_survclassif_disctime
	mlr_pipeops_trafotask_survclassif_IPCW
	mlr_pipeops_trafotask_survregr
	mlr_tasks_actg
	mlr_tasks_faithful
	mlr_tasks_gbcs
	mlr_tasks_gbsg
	mlr_tasks_grace
	mlr_tasks_lung
	mlr_tasks_mgus
	mlr_tasks_pbc
	mlr_tasks_precip
	mlr_tasks_rats
	mlr_tasks_unemployment
	mlr_tasks_veteran
	mlr_tasks_whas
	mlr_task_generators_coxed
	mlr_task_generators_simdens
	mlr_task_generators_simsurv
	pecs
	PipeOpPredTransformer
	PipeOpTaskTransformer
	PipeOpTransformer
	plot.LearnerSurv
	plot_probregr
	PredictionDens
	PredictionSurv
	TaskDens
	TaskSurv
	whas
	Index

