Package: mlr3spatial 0.5.0

Marc Becker

mlr3spatial: Support for Spatial Objects Within the 'mlr3' Ecosystem

Extends the 'mlr3' ML framework with methods for spatial objects. Data storage and prediction are supported for packages 'terra', 'raster' and 'stars'.

Authors:Marc Becker [aut, cre], Patrick Schratz [aut]

mlr3spatial_0.5.0.tar.gz
mlr3spatial_0.5.0.zip(r-4.5)mlr3spatial_0.5.0.zip(r-4.4)mlr3spatial_0.5.0.zip(r-4.3)
mlr3spatial_0.5.0.tgz(r-4.4-any)mlr3spatial_0.5.0.tgz(r-4.3-any)
mlr3spatial_0.5.0.tar.gz(r-4.5-noble)mlr3spatial_0.5.0.tar.gz(r-4.4-noble)
mlr3spatial_0.5.0.tgz(r-4.4-emscripten)mlr3spatial_0.5.0.tgz(r-4.3-emscripten)
mlr3spatial.pdf |mlr3spatial.html
mlr3spatial/json (API)
NEWS

# Install 'mlr3spatial' in R:
install.packages('mlr3spatial', repos = c('https://mlr-org.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/mlr-org/mlr3spatial/issues

Datasets:

On CRAN:

mlr3raster-predictionspatialspatial-modelling

6.85 score 42 stars 56 scripts 448 downloads 29 exports 35 dependencies

Last updated 9 months agofrom:6dd3417b02 (on v0.5.0). Checks:OK: 5 NOTE: 2. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 28 2024
R-4.5-winNOTEOct 28 2024
R-4.5-linuxNOTEOct 28 2024
R-4.4-winOKOct 28 2024
R-4.4-macOKOct 28 2024
R-4.3-winOKOct 28 2024
R-4.3-macOKOct 28 2024

Exports:as_data_backend.RasterBrickas_data_backend.RasterStackas_data_backend.sfas_data_backend.SpatRasteras_data_backend.starsas_task_classif_stas_task_classif_st.data.frameas_task_classif_st.DataBackendas_task_classif_st.sfas_task_classif_st.TaskClassifSTas_task_classif_st.TaskRegrSTas_task_regr_stas_task_regr_st.data.frameas_task_regr_st.DataBackendas_task_regr_st.sfas_task_regr_st.TaskClassifSTas_task_regr_st.TaskRegrSTblock_sizeDataBackendRasterDataBackendVectorfactor_layergenerate_stackmask_stacknumeric_layerpredict_spatialsample_stackTaskClassifSTTaskRegrSTwrite_raster

Dependencies:backportscheckmateclassclassIntcodetoolsdata.tableDBIdigeste1071evaluatefuturefuture.applyglobalsKernSmoothlgrlistenvmagrittrMASSmlbenchmlr3mlr3measuresmlr3miscpalmerpenguinsparadoxparallellyproxyPRROCR6Rcpps2sfterraunitsuuidwk

Benchmark Parallel Predictions

Rendered frombenchmark.Rmdusingknitr::rmarkdownon Oct 28 2024.

Last update: 2022-08-30
Started: 2021-08-11

Readme and manuals

Help Manual

Help pageTopics
mlr3spatial: Support for Spatial Objects Within the 'mlr3' Ecosystemmlr3spatial-package mlr3spatial
Coerce to spatial DataBackendas_data_backend.RasterBrick as_data_backend.RasterStack as_data_backend.sf as_data_backend.SpatRaster as_data_backend.stars
Convert to a Spatiotemporal Classification Taskas_task_classif_st as_task_classif_st.data.frame as_task_classif_st.DataBackend as_task_classif_st.sf as_task_classif_st.TaskClassifST as_task_classif_st.TaskRegrST
Convert to a Spatiotemporal Regression Taskas_task_regr_st as_task_regr_st.data.frame as_task_regr_st.DataBackend as_task_regr_st.sf as_task_regr_st.TaskClassifST as_task_regr_st.TaskRegrST
DataBackend for Raster ObjectsDataBackendRaster
DataBackend for Vector ObjectsDataBackendVector
Leipzig Land Cover Taskleipzig mlr_tasks_leipzig
Predict on Spatial Objects with mlr3 Learnerspredict_spatial
Spatiotemporal Classification TaskTaskClassifST
Spatiotemporal Regression TaskTaskRegrST