Package: mlr3spatial 0.5.0

Marc Becker

mlr3spatial: Support for Spatial Objects Within the 'mlr3' Ecosystem

Extends the 'mlr3' ML framework with methods for spatial objects. Data storage and prediction are supported for packages 'terra', 'raster' and 'stars'.

Authors:Marc Becker [aut, cre], Patrick Schratz [aut]

mlr3spatial_0.5.0.tar.gz
mlr3spatial_0.5.0.zip(r-4.5)mlr3spatial_0.5.0.zip(r-4.4)mlr3spatial_0.5.0.zip(r-4.3)
mlr3spatial_0.5.0.tgz(r-4.4-any)mlr3spatial_0.5.0.tgz(r-4.3-any)
mlr3spatial_0.5.0.tar.gz(r-4.5-noble)mlr3spatial_0.5.0.tar.gz(r-4.4-noble)
mlr3spatial_0.5.0.tgz(r-4.4-emscripten)mlr3spatial_0.5.0.tgz(r-4.3-emscripten)
mlr3spatial.pdf |mlr3spatial.html
mlr3spatial/json (API)
NEWS

# Install 'mlr3spatial' in R:
install.packages('mlr3spatial', repos = c('https://mlr-org.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/mlr-org/mlr3spatial/issues

Pkgdown site:https://mlr3spatial.mlr-org.com

Datasets:

On CRAN:

mlr3raster-predictionspatialspatial-modelling

6.90 score 43 stars 62 scripts 459 downloads 29 exports 35 dependencies

Last updated 10 months agofrom:6dd3417b02 (on v0.5.0). Checks:5 OK, 2 NOTE. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKDec 27 2024
R-4.5-winNOTEDec 27 2024
R-4.5-linuxNOTEDec 27 2024
R-4.4-winOKDec 27 2024
R-4.4-macOKDec 27 2024
R-4.3-winOKDec 27 2024
R-4.3-macOKDec 27 2024

Exports:as_data_backend.RasterBrickas_data_backend.RasterStackas_data_backend.sfas_data_backend.SpatRasteras_data_backend.starsas_task_classif_stas_task_classif_st.data.frameas_task_classif_st.DataBackendas_task_classif_st.sfas_task_classif_st.TaskClassifSTas_task_classif_st.TaskRegrSTas_task_regr_stas_task_regr_st.data.frameas_task_regr_st.DataBackendas_task_regr_st.sfas_task_regr_st.TaskClassifSTas_task_regr_st.TaskRegrSTblock_sizeDataBackendRasterDataBackendVectorfactor_layergenerate_stackmask_stacknumeric_layerpredict_spatialsample_stackTaskClassifSTTaskRegrSTwrite_raster

Dependencies:backportscheckmateclassclassIntcodetoolsdata.tableDBIdigeste1071evaluatefuturefuture.applyglobalsKernSmoothlgrlistenvmagrittrMASSmlbenchmlr3mlr3measuresmlr3miscpalmerpenguinsparadoxparallellyproxyPRROCR6Rcpps2sfterraunitsuuidwk

Benchmark Parallel Predictions

Rendered frombenchmark.Rmdusingknitr::rmarkdownon Dec 27 2024.

Last update: 2022-08-30
Started: 2021-08-11

Readme and manuals

Help Manual

Help pageTopics
mlr3spatial: Support for Spatial Objects Within the 'mlr3' Ecosystemmlr3spatial-package mlr3spatial
Coerce to spatial DataBackendas_data_backend.RasterBrick as_data_backend.RasterStack as_data_backend.sf as_data_backend.SpatRaster as_data_backend.stars
Convert to a Spatiotemporal Classification Taskas_task_classif_st as_task_classif_st.data.frame as_task_classif_st.DataBackend as_task_classif_st.sf as_task_classif_st.TaskClassifST as_task_classif_st.TaskRegrST
Convert to a Spatiotemporal Regression Taskas_task_regr_st as_task_regr_st.data.frame as_task_regr_st.DataBackend as_task_regr_st.sf as_task_regr_st.TaskClassifST as_task_regr_st.TaskRegrST
DataBackend for Raster ObjectsDataBackendRaster
DataBackend for Vector ObjectsDataBackendVector
Leipzig Land Cover Taskleipzig mlr_tasks_leipzig
Predict on Spatial Objects with mlr3 Learnerspredict_spatial
Spatiotemporal Classification TaskTaskClassifST
Spatiotemporal Regression TaskTaskRegrST