--- title: "Spatiotemporal Visualization" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Spatiotemporal Visualization} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` ## 3D Visualization (spatiotemporal) {mlr3spatiotempcv} makes use of {plotly} to create the 3D plots for visualizing spatiotemporal folds. Arranging multiple 3D plots in {plotly} is done via [3D subplots](https://plotly.com/r/3d-subplots/). Unfortunately, {plotly}'s subplot implementation is not dynamic. This means that multiple "scene" objects need to be specified in `plotly::layout()` to determine the coordinates of the respective subplot. Depending on the number of chosen folds by the user in `autoplot()`, a different number of scenes with different coordinates needs to be given to align the plots properly. Hence, manual action is needed to create a properly aligned grid of 3D plots. Below is an example how to create a 2x2 grid showing four folds as 3D subplots. It makes use of the returned 3D plotly objects which are returned in a list by `autoplot()`: ```{r, fig.align='center', eval=FALSE} library(mlr3) library(mlr3spatiotempcv) task_st = tsk("cookfarm_mlr3") task_st$set_col_roles("SOURCEID", roles = "space") task_st$set_col_roles("Date", roles = "time") resampling = rsmp("sptcv_cstf", folds = 5) pl = autoplot(resampling, task_st, c(1, 2, 3, 4), crs = 4326, point_size = 3, axis_label_fontsize = 10, plot3D = TRUE ) # Warnings can be ignored pl_subplot = plotly::subplot(pl) plotly::layout(pl_subplot, title = "Individual Folds", scene = list( domain = list(x = c(0, 0.5), y = c(0.5, 1)), aspectmode = "cube", camera = list(eye = list(z = 2.5)) ), scene2 = list( domain = list(x = c(0.5, 1), y = c(0.5, 1)), aspectmode = "cube", camera = list(eye = list(z = 2.5)) ), scene3 = list( domain = list(x = c(0, 0.5), y = c(0, 0.5)), aspectmode = "cube", camera = list(eye = list(z = 2.5)) ), scene4 = list( domain = list(x = c(0.5, 1), y = c(0, 0.5)), aspectmode = "cube", camera = list(eye = list(z = 2.5)) ) ) ``` ```{r, echo=FALSE, fig.align='center', fig.align='center'} # plotly::save_image(foo, "man/figures/sptcv_cstf_multiplot.png", width = 1200, height = 1200) knitr::include_graphics("../man/figures/sptcv_cstf_multiplot.png") ``` Note: The image shown above is a static version created with `plotly::save_image()`. Unfortunately, titles in subplots cannot be created dynamically. However, there is a manual workaround via [annotations](https://plotly.com/r/reference/#layout-annotations) show in this [RPubs post](https://rpubs.com/bcd/subplot-titles). ## Examples of spatial partitioning (2D) The following plots are based on a three fold partitioning of the [ecuador](https://mlr3spatiotempcv.mlr-org.com/reference/mlr_tasks_ecuador.html) example task. Method `mlr_resampling_sptcv_cstf` is omitted here as the `ecuador` task does not have a factor grouping variable which is required by this method. The partitions created on this dataset do not claim to necessarily make sense in practice - they should only contrast the individual methods against each other. The source code can be found [here](https://github.com/mlr-org/mlr3spatiotempcv/blob/main/vignettes/spatiotemp-viz.Rmd). ```{r, echo=FALSE, cache=TRUE, fig.width=10, fig.height=8} library(patchwork) library(ggplot2) library(mlr3) library(mlr3spatiotempcv) task_ecuador = tsk("ecuador") task_cookfarm = tsk("cookfarm_mlr3") set.seed(42) # block resampling_block = rsmp("spcv_block", range = 1000L, folds = 3) p_block = autoplot(resampling_block, task_ecuador, fold_id = 1, show_blocks = TRUE, size = 0.6 ) + scale_y_continuous(breaks = seq(-3.97, -4, -0.02)) + scale_x_continuous(breaks = seq(-79.085, -79.055, 0.02)) + theme(legend.position = "none") # buffer resampling_buffer = rsmp("spcv_buffer", theRange = 1000L) p_buffer = autoplot(resampling_buffer, task_ecuador, fold_id = 1, size = 0.6) + scale_y_continuous(breaks = seq(-3.97, -4, -0.02)) + scale_x_continuous(breaks = seq(-79.085, -79.055, 0.02)) + theme(legend.position = "none") # coords resampling_coords = rsmp("spcv_coords", folds = 3) p_coords = autoplot(resampling_coords, task_ecuador, fold_id = 1, size = 0.6) + scale_y_continuous(breaks = seq(-3.97, -4, -0.02)) + scale_x_continuous(breaks = seq(-79.085, -79.055, 0.02)) + theme(legend.position = "none") # env resampling_env = rsmp("spcv_env", folds = 3, features = "distroad") p_env = autoplot(resampling_env, task_ecuador, fold_id = 1, size = 0.6) + scale_y_continuous(breaks = seq(-3.97, -4, -0.02)) + scale_x_continuous(breaks = seq(-79.085, -79.055, 0.02)) + theme(legend.position = "none") # disc resampling_disc = rsmp("spcv_disc", folds = 3L, radius = 200L, buffer = 200L) p_disc = autoplot(resampling_disc, task_ecuador, fold_id = 1, size = 0.6) + scale_y_continuous(breaks = seq(-3.97, -4, -0.02)) + scale_x_continuous(breaks = seq(-79.085, -79.055, 0.02)) + theme(legend.position = "none") # tiles resampling_tiles = rsmp("spcv_tiles", nsplit = c(4L, 3L), reassign = FALSE) p_tiles = autoplot(resampling_tiles, task_ecuador, fold_id = 1, size = 0.6) + scale_y_continuous(breaks = seq(-3.97, -4, -0.02)) + scale_x_continuous(breaks = seq(-79.085, -79.055, 0.02)) + theme(legend.position = "none") # plot p_block + p_coords + p_env + p_disc + p_tiles + p_buffer + plot_layout(ncol = 3) + plot_annotation(tag_levels = "A") ``` | Identifier | Method Name | | :--------- | :--------------------------- | | A | `mlr_resampling_spcv_block` | | B | `mlr_resampling_spcv_coords` | | C | `mlr_resampling_spcv_env` | | D | `mlr_resampling_spcv_disc` | | E | `mlr_resampling_spcv_tiles` | | F | `mlr_resampling_spcv_buffer` |