Package 'mlr3extralearners'

Title: Extra Learners For mlr3
Description: Extra learners for use in mlr3.
Authors: Raphael Sonabend [aut] , Patrick Schratz [aut] , Lorenz A. Kapsner [ctb] , Lennart Schneider [ctb] , Stephen A Lauer [ctb] , Pierre Camilleri [ctb], Javier García [ctb], Keenan Ganz [ctb], Byron Jaeger [ctb], Sebastian Fischer [cre, aut], Zezhi Wang [ctb], John Zobolas [ctb] , Lukas Burk [ctb]
Maintainer: Sebastian Fischer <[email protected]>
License: LGPL-3
Version: 1.0.0
Built: 2025-01-06 06:26:43 UTC
Source: https://github.com/mlr-org/mlr3extralearners

Help Index


mlr3extralearners: Extra Learners For mlr3

Description

Extra learners for use in mlr3.

Author(s)

Maintainer: Sebastian Fischer [email protected]

Authors:

Other contributors:


Create a New Learner

Description

Helper function to create a template for a learner, as well as the test and parameter test. For more details see the mlr3book.

Usage

create_learner(
  path = ".",
  classname,
  type,
  key = tolower(classname),
  algorithm,
  package,
  caller,
  feature_types,
  predict_types,
  properties,
  gh_name = "Unknown",
  label = toproper(algorithm)
)

Arguments

path

(character(1))
The path to a folder. This is where the files will be created. In case the folder is an R package, the learner file will be create in path/R and the test files will be created in path/tests/testthat. Otherwise all the files will be created in path.

classname

(character(1))
Suffix for R6 class name passed to LearnerType 'classname'.

type

(character(1))
See mlr3::mlr_reflections$task_types$type.

key

(character(1))
key for learner, if not provided defaults to the classname in all lower case. In combination with type it creates the learner's id.

algorithm

(character(1))
Brief description of the algorithm, like "Linear Model" or "Random Forest". Is used for the title of the help package and as the label (if no other label is provided).

package

(character(1))
Package from which the learner is implemented.

caller

character(1)
Training function called from the upstream package.

feature_types

(character())
Feature types that can be handled by the learner, see mlr3::mlr_reflections$task_feature_types.

predict_types

(character())
Prediction types that can be made by the learner, see mlr3::mlr_reflections$learner_predict_types.

properties

(character())
Properties that can be handled by the learner, see mlr3::mlr_reflections$learner_properties.

gh_name

(character(1))
Your GitHub handle, used to add you as the maintainer of the learner. Defaults to "Unknown".

label

(character(1))
Label for the learner, default is the value of the parameter algorithm.

Examples

## Not run: 
path = tempfile()
dir.create(path)
create_learner(
  path = path,
  classname = "Rpart",
  type = "classif",
  key = "rpart",
  algorithm = "Decision Tree",
  package = "rpart",
  caller = "rpart",
  feature_types = c("logical", "integer", "numeric", "factor", "ordered"),
  predict_types = c("response", "prob"),
  properties = c("importance", "missings", "multiclass", "twoclass", "weights"),
  gh_name = "RaphaelS1",
  label = "Regression and Partition Tree"
)

## End(Not run)

Install Learner Dependencies

Description

Install required dependencies for specified learners. Works for packages on GitHub and CRAN, otherwise must be manually installed.

Usage

install_learners(.keys, repos = "https://cloud.r-project.org", ...)

Arguments

.keys

(character())
Keys passed to mlr_learners specifying learners to install.

repos

(character(1))
Passed to utils::install.packages.

...

(ANY)
Additional options to pass to utils::install.packages or remotes::install_github.


List Learners in mlr3verse

Description

Lists all learners, properties, and associated packages in a table that can be filtered and queried.

Usage

list_mlr3learners(select = NULL, filter = NULL)

Arguments

select

character()
Passed to data.table::subset.

filter

list()
Named list of conditions to filter on, names correspond to column names in table.


Classification Abess Learner

Description

Adaptive best-subset selection for classification. Calls abess::abess() from abess.

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.abess")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “integer”, “numeric”

  • Required Packages: mlr3, abess

Parameters

Id Type Default Levels Range
family character - binomial, multinomial, ordinal -
tune.path character sequence sequence, gsection -
tune.type character gic gic, aic, bic, ebic, cv -
normalize integer NULL (,)(-\infty, \infty)
support.size untyped NULL -
c.max integer 2 [1,)[1, \infty)
gs.range untyped NULL -
lambda numeric 0 [0,)[0, \infty)
always.include untyped NULL -
group.index untyped NULL -
init.active.set untyped NULL -
splicing.type integer 2 [1,2][1, 2]
max.splicing.iter integer 20 [1,)[1, \infty)
screening.num integer NULL [0,)[0, \infty)
important.search integer NULL [0,)[0, \infty)
warm.start logical TRUE TRUE, FALSE -
nfolds integer 5 (,)(-\infty, \infty)
foldid untyped NULL -
cov.update logical FALSE TRUE, FALSE -
newton character exact exact, approx -
newton.thresh numeric 1e-06 [0,)[0, \infty)
max.newton.iter integer NULL [1,)[1, \infty)
early.stop logical FALSE TRUE, FALSE -
ic.scale numeric 1 [0,)[0, \infty)
num.threads integer 0 [0,)[0, \infty)
seed integer 0 (,)(-\infty, \infty)

Initial parameter values

  • num.threads: This parameter is initialized to 1 (default is 0) to avoid conflicts with the mlr3 parallelization.

  • family: Depends on the task type, if the parameter family is NULL, it is set to "binomial" for binary classification tasks and to "multinomial" for multiclass classification problems.

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifAbess

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerClassifAbess$new()

Method selected_features()

Extract the name of selected features from the model by abess::extract().

Usage
LearnerClassifAbess$selected_features()
Returns

The names of selected features


Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerClassifAbess$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

abess-team

See Also

Examples

# Define the Learner
learner = mlr3::lrn("classif.abess")
print(learner)

# Define a Task
task = mlr3::tsk("sonar")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Classification AdaBoostM1 Learner

Description

Adaptive boosting algorithm for classification. Calls RWeka::AdaBoostM1() from RWeka.

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.AdaBoostM1")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, mlr3extralearners, RWeka

Parameters

Id Type Default Levels Range
subset untyped - -
na.action untyped - -
P integer 100 [90,100][90, 100]
Q logical FALSE TRUE, FALSE -
S integer 1 [1,)[1, \infty)
I integer 10 [1,)[1, \infty)
W untyped "DecisionStump" -
output_debug_info logical FALSE TRUE, FALSE -
do_not_check_capabilities logical FALSE TRUE, FALSE -
num_decimal_places integer 2 [1,)[1, \infty)
batch_size integer 100 [1,)[1, \infty)
options untyped NULL -

Parameter changes

  • output_debug_info:

    • original id: output-debug-info

  • do_not_check_capabilities:

    • original id: do-not-check-capabilities

  • num_decimal_places:

    • original id: num-decimal-places

  • batch_size:

    • original id: batch-size

  • Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifAdaBoostM1

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerClassifAdaBoostM1$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerClassifAdaBoostM1$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

henrifnk

References

Freund, Yoav, Schapire, E R, others (1996). “Experiments with a new boosting algorithm.” In icml, volume 96, 148–156. Citeseer.

See Also

Examples

# Define the Learner
learner = mlr3::lrn("classif.AdaBoostM1")
print(learner)

# Define a Task
task = mlr3::tsk("sonar")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Classification BART (Bayesian Additive Regression Trees) Learner

Description

Bayesian Additive Regression Trees are similar to gradient boosting algorithms. The classification problem is solved by 0-1 encoding of the two-class targets and setting the decision threshold to p = 0.5 during the prediction phase. Calls dbarts::bart() from dbarts.

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.bart")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, mlr3extralearners, dbarts

Parameters

Id Type Default Levels Range
ntree integer 200 [1,)[1, \infty)
k numeric 2 [0,)[0, \infty)
power numeric 2 [0,)[0, \infty)
base numeric 0.95 [0,1][0, 1]
binaryOffset numeric 0 (,)(-\infty, \infty)
ndpost integer 1000 [1,)[1, \infty)
nskip integer 100 [0,)[0, \infty)
printevery integer 100 [0,)[0, \infty)
keepevery integer 1 [1,)[1, \infty)
keeptrainfits logical TRUE TRUE, FALSE -
usequants logical FALSE TRUE, FALSE -
numcut integer 100 [1,)[1, \infty)
printcutoffs integer 0 (,)(-\infty, \infty)
verbose logical FALSE TRUE, FALSE -
nthread integer 1 (,)(-\infty, \infty)
keepcall logical TRUE TRUE, FALSE -
sampleronly logical FALSE TRUE, FALSE -
seed integer NA (,)(-\infty, \infty)
proposalprobs untyped NULL -
splitprobs untyped NULL -
keepsampler logical - TRUE, FALSE -

Parameter Changes

  • Parameter: keeptrees

  • Original: FALSE

  • New: TRUE

  • Reason: Required for prediction

  • Parameter: offset

  • The parameter is removed, because only dbarts::bart2 allows an offset during training, and therefore the offset parameter in dbarts:::predict.bart is irrelevant for dbarts::dbart.

  • Parameter: nchain, combineChains, combinechains

  • The parameters are removed as parallelization of multiple models is handled by future.

  • Parameter: sigest, sigdf, sigquant, keeptres

  • Regression only.

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifBart

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerClassifBart$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerClassifBart$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

ck37

References

Sparapani, Rodney, Spanbauer, Charles, McCulloch, Robert (2021). “Nonparametric machine learning and efficient computation with bayesian additive regression trees: the BART R package.” Journal of Statistical Software, 97, 1–66.

Chipman, A H, George, I E, McCulloch, E R (2010). “BART: Bayesian additive regression trees.” The Annals of Applied Statistics, 4(1), 266–298.

See Also

Examples

# Define the Learner
learner = mlr3::lrn("classif.bart")
print(learner)

# Define a Task
task = mlr3::tsk("sonar")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Classification Bayes Network Learner

Description

Bayes Network learning using various search algorithms. Calls RWeka::make_Weka_classifier() from RWeka.

Custom mlr3 parameters

  • output_debug_info:

    • original id: output-debug-info

  • do_not_check_capabilities:

    • original id: do-not-check-capabilities

  • num_decimal_places:

    • original id: num-decimal-places

  • batch_size:

    • original id: batch-size

  • Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern

  • N removed:

    • Initial structure is empty

  • P removed:

    • Maximum number of parents

  • R removed:

    • Random order

  • mbc removed:

    • Applies a Markov Blanket correction to the network structure, after a network structure is learned

  • S removed:

    • Score type

  • A removed:

    • Initial count (alpha)

  • Reason for change: The parameters are removed because they don't work out of the box and it's unclear how to use them.

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.bayes_net")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, RWeka

Parameters

Id Type Default Levels Range
subset untyped - -
na.action untyped - -
D logical - TRUE, FALSE -
B untyped - -
Q character - global.K2, global.HillClimber, global.SimulatedAnnealing, global.TabuSearch, global.TAN, local.K2, local.HillClimber, local.LAGDHillClimber, local.SimulatedAnnealing, local.TabuSearch, ... -
E character - estimate.SimpleEstimator, estimate.BMAEstimator, estimate.MultiNomialBMAEstimator -
output_debug_info logical FALSE TRUE, FALSE -
do_not_check_capabilities logical FALSE TRUE, FALSE -
num_decimal_places integer 2 [1,)[1, \infty)
batch_size integer 100 [1,)[1, \infty)
options untyped NULL -

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifBayesNet

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerClassifBayesNet$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerClassifBayesNet$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

damirpolat

See Also

Examples

# Define the Learner
learner = mlr3::lrn("classif.bayes_net")
print(learner)

# Define a Task
task = mlr3::tsk("sonar")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Classification C5.0 Learner

Description

Decision Tree Algorithm. Calls C50::C5.0.formula() from C50.

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.C50")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, mlr3extralearners, C50

Parameters

Id Type Default Levels Range
trials integer 1 [1,)[1, \infty)
rules logical FALSE TRUE, FALSE -
costs untyped NULL -
subset logical TRUE TRUE, FALSE -
bands integer - [0,1000][0, 1000]
winnow logical FALSE TRUE, FALSE -
noGlobalPruning logical FALSE TRUE, FALSE -
CF numeric 0.25 [0,1][0, 1]
minCases integer 2 [0,)[0, \infty)
fuzzyThreshold logical FALSE TRUE, FALSE -
sample numeric 0 [0,0.999][0, 0.999]
seed integer - (,)(-\infty, \infty)
earlyStopping logical TRUE TRUE, FALSE -
label untyped "outcome" -
na.action untyped "stats::na.pass" -

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifC50

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerClassifC50$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerClassifC50$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

henrifnk

References

Quinlan, Ross J (2014). C4. 5: programs for machine learning. Elsevier.


Gradient Boosted Decision Trees Classification Learner

Description

Gradient boosting algorithm that also supports categorical data. Calls catboost::catboost.train() from package 'catboost'.

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.catboost")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, mlr3extralearners, catboost

Parameters

Id Type Default Levels Range
loss_function_twoclass character Logloss Logloss, CrossEntropy -
loss_function_multiclass character MultiClass MultiClass, MultiClassOneVsAll -
learning_rate numeric 0.03 [0.001,1][0.001, 1]
random_seed integer 0 [0,)[0, \infty)
l2_leaf_reg numeric 3 [0,)[0, \infty)
bootstrap_type character - Bayesian, Bernoulli, MVS, Poisson, No -
bagging_temperature numeric 1 [0,)[0, \infty)
subsample numeric - [0,1][0, 1]
sampling_frequency character PerTreeLevel PerTree, PerTreeLevel -
sampling_unit character Object Object, Group -
mvs_reg numeric - [0,)[0, \infty)
random_strength numeric 1 [0,)[0, \infty)
depth integer 6 [1,16][1, 16]
grow_policy character SymmetricTree SymmetricTree, Depthwise, Lossguide -
min_data_in_leaf integer 1 [1,)[1, \infty)
max_leaves integer 31 [1,)[1, \infty)
ignored_features untyped NULL -
one_hot_max_size untyped FALSE -
has_time logical FALSE TRUE, FALSE -
rsm numeric 1 [0.001,1][0.001, 1]
nan_mode character Min Min, Max -
fold_permutation_block integer - [1,256][1, 256]
leaf_estimation_method character - Newton, Gradient, Exact -
leaf_estimation_iterations integer - [1,)[1, \infty)
leaf_estimation_backtracking character AnyImprovement No, AnyImprovement, Armijo -
fold_len_multiplier numeric 2 [1.001,)[1.001, \infty)
approx_on_full_history logical TRUE TRUE, FALSE -
class_weights untyped - -
auto_class_weights character None None, Balanced, SqrtBalanced -
boosting_type character - Ordered, Plain -
boost_from_average logical - TRUE, FALSE -
langevin logical FALSE TRUE, FALSE -
diffusion_temperature numeric 10000 [0,)[0, \infty)
score_function character Cosine Cosine, L2, NewtonCosine, NewtonL2 -
monotone_constraints untyped - -
feature_weights untyped - -
first_feature_use_penalties untyped - -
penalties_coefficient numeric 1 [0,)[0, \infty)
per_object_feature_penalties untyped - -
model_shrink_rate numeric - (,)(-\infty, \infty)
model_shrink_mode character - Constant, Decreasing -
target_border numeric - (,)(-\infty, \infty)
border_count integer - [1,65535][1, 65535]
feature_border_type character GreedyLogSum Median, Uniform, UniformAndQuantiles, MaxLogSum, MinEntropy, GreedyLogSum -
per_float_feature_quantization untyped - -
classes_count integer - [1,)[1, \infty)
thread_count integer 1 [1,)[-1, \infty)
task_type character CPU CPU, GPU -
devices untyped - -
logging_level character Silent Silent, Verbose, Info, Debug -
metric_period integer 1 [1,)[1, \infty)
train_dir untyped "catboost_info" -
model_size_reg numeric 0.5 [0,1][0, 1]
allow_writing_files logical FALSE TRUE, FALSE -
save_snapshot logical FALSE TRUE, FALSE -
snapshot_file untyped - -
snapshot_interval integer 600 [1,)[1, \infty)
simple_ctr untyped - -
combinations_ctr untyped - -
ctr_target_border_count integer - [1,255][1, 255]
counter_calc_method character Full SkipTest, Full -
max_ctr_complexity integer - [1,)[1, \infty)
ctr_leaf_count_limit integer - [1,)[1, \infty)
store_all_simple_ctr logical FALSE TRUE, FALSE -
final_ctr_computation_mode character Default Default, Skip -
verbose logical FALSE TRUE, FALSE -
ntree_start integer 0 [0,)[0, \infty)
ntree_end integer 0 [0,)[0, \infty)
early_stopping_rounds integer - [1,)[1, \infty)
eval_metric untyped - -
use_best_model logical - TRUE, FALSE -
iterations integer 1000 [1,)[1, \infty)

Installation

See https://catboost.ai/en/docs/concepts/r-installation.

Initial parameter values

  • logging_level:

    • Actual default: "Verbose"

    • Adjusted default: "Silent"

    • Reason for change: consistent with other mlr3 learners

  • thread_count:

    • Actual default: -1

    • Adjusted default: 1

    • Reason for change: consistent with other mlr3 learners

  • allow_writing_files:

    • Actual default: TRUE

    • Adjusted default: FALSE

    • Reason for change: consistent with other mlr3 learners

  • save_snapshot:

    • Actual default: TRUE

    • Adjusted default: FALSE

    • Reason for change: consistent with other mlr3 learners

Early stopping

Early stopping can be used to find the optimal number of boosting rounds. Set early_stopping_rounds to an integer value to monitor the performance of the model on the validation set while training. For information on how to configure the validation set, see the Validation section of mlr3::Learner.

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifCatboost

Active bindings

internal_valid_scores

The last observation of the validation scores for all metrics. Extracted from model$evaluation_log

internal_tuned_values

Returns the early stopped iterations if early_stopping_rounds was set during training.

validate

How to construct the internal validation data. This parameter can be either NULL, a ratio, "test", or "predefined".

Methods

Public methods

Inherited methods

Method new()

Create a LearnerClassifCatboost object.

Usage
LearnerClassifCatboost$new()

Method importance()

The importance scores are calculated using catboost.get_feature_importance, setting type = "FeatureImportance", returned for 'all'.

Usage
LearnerClassifCatboost$importance()
Returns

Named numeric().


Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerClassifCatboost$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

sumny

References

Dorogush, Veronika A, Ershov, Vasily, Gulin, Andrey (2018). “CatBoost: gradient boosting with categorical features support.” arXiv preprint arXiv:1810.11363.

See Also

Examples

# Define the Learner
learner = mlr3::lrn("classif.catboost",
  iterations = 100)

print(learner)

# Define a Task
task = tsk("sonar")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)
print(learner$importance)

# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Classification Conditional Random Forest Learner

Description

A random forest based on conditional inference trees (ctree). Calls partykit::cforest() from partykit.

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.cforest")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, mlr3extralearners, partykit, sandwich, coin

Parameters

Id Type Default Levels Range
ntree integer 500 [1,)[1, \infty)
replace logical FALSE TRUE, FALSE -
fraction numeric 0.632 [0,1][0, 1]
mtry integer - [0,)[0, \infty)
mtryratio numeric - [0,1][0, 1]
applyfun untyped - -
cores integer NULL (,)(-\infty, \infty)
trace logical FALSE TRUE, FALSE -
offset untyped - -
cluster untyped - -
scores untyped - -
teststat character quadratic quadratic, maximum -
splitstat character quadratic quadratic, maximum -
splittest logical FALSE TRUE, FALSE -
testtype character Univariate Bonferroni, MonteCarlo, Univariate, Teststatistic -
nmax untyped - -
pargs untyped - -
alpha numeric 0.05 [0,1][0, 1]
mincriterion numeric 0 [0,1][0, 1]
logmincriterion numeric 0 (,)(-\infty, \infty)
minsplit integer 20 [1,)[1, \infty)
minbucket integer 7 [1,)[1, \infty)
minprob numeric 0.01 [0,1][0, 1]
stump logical FALSE TRUE, FALSE -
lookahead logical FALSE TRUE, FALSE -
MIA logical FALSE TRUE, FALSE -
nresample integer 9999 [1,)[1, \infty)
tol numeric 1.490116e-08 [0,)[0, \infty)
maxsurrogate integer 0 [0,)[0, \infty)
numsurrogate logical FALSE TRUE, FALSE -
maxdepth integer Inf [0,)[0, \infty)
multiway logical FALSE TRUE, FALSE -
splittry integer 2 [0,)[0, \infty)
intersplit logical FALSE TRUE, FALSE -
majority logical FALSE TRUE, FALSE -
caseweights logical TRUE TRUE, FALSE -
saveinfo logical FALSE TRUE, FALSE -
update logical FALSE TRUE, FALSE -
splitflavour character ctree ctree, exhaustive -
maxvar integer - [1,)[1, \infty)
OOB logical FALSE TRUE, FALSE -
simplify logical TRUE TRUE, FALSE -
scale logical TRUE TRUE, FALSE -
nperm integer 1 [0,)[0, \infty)
risk character loglik loglik, misclassification -
conditional logical FALSE TRUE, FALSE -
threshold numeric 0.2 (,)(-\infty, \infty)

Custom mlr3 parameters

  • mtry:

    • This hyperparameter can alternatively be set via the added hyperparameter mtryratio as mtry = max(ceiling(mtryratio * n_features), 1). Note that mtry and mtryratio are mutually exclusive.

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifCForest

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerClassifCForest$new()

Method oob_error()

The importance scores are calculated using partykit::varimp().

The out-of-bag error, calculated using the OOB predictions from partykit.

Usage
LearnerClassifCForest$oob_error()
Returns

numeric(1).


Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerClassifCForest$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

sumny

References

Hothorn T, Zeileis A (2015). “partykit: A Modular Toolkit for Recursive Partytioning in R.” Journal of Machine Learning Research, 16(118), 3905-3909. http://jmlr.org/papers/v16/hothorn15a.html.

Hothorn T, Hornik K, Zeileis A (2006). “Unbiased Recursive Partitioning: A Conditional Inference Framework.” Journal of Computational and Graphical Statistics, 15(3), 651–674. doi:10.1198/106186006x133933, https://doi.org/10.1198/106186006x133933.

See Also

Examples

task = tsk("iris")
learner = lrn("classif.cforest", ntree = 50)
splits = partition(task)
learner$train(task, splits$train)
pred = learner$predict(task, splits$test)

Classification Conditional Inference Tree Learner

Description

Classification Partition Tree where a significance test is used to determine the univariate splits. Calls partykit::ctree() from partykit.

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.ctree")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, mlr3extralearners, partykit, sandwich, coin

Parameters

Id Type Default Levels Range
teststat character quadratic quadratic, maximum -
splitstat character quadratic quadratic, maximum -
splittest logical FALSE TRUE, FALSE -
testtype character Bonferroni Bonferroni, MonteCarlo, Univariate, Teststatistic -
nmax untyped - -
alpha numeric 0.05 [0,1][0, 1]
mincriterion numeric 0.95 [0,1][0, 1]
logmincriterion numeric - (,)(-\infty, \infty)
minsplit integer 20 [1,)[1, \infty)
minbucket integer 7 [1,)[1, \infty)
minprob numeric 0.01 [0,1][0, 1]
stump logical FALSE TRUE, FALSE -
lookahead logical FALSE TRUE, FALSE -
MIA logical FALSE TRUE, FALSE -
nresample integer 9999 [1,)[1, \infty)
tol numeric - [0,)[0, \infty)
maxsurrogate integer 0 [0,)[0, \infty)
numsurrogate logical FALSE TRUE, FALSE -
mtry integer Inf [0,)[0, \infty)
maxdepth integer Inf [0,)[0, \infty)
multiway logical FALSE TRUE, FALSE -
splittry integer 2 [0,)[0, \infty)
intersplit logical FALSE TRUE, FALSE -
majority logical FALSE TRUE, FALSE -
caseweights logical FALSE TRUE, FALSE -
maxvar integer - [1,)[1, \infty)
applyfun untyped - -
cores integer NULL (,)(-\infty, \infty)
saveinfo logical TRUE TRUE, FALSE -
update logical FALSE TRUE, FALSE -
splitflavour character ctree ctree, exhaustive -
offset untyped - -
cluster untyped - -
scores untyped - -
doFit logical TRUE TRUE, FALSE -
maxpts integer 25000 (,)(-\infty, \infty)
abseps numeric 0.001 [0,)[0, \infty)
releps numeric 0 [0,)[0, \infty)

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifCTree

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerClassifCTree$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerClassifCTree$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

sumny

References

Hothorn T, Zeileis A (2015). “partykit: A Modular Toolkit for Recursive Partytioning in R.” Journal of Machine Learning Research, 16(118), 3905-3909. http://jmlr.org/papers/v16/hothorn15a.html.

Hothorn T, Hornik K, Zeileis A (2006). “Unbiased Recursive Partitioning: A Conditional Inference Framework.” Journal of Computational and Graphical Statistics, 15(3), 651–674. doi:10.1198/106186006x133933, https://doi.org/10.1198/106186006x133933.

See Also

Examples

# Define the Learner
learner = mlr3::lrn("classif.ctree")
print(learner)

# Define a Task
task = mlr3::tsk("sonar")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Classification Decision Stump Learner

Description

Decision Stump Learner. Calls RWeka::DecisionStump() from RWeka.

Custom mlr3 parameters

  • output_debug_info:

    • original id: output-debug-info

  • do_not_check_capabilities:

    • original id: do-not-check-capabilities

  • num_decimal_places:

    • original id: num-decimal-places

  • batch_size:

    • original id: batch-size

  • Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.decision_stump")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, RWeka

Parameters

Id Type Default Levels Range
subset untyped - -
na.action untyped - -
output_debug_info logical FALSE TRUE, FALSE -
do_not_check_capabilities logical FALSE TRUE, FALSE -
num_decimal_places integer 2 [1,)[1, \infty)
batch_size integer 100 [1,)[1, \infty)
options untyped NULL -

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifDecisionStump

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerClassifDecisionStump$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerClassifDecisionStump$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

damirpolat

See Also

Examples

# Define the Learner
learner = mlr3::lrn("classif.decision_stump")
print(learner)

# Define a Task
task = mlr3::tsk("sonar")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Classification Decision Table Learner

Description

Simple Decision Table majority classifier. Calls RWeka::make_Weka_classifier() from RWeka.

Initial parameter values

  • E:

    • Has only 2 out of 4 original evaluation measures : acc and auc with acc being the default

    • Reason for change: this learner should only contain evaluation measures appropriate for classification tasks

Custom mlr3 parameters

  • output_debug_info:

    • original id: output-debug-info

  • do_not_check_capabilities:

    • original id: do-not-check-capabilities

  • num_decimal_places:

    • original id: num-decimal-places

  • batch_size:

    • original id: batch-size

  • P_best:

    • original id: P

  • D_best:

    • original id: D

  • N_best:

    • original id: N

  • S_best:

    • original id: S

  • Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.decision_table")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, RWeka

Parameters

Id Type Default Levels Range
subset untyped - -
na.action untyped - -
S character BestFirst BestFirst, GreedyStepwise -
X integer 1 (,)(-\infty, \infty)
E character acc acc, auc -
I logical - TRUE, FALSE -
R logical - TRUE, FALSE -
output_debug_info logical FALSE TRUE, FALSE -
do_not_check_capabilities logical FALSE TRUE, FALSE -
num_decimal_places integer 2 [1,)[1, \infty)
batch_size integer 100 [1,)[1, \infty)
P_best untyped - -
D_best character 1 0, 1, 2 -
N_best integer - (,)(-\infty, \infty)
S_best integer 1 (,)(-\infty, \infty)
options untyped NULL -

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifDecisionTable

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerClassifDecisionTable$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerClassifDecisionTable$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

damirpolat

References

Kohavi R (1995). “The Power of Decision Tables.” In 8th European Conference on Machine Learning, 174–189.

See Also

Examples

# Define the Learner
learner = mlr3::lrn("classif.decision_table")
print(learner)

# Define a Task
task = mlr3::tsk("sonar")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Classification MARS (Multivariate Adaptive Regression Splines) Learner

Description

This is an alternative implementation of MARS (Multivariate Adaptive Regression Splines). The classification problem is solved by 0-1 encoding of the two-class targets and setting the decision threshold to p = 0.5 during the prediction phase. MARS is trademarked and thus not used as the name. The name "earth" stands for "Enhanced Adaptive Regression Through Hinges".

Details

Methods for variance estimations are not yet implemented.

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.earth")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “integer”, “numeric”, “factor”

  • Required Packages: mlr3, mlr3extralearners, earth

Parameters

Id Type Default Levels Range
wp untyped NULL -
offset untyped NULL -
keepxy logical FALSE TRUE, FALSE -
trace character 0 0, .3, .5, 1, 2, 3, 4, 5 -
degree integer 1 [1,)[1, \infty)
penalty numeric 2 [1,)[-1, \infty)
nk untyped NULL -
thresh numeric 0.001 (,)(-\infty, \infty)
minspan numeric 0 [0,)[0, \infty)
endspan numeric 0 [0,)[0, \infty)
newvar.penalty numeric 0 [0,)[0, \infty)
fast.k integer 20 [0,)[0, \infty)
fast.beta integer 1 [0,1][0, 1]
linpreds untyped FALSE -
allowed untyped - -
pmethod character backward backward, none, exhaustive, forward, seqrep, cv -
nprune integer - [0,)[0, \infty)
nfold integer 0 [0,)[0, \infty)
ncross integer 1 [0,)[0, \infty)
stratify logical TRUE TRUE, FALSE -
varmod.method character none none, const, lm, rlm, earth, gam, power, power0, x.lm, x.rlm, ... -
varmod.exponent numeric 1 (,)(-\infty, \infty)
varmod.conv numeric 1 [0,1][0, 1]
varmod.clamp numeric 0.1 (,)(-\infty, \infty)
varmod.minspan numeric -3 (,)(-\infty, \infty)
Scale.y logical FALSE TRUE, FALSE -
Adjust.endspan numeric 2 (,)(-\infty, \infty)
Auto.linpreds logical TRUE TRUE, FALSE -
Force.weights logical FALSE TRUE, FALSE -
Use.beta.cache logical TRUE TRUE, FALSE -
Force.xtx.prune logical FALSE TRUE, FALSE -
Get.leverages logical TRUE TRUE, FALSE -
Exhaustive.tol numeric 1e-10 (,)(-\infty, \infty)

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifEarth

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerClassifEarth$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerClassifEarth$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

pkopper

References

Milborrow, Stephen, Hastie, T, Tibshirani, R (2014). “Earth: multivariate adaptive regression spline models.” R package version, 3(7).

Friedman, H J (1991). “Multivariate adaptive regression splines.” The annals of statistics, 19(1), 1–67.

See Also

Examples

# Define the Learner
learner = mlr3::lrn("classif.earth")
print(learner)

# Define a Task
task = mlr3::tsk("sonar")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Fast Nearest Neighbour Classification

Description

Fast Nearest Neighbour Classification. Calls FNN::knn() from FNN.

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.fnn")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “integer”, “numeric”

  • Required Packages: mlr3, mlr3extralearners, FNN

Parameters

Id Type Default Levels Range
k integer 1 [1,)[1, \infty)
algorithm character kd_tree kd_tree, cover_tree, brute -

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifFNN

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerClassifFNN$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerClassifFNN$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

be-marc

References

Boltz, Sylvain, Debreuve, Eric, Barlaud, Michel (2007). “kNN-based high-dimensional Kullback-Leibler distance for tracking.” In Eighth International Workshop on Image Analysis for Multimedia Interactive Services (WIAMIS'07), 16–16. IEEE.

See Also

Examples

# Define the Learner
learner = mlr3::lrn("classif.fnn")
print(learner)

# Define a Task
task = mlr3::tsk("sonar")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Classification Generalized Additive Model Learner

Description

Generalized additive models. Calls mgcv::gam() from package mgcv.

Multiclass classification is not implemented yet.

Formula

A gam formula specific to the task at hand is required for the formula parameter (see example and ?mgcv::formula.gam). Beware, if no formula is provided, a fallback formula is used that will make the gam behave like a glm (this behavior is required for the unit tests). Only features specified in the formula will be used, superseding columns with col_roles "feature" in the task.

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.gam")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “logical”, “integer”, “numeric”, “factor”

  • Required Packages: mlr3, mlr3extralearners, mgcv

Parameters

Id Type Default Levels Range
formula untyped - -
offset untyped NULL -
method character GCV.Cp GCV.Cp, GACV.Cp, REML, P-REML, ML, P-ML -
optimizer untyped c("outer", "newton") -
scale numeric 0 (,)(-\infty, \infty)
select logical FALSE TRUE, FALSE -
knots untyped NULL -
sp untyped NULL -
min.sp untyped NULL -
H untyped NULL -
gamma numeric 1 [1,)[1, \infty)
paraPen untyped NULL -
G untyped NULL -
in.out untyped NULL -
drop.unused.levels logical TRUE TRUE, FALSE -
drop.intercept logical FALSE TRUE, FALSE -
nthreads integer 1 [1,)[1, \infty)
irls.reg numeric 0 [0,)[0, \infty)
epsilon numeric 1e-07 [0,)[0, \infty)
maxit integer 200 (,)(-\infty, \infty)
trace logical FALSE TRUE, FALSE -
mgcv.tol numeric 1e-07 [0,)[0, \infty)
mgcv.half integer 15 [0,)[0, \infty)
rank.tol numeric 1.490116e-08 [0,)[0, \infty)
nlm untyped list() -
optim untyped list() -
newton untyped list() -
outerPIsteps integer 0 [0,)[0, \infty)
idLinksBases logical TRUE TRUE, FALSE -
scalePenalty logical TRUE TRUE, FALSE -
efs.lspmax integer 15 [0,)[0, \infty)
efs.tol numeric 0.1 [0,)[0, \infty)
scale.est character fletcher fletcher, pearson, deviance -
edge.correct logical FALSE TRUE, FALSE -
nei untyped - -
ncv.threads integer 1 [1,)[1, \infty)
block.size integer 1000 (,)(-\infty, \infty)
unconditional logical FALSE TRUE, FALSE -

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifGam

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerClassifGam$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerClassifGam$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

pierrecamilleri

References

Hastie, J T, Tibshirani, J R (2017). Generalized additive models. Routledge.

Wood, Simon (2012). “mgcv: Mixed GAM Computation Vehicle with GCV/AIC/REML smoothness estimation.”

Examples

# simple example
t = mlr3::tsk("spam")$filter(1:1000)
l = mlr3::lrn("classif.gam")
l$param_set$set_values(
  formula = type ~ s(george, k = 3) + s(charDollar, k = 3) + s(edu)
)
l$train(t)
l$model

Boosted Generalized Additive Classification Learner

Description

Fit a generalized additive classification model using a boosting algorithm. Calls mboost::gamboost() from mboost.

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.gamboost")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, mlr3extralearners, mboost

Parameters

Id Type Default Levels Range
baselearner character bbs bbs, bols, btree -
dfbase integer 4 (,)(-\infty, \infty)
offset numeric NULL (,)(-\infty, \infty)
family character Binomial Binomial, AdaExp, AUC, custom -
custom.family untyped - -
link character logit logit, probit -
type character adaboost glm, adaboost -
mstop integer 100 (,)(-\infty, \infty)
nu numeric 0.1 (,)(-\infty, \infty)
risk character inbag inbag, oobag, none -
oobweights untyped NULL -
trace logical FALSE TRUE, FALSE -
stopintern untyped FALSE -
na.action untyped stats::na.omit -

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifGAMBoost

Methods

Public methods

Inherited methods

Method new()

Create a LearnerClassifGAMBoost object.

Usage
LearnerClassifGAMBoost$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerClassifGAMBoost$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

be-marc

References

Bühlmann, Peter, Yu, Bin (2003). “Boosting with the L 2 loss: regression and classification.” Journal of the American Statistical Association, 98(462), 324–339.

See Also

Examples

# Define the Learner
learner = mlr3::lrn("classif.gamboost")
print(learner)

# Define a Task
task = mlr3::tsk("sonar")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Classification Gaussian Process Learner

Description

Gaussian process for classification. Calls kernlab::gausspr() from kernlab. Parameters sigma, degree, scale, offset and order are added to make tuning kpar easier. If kpar is provided then these new parameters are ignored. If none are provided then the default "automatic" is used for kpar.

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.gausspr")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “logical”, “integer”, “numeric”, “character”, “factor”, “ordered”

  • Required Packages: mlr3, mlr3extralearners, kernlab

Parameters

Id Type Default Levels Range
scaled untyped TRUE -
kernel character rbfdot rbfdot, polydot, vanilladot, tanhdot, laplacedot, besseldot, anovadot, splinedot -
sigma numeric - (,)(-\infty, \infty)
degree numeric - (,)(-\infty, \infty)
scale numeric - (,)(-\infty, \infty)
offset numeric - (,)(-\infty, \infty)
order numeric - (,)(-\infty, \infty)
kpar untyped "automatic" -
tol numeric 0.001 [0,)[0, \infty)
fit logical TRUE TRUE, FALSE -
na.action untyped na.omit -
coupler character minpair minpair, pkpd -

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifGausspr

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerClassifGausspr$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerClassifGausspr$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

RaphaelS1

References

Karatzoglou, Alexandros, Smola, Alex, Hornik, Kurt, Zeileis, Achim (2004). “kernlab-an S4 package for kernel methods in R.” Journal of statistical software, 11(9), 1–20.

See Also

Examples

# Define the Learner
learner = mlr3::lrn("classif.gausspr")
print(learner)

# Define a Task
task = mlr3::tsk("sonar")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Gradient Boosting Classification Learner

Description

Gradient Boosting Classification Algorithm. Calls gbm::gbm() from gbm.

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.gbm")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, mlr3extralearners, gbm

Parameters

Id Type Default Levels Range
distribution character bernoulli bernoulli, adaboost, huberized, multinomial -
n.trees integer 100 [1,)[1, \infty)
interaction.depth integer 1 [1,)[1, \infty)
n.minobsinnode integer 10 [1,)[1, \infty)
shrinkage numeric 0.001 [0,)[0, \infty)
bag.fraction numeric 0.5 [0,1][0, 1]
train.fraction numeric 1 [0,1][0, 1]
cv.folds integer 0 (,)(-\infty, \infty)
keep.data logical FALSE TRUE, FALSE -
verbose logical FALSE TRUE, FALSE -
n.cores integer 1 (,)(-\infty, \infty)
var.monotone untyped - -

Initial parameter values

  • keep.data is initialized to FALSE to save memory.

  • n.cores is initialized to 1 to avoid conflicts with parallelization through future.

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifGBM

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerClassifGBM$new()

Method importance()

The importance scores are extracted by gbm::relative.influence() from the model.

Usage
LearnerClassifGBM$importance()
Returns

Named numeric().


Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerClassifGBM$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

be-marc

References

Friedman, H J (2002). “Stochastic gradient boosting.” Computational statistics & data analysis, 38(4), 367–378.

See Also

Examples

# Define the Learner
learner = mlr3::lrn("classif.gbm")
print(learner)

# Define a Task
task = mlr3::tsk("sonar")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)
print(learner$importance())

# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Boosted Generalized Linear Classification Learner

Description

Fit a generalized linear classification model using a boosting algorithm. Calls mboost::glmboost() from mboost.

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.glmboost")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, mlr3extralearners, mboost

Parameters

Id Type Default Levels Range
offset numeric NULL (,)(-\infty, \infty)
family character Binomial Binomial, AdaExp, AUC, custom -
custom.family untyped - -
link character logit logit, probit -
type character adaboost glm, adaboost -
center logical TRUE TRUE, FALSE -
mstop integer 100 (,)(-\infty, \infty)
nu numeric 0.1 (,)(-\infty, \infty)
risk character inbag inbag, oobag, none -
oobweights untyped NULL -
trace logical FALSE TRUE, FALSE -
stopintern untyped FALSE -
na.action untyped stats::na.omit -
contrasts.arg untyped - -

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifGLMBoost

Methods

Public methods

Inherited methods

Method new()

Create a LearnerClassifGLMBoost object.

Usage
LearnerClassifGLMBoost$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerClassifGLMBoost$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

be-marc

References

Bühlmann, Peter, Yu, Bin (2003). “Boosting with the L 2 loss: regression and classification.” Journal of the American Statistical Association, 98(462), 324–339.

See Also

Examples

# Define the Learner
learner = mlr3::lrn("classif.glmboost")
print(learner)

# Define a Task
task = mlr3::tsk("sonar")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Classification Linear Mixed Effect Learner

Description

Generalized linear model with random effects. Calls lme4::glmer() from lme4.

Initial parameter values

  • family - Is set to stats::binomial(link = "logit").

Formula

Although most mlr3 learners don't allow to specify the formula manually, and automatically set it by valling task$formula(), this learner allows to set the formula because it's core functionality depends it. This means that it might not always use all features that are available in the task. Be aware, that this can sometimes lead to unexpected error messages, because mlr3 checks the compatibility between the learner and the task on all available features.

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.glmer")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “logical”, “integer”, “numeric”, “factor”

  • Required Packages: mlr3, lme4

Parameters

Id Type Default Levels Range
formula untyped - -
start untyped NULL -
verbose integer 0 [0,)[0, \infty)
offset untyped NULL -
contrasts untyped NULL -
optimizer character - Nelder_Mead, bobyqa, nlminbwrap, nloptwrap -
restart_edge logical FALSE TRUE, FALSE -
boundary.tol numeric 1e-05 [0,)[0, \infty)
calc.derivs logical TRUE TRUE, FALSE -
check.nobs.vs.rankZ character ignore ignore, warning, message, stop -
check.nobs.vs.nlev character stop ignore, warning, message, stop -
check.nlev.gtreq.5 character ignore ignore, warning, message, stop -
check.nlev.gtr.1 character stop ignore, warning, message, stop -
check.nobs.vs.nRE character stop ignore, warning, message, stop -
check.rankX character message+drop.cols message+drop.cols, silent.drop.cols, warn+drop.cols, stop.deficient, ignore -
check.scaleX character warning warning, stop, silent.rescale, message+rescale, warn+rescale, ignore -
check.formula.LHS character stop ignore, warning, message, stop -
family untyped "stats::binomial(link = \"logit\")" -
nAGQ integer 1 [0,)[0, \infty)
mustart untyped - -
etastart untyped - -
check.conv.grad untyped "lme4::.makeCC(\"warning\", tol = 2e-3, relTol = NULL)" -
check.conv.singular untyped "lme4::.makeCC( action = \"message\", tol = formals(lme4::isSingular)$tol)" -
check.conv.hess untyped "lme4::.makeCC(action = \"warning\", tol = 1e-6)" -
optCtrl untyped list() -
tolPwrss untyped - -
compDev logical TRUE TRUE, FALSE -
nAGQ0initStep logical TRUE TRUE, FALSE -
check.response.not.const untyped "stop" -
newparams untyped NULL -
re.form untyped NULL -
random.only logical FALSE TRUE, FALSE -
allow.new.levels logical FALSE TRUE, FALSE -
na.action untyped "stats::na.pass" -

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifGlmer

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerClassifGlmer$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerClassifGlmer$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

sebffischer

References

Bates, M D (2010). “lme4: Mixed-effects modeling with R.”

See Also

Examples

# Define the Learner and set parameter values
learner = lrn("classif.glmer",
  formula = credit_risk ~ (1 | credit_history) + job + property + telephone + savings)

# Define a Task
task = tsk("german_credit")
task$select(c("credit_history", "job", "property", "telephone", "savings"))

# Train the learner
learner$train(task)

print(learner$model)

Classification IBk Learner

Description

Instance based algorithm: K-nearest neighbours regression. Calls RWeka::IBk() from RWeka.

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.IBk")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, mlr3extralearners, RWeka

Parameters

Id Type Default Levels Range
subset untyped - -
na.action untyped - -
weight character - I, F -
K integer 1 [1,)[1, \infty)
E logical FALSE TRUE, FALSE -
W integer 0 [0,)[0, \infty)
X logical FALSE TRUE, FALSE -
A character LinearNNSearch BallTree, CoverTree, FilteredNeighbourSearch, KDTree, LinearNNSearch -
output_debug_info logical FALSE TRUE, FALSE -
do_not_check_capabilities logical FALSE TRUE, FALSE -
num_decimal_places integer 2 [1,)[1, \infty)
batch_size integer 100 [1,)[1, \infty)
options untyped NULL -

Custom mlr3 parameters

  • output_debug_info:

    • original id: output-debug-info

  • do_not_check_capabilities:

    • original id: do-not-check-capabilities

  • num_decimal_places:

    • original id: num-decimal-places

  • batch_size:

    • original id: batch-size

  • Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern

  • weight:

    • original id: I and F

  • Reason for change: original I and F params are interdependent (I can only be TRUE when F is FALSE and vice versa). The easiest way to encode this is to combine I and F into one factor param.

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifIBk

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerClassifIBk$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerClassifIBk$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

henrifnk

References

Aha, W D, Kibler, Dennis, Albert, K M (1991). “Instance-based learning algorithms.” Machine learning, 6(1), 37–66.

See Also

Examples

# Define the Learner
learner = mlr3::lrn("classif.IBk")
print(learner)

# Define a Task
task = mlr3::tsk("sonar")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Classification Imbalanced Random Forest Src Learner

Description

Imbalanced Random forest for classification between two classes. Calls randomForestSRC::imbalanced.rfsrc() from from randomForestSRC.

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.imbalanced_rfsrc")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, randomForestSRC

Parameters

Id Type Default Levels Range
ntree integer 500 [1,)[1, \infty)
method character rfq rfq, brf, standard -
block.size integer 10 [1,)[1, \infty)
fast logical FALSE TRUE, FALSE -
ratio numeric - [0,1][0, 1]
mtry integer - [1,)[1, \infty)
mtry.ratio numeric - [0,1][0, 1]
nodesize integer 15 [1,)[1, \infty)
nodedepth integer - [1,)[1, \infty)
splitrule character gini gini, auc, entropy -
nsplit integer 10 [0,)[0, \infty)
importance character FALSE FALSE, TRUE, none, permute, random, anti -
bootstrap character by.root by.root, by.node, none, by.user -
samptype character swor swor, swr -
samp untyped - -
membership logical FALSE TRUE, FALSE -
sampsize untyped - -
sampsize.ratio numeric - [0,1][0, 1]
na.action character na.omit na.omit, na.impute -
nimpute integer 1 [1,)[1, \infty)
ntime integer - [1,)[1, \infty)
cause integer - [1,)[1, \infty)
proximity character FALSE FALSE, TRUE, inbag, oob, all -
distance character FALSE FALSE, TRUE, inbag, oob, all -
forest.wt character FALSE FALSE, TRUE, inbag, oob, all -
xvar.wt untyped - -
split.wt untyped - -
forest logical TRUE TRUE, FALSE -
var.used character FALSE FALSE, all.trees, by.tree -
split.depth character FALSE FALSE, all.trees, by.tree -
seed integer - (,1](-\infty, -1]
do.trace logical FALSE TRUE, FALSE -
statistics logical FALSE TRUE, FALSE -
get.tree untyped - -
outcome character train train, test -
ptn.count integer 0 [0,)[0, \infty)
cores integer 1 [1,)[1, \infty)
save.memory logical FALSE TRUE, FALSE -
perf.type character - gmean, misclass, brier, none -
case.depth logical FALSE TRUE, FALSE -

Custom mlr3 parameters

  • mtry: This hyperparameter can alternatively be set via the added hyperparameter mtry.ratio as mtry = max(ceiling(mtry.ratio * n_features), 1). Note that mtry and mtry.ratio are mutually exclusive.

  • sampsize: This hyperparameter can alternatively be set via the added hyperparameter sampsize.ratio as sampsize = max(ceiling(sampsize.ratio * n_obs), 1). Note that sampsize and sampsize.ratio are mutually exclusive.

  • cores: This value is set as the option rf.cores during training and is set to 1 by default.

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifImbalancedRandomForestSRC

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerClassifImbalancedRandomForestSRC$new()

Method importance()

The importance scores are extracted from the slot importance.

Usage
LearnerClassifImbalancedRandomForestSRC$importance()
Returns

Named numeric().


Method selected_features()

Selected features are extracted from the model slot var.used.

Usage
LearnerClassifImbalancedRandomForestSRC$selected_features()
Returns

character().


Method oob_error()

OOB error extracted from the model slot err.rate.

Usage
LearnerClassifImbalancedRandomForestSRC$oob_error()
Returns

numeric().


Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerClassifImbalancedRandomForestSRC$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

HarutyunyanLiana

References

O’Brien R, Ishwaran H (2019). “A random forests quantile classifier for class imbalanced data.” Pattern Recognition, 90, 232–249. doi:10.1016/j.patcog.2019.01.036.

Chao C, Leo B (2004). “Using Random Forest to Learn Imbalanced Data.” University of California, Berkeley.

See Also

Examples

# Define the Learner
learner = mlr3::lrn("classif.imbalanced_rfsrc", importance = "TRUE")
print(learner)

# Define a Task
task = mlr3::tsk("sonar")
# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)
print(learner$importance())

# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Classification J48 Learner

Description

Decision tree algorithm. Calls RWeka::IBk() from RWeka.

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.J48")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, mlr3extralearners, RWeka

Parameters

Id Type Default Levels Range
subset untyped - -
na.action untyped - -
U logical FALSE TRUE, FALSE -
O logical FALSE TRUE, FALSE -
C numeric 0.25 [2.22044604925031e16,1][2.22044604925031e-16, 1]
M integer 2 [1,)[1, \infty)
R logical FALSE TRUE, FALSE -
N integer 3 [2,)[2, \infty)
B logical FALSE TRUE, FALSE -
S logical FALSE TRUE, FALSE -
L logical FALSE TRUE, FALSE -
A logical FALSE TRUE, FALSE -
J logical FALSE TRUE, FALSE -
Q integer 1 [1,)[1, \infty)
doNotMakeSplitPointActualValue logical FALSE TRUE, FALSE -
output_debug_info logical FALSE TRUE, FALSE -
do_not_check_capabilities logical FALSE TRUE, FALSE -
num_decimal_places integer 2 [1,)[1, \infty)
batch_size integer 100 [1,)[1, \infty)
options untyped NULL -

Custom mlr3 parameters

  • output_debug_info:

    • original id: output-debug-info

  • do_not_check_capabilities:

    • original id: do-not-check-capabilities

  • num_decimal_places:

    • original id: num-decimal-places

  • batch_size:

    • original id: batch-size

  • Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifJ48

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerClassifJ48$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerClassifJ48$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

henrifnk

References

Quinlan, Ross J (2014). C4. 5: programs for machine learning. Elsevier.

See Also

Examples

# Define the Learner
learner = mlr3::lrn("classif.J48")
print(learner)

# Define a Task
task = mlr3::tsk("sonar")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Classification JRip Learner

Description

Repeated Incremental Pruning to Produce Error Reduction. Calls RWeka::JRip() from RWeka.

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.JRip")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, mlr3extralearners, RWeka

Parameters

Id Type Default Levels Range
subset untyped - -
na.action untyped - -
F integer 3 [2,)[2, \infty)
N numeric 2 [0,)[0, \infty)
O integer 2 [1,)[1, \infty)
D logical FALSE TRUE, FALSE -
S integer 1 [1,)[1, \infty)
E logical FALSE TRUE, FALSE -
P logical FALSE TRUE, FALSE -
output_debug_info logical FALSE TRUE, FALSE -
do_not_check_capabilities logical FALSE TRUE, FALSE -
num_decimal_places integer 2 [1,)[1, \infty)
batch_size integer 100 [1,)[1, \infty)
options untyped NULL -

Parameter changes

  • output_debug_info:

    • original id: output-debug-info

  • do_not_check_capabilities:

    • original id: do-not-check-capabilities

  • num_decimal_places:

    • original id: num-decimal-places

  • batch_size:

    • original id: batch-size

  • Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifJRip

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerClassifJRip$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerClassifJRip$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

henrifnk

References

Cohen, W W (1995). “Fast effective rule induction.” In Machine learning proceedings 1995, 115–123. Elsevier.

See Also

Examples

# Define the Learner
learner = mlr3::lrn("classif.JRip")
print(learner)

# Define a Task
task = mlr3::tsk("sonar")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Classification KStar Learner

Description

Instance-based classifier which differs from other instance-based learners in that it uses an entropy-based distance function. Calls RWeka::make_Weka_classifier() from RWeka.

Custom mlr3 parameters

  • output_debug_info:

    • original id: output-debug-info

  • do_not_check_capabilities:

    • original id: do-not-check-capabilities

  • num_decimal_places:

    • original id: num-decimal-places

  • batch_size:

    • original id: batch-size

  • Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.kstar")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, RWeka

Parameters

Id Type Default Levels Range
subset untyped - -
na.action untyped - -
B integer 20 (,)(-\infty, \infty)
E logical - TRUE, FALSE -
M character a a, d, m, n -
output_debug_info logical FALSE TRUE, FALSE -
do_not_check_capabilities logical FALSE TRUE, FALSE -
num_decimal_places integer 2 [1,)[1, \infty)
batch_size integer 100 [1,)[1, \infty)
options untyped NULL -

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifKStar

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerClassifKStar$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerClassifKStar$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

damirpolat

References

Cleary JG, Trigg LE (1995). “K*: An Instance-based Learner Using an Entropic Distance Measure.” In 12th International Conference on Machine Learning, 108-114.

See Also

Examples

# Define the Learner
learner = mlr3::lrn("classif.kstar")
print(learner)

# Define a Task
task = mlr3::tsk("sonar")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Classification Kernlab Support Vector Machine

Description

Support vector machine for classification. Calls kernlab::ksvm() from kernlab.

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.ksvm")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “logical”, “integer”, “numeric”, “character”, “factor”, “ordered”

  • Required Packages: mlr3, mlr3extralearners, kernlab

Parameters

Id Type Default Levels Range
scaled logical TRUE TRUE, FALSE -
type character C-svc C-svc, nu-svc, C-bsvc, spoc-svc, kbb-svc -
kernel character rbfdot rbfdot, polydot, vanilladot, laplacedot, besseldot, anovadot -
C numeric 1 (,)(-\infty, \infty)
nu numeric 0.2 [0,)[0, \infty)
cache integer 40 [1,)[1, \infty)
tol numeric 0.001 [0,)[0, \infty)
shrinking logical TRUE TRUE, FALSE -
sigma numeric - [0,)[0, \infty)
degree integer - [1,)[1, \infty)
scale numeric - [0,)[0, \infty)
order integer - (,)(-\infty, \infty)
offset numeric - (,)(-\infty, \infty)
coupler character minpair minpair, pkpd -

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifKSVM

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerClassifKSVM$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerClassifKSVM$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

mboecker

References

Karatzoglou, Alexandros, Smola, Alex, Hornik, Kurt, Zeileis, Achim (2004). “kernlab-an S4 package for kernel methods in R.” Journal of statistical software, 11(9), 1–20.

See Also

Examples

# Define the Learner
learner = mlr3::lrn("classif.ksvm")
print(learner)

# Define a Task
task = mlr3::tsk("sonar")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

LiblineaR Classification Learner

Description

L2 regularized support vector classification. Calls LiblineaR::LiblineaR() from LiblineaR.

Details

Type of SVC depends on type argument:

  • 0 – L2-regularized logistic regression (primal)

  • 1 - L2-regularized L2-loss support vector classification (dual)

  • 3 - L2-regularized L1-loss support vector classification (dual)

  • 2 – L2-regularized L2-loss support vector classification (primal)

  • 4 – Support vector classification by Crammer and Singer

  • 5 - L1-regularized L2-loss support vector classification

  • 6 - L1-regularized logistic regression

  • 7 - L2-regularized logistic regression (dual)

If number of records > number of features, type = 2 is faster than type = 1 (Hsu et al. 2003).

Note that probabilistic predictions are only available for types 0, 6, and 7. The default epsilon value depends on the type parameter, see LiblineaR::LiblineaR.

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.liblinear")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “numeric”

  • Required Packages: mlr3, mlr3extralearners, LiblineaR

Parameters

Id Type Default Levels Range
type integer 0 [0,7][0, 7]
cost numeric 1 [0,)[0, \infty)
epsilon numeric - [0,)[0, \infty)
bias numeric 1 (,)(-\infty, \infty)
cross integer 0 [0,)[0, \infty)
verbose logical FALSE TRUE, FALSE -
wi untyped NULL -
findC logical FALSE TRUE, FALSE -
useInitC logical TRUE TRUE, FALSE -

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifLiblineaR

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerClassifLiblineaR$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerClassifLiblineaR$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

be-marc

References

Fan, Rong-En, Chang, Kai-Wei, Hsieh, Cho-Jui, Wang, Xiang-Rui, Lin, Chih-Jen (2008). “LIBLINEAR: A library for large linear classification.” the Journal of machine Learning research, 9, 1871–1874.

See Also

Examples

# Define the Learner
learner = mlr3::lrn("classif.liblinear")
print(learner)

# Define a Task
task = mlr3::tsk("sonar")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Classification LightGBM Learner

Description

Gradient boosting algorithm. Calls lightgbm::lightgbm() from lightgbm. The list of parameters can be found here and in the documentation of lightgbm::lgb.train().

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.lightgbm")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “logical”, “integer”, “numeric”, “factor”

  • Required Packages: mlr3, mlr3extralearners, lightgbm

Parameters

Id Type Default Levels Range
objective character - binary, multiclass, multiclassova -
eval untyped - -
verbose integer 1 (,)(-\infty, \infty)
record logical TRUE TRUE, FALSE -
eval_freq integer 1 [1,)[1, \infty)
callbacks untyped - -
reset_data logical FALSE TRUE, FALSE -
boosting character gbdt gbdt, rf, dart, goss -
linear_tree logical FALSE TRUE, FALSE -
learning_rate numeric 0.1 [0,)[0, \infty)
num_leaves integer 31 [1,131072][1, 131072]
tree_learner character serial serial, feature, data, voting -
num_threads integer 0 [0,)[0, \infty)
device_type character cpu cpu, gpu -
seed integer - (,)(-\infty, \infty)
deterministic logical FALSE TRUE, FALSE -
data_sample_strategy character bagging bagging, goss -
force_col_wise logical FALSE TRUE, FALSE -
force_row_wise logical FALSE TRUE, FALSE -
histogram_pool_size numeric -1 (,)(-\infty, \infty)
max_depth integer -1 (,)(-\infty, \infty)
min_data_in_leaf integer 20 [0,)[0, \infty)
min_sum_hessian_in_leaf numeric 0.001 [0,)[0, \infty)
bagging_fraction numeric 1 [0,1][0, 1]
pos_bagging_fraction numeric 1 [0,1][0, 1]
neg_bagging_fraction numeric 1 [0,1][0, 1]
bagging_freq integer 0 [0,)[0, \infty)
bagging_seed integer 3 (,)(-\infty, \infty)
bagging_by_query logical FALSE TRUE, FALSE -
feature_fraction numeric 1 [0,1][0, 1]
feature_fraction_bynode numeric 1 [0,1][0, 1]
feature_fraction_seed integer 2 (,)(-\infty, \infty)
extra_trees logical FALSE TRUE, FALSE -
extra_seed integer 6 (,)(-\infty, \infty)
max_delta_step numeric 0 (,)(-\infty, \infty)
lambda_l1 numeric 0 [0,)[0, \infty)
lambda_l2 numeric 0 [0,)[0, \infty)
linear_lambda numeric 0 [0,)[0, \infty)
min_gain_to_split numeric 0 [0,)[0, \infty)
drop_rate numeric 0.1 [0,1][0, 1]
max_drop integer 50 (,)(-\infty, \infty)
skip_drop numeric 0.5 [0,1][0, 1]
xgboost_dart_mode logical FALSE TRUE, FALSE -
uniform_drop logical FALSE TRUE, FALSE -
drop_seed integer 4 (,)(-\infty, \infty)
top_rate numeric 0.2 [0,1][0, 1]
other_rate numeric 0.1 [0,1][0, 1]
min_data_per_group integer 100 [1,)[1, \infty)
max_cat_threshold integer 32 [1,)[1, \infty)
cat_l2 numeric 10 [0,)[0, \infty)
cat_smooth numeric 10 [0,)[0, \infty)
max_cat_to_onehot integer 4 [1,)[1, \infty)
top_k integer 20 [1,)[1, \infty)
monotone_constraints untyped NULL -
monotone_constraints_method character basic basic, intermediate, advanced -
monotone_penalty numeric 0 [0,)[0, \infty)
feature_contri untyped NULL -
forcedsplits_filename untyped "" -
refit_decay_rate numeric 0.9 [0,1][0, 1]
cegb_tradeoff numeric 1 [0,)[0, \infty)
cegb_penalty_split numeric 0 [0,)[0, \infty)
cegb_penalty_feature_lazy untyped - -
cegb_penalty_feature_coupled untyped - -
path_smooth numeric 0 [0,)[0, \infty)
interaction_constraints untyped - -
use_quantized_grad logical TRUE TRUE, FALSE -
num_grad_quant_bins integer 4 (,)(-\infty, \infty)
quant_train_renew_leaf logical FALSE TRUE, FALSE -
stochastic_rounding logical TRUE TRUE, FALSE -
serializable logical TRUE TRUE, FALSE -
max_bin integer 255 [2,)[2, \infty)
max_bin_by_feature untyped NULL -
min_data_in_bin integer 3 [1,)[1, \infty)
bin_construct_sample_cnt integer 200000 [1,)[1, \infty)
data_random_seed integer 1 (,)(-\infty, \infty)
is_enable_sparse logical TRUE TRUE, FALSE -
enable_bundle logical TRUE TRUE, FALSE -
use_missing logical TRUE TRUE, FALSE -
zero_as_missing logical FALSE TRUE, FALSE -
feature_pre_filter logical TRUE TRUE, FALSE -
pre_partition logical FALSE TRUE, FALSE -
two_round logical FALSE TRUE, FALSE -
forcedbins_filename untyped "" -
is_unbalance logical FALSE TRUE, FALSE -
scale_pos_weight numeric 1 [0,)[0, \infty)
sigmoid numeric 1 [0,)[0, \infty)
boost_from_average logical TRUE TRUE, FALSE -
eval_at untyped 1:5 -
multi_error_top_k integer 1 [1,)[1, \infty)
auc_mu_weights untyped NULL -
num_machines integer 1 [1,)[1, \infty)
local_listen_port integer 12400 [1,)[1, \infty)
time_out integer 120 [1,)[1, \infty)
machines untyped "" -
gpu_platform_id integer -1 (,)(-\infty, \infty)
gpu_device_id integer -1 (,)(-\infty, \infty)
gpu_use_dp logical FALSE TRUE, FALSE -
num_gpu integer 1 [1,)[1, \infty)
start_iteration_predict integer 0 (,)(-\infty, \infty)
num_iteration_predict integer -1 (,)(-\infty, \infty)
pred_early_stop logical FALSE TRUE, FALSE -
pred_early_stop_freq integer 10 (,)(-\infty, \infty)
pred_early_stop_margin numeric 10 (,)(-\infty, \infty)
num_iterations integer 100 [1,)[1, \infty)
early_stopping_rounds integer - [1,)[1, \infty)
early_stopping_min_delta numeric - [0,)[0, \infty)
first_metric_only logical FALSE TRUE, FALSE -

Initial parameter values

  • num_threads:

    • Actual default: 0L

    • Initial value: 1L

    • Reason for change: Prevents accidental conflicts with future.

  • verbose:

    • Actual default: 1L

    • Initial value: -1L

    • Reason for change: Prevents accidental conflicts with mlr messaging system.

  • objective:

    • Depends on the task: if binary classification, then this parameter is set to "binary", otherwise "multiclasss" and cannot be changed.

Custom mlr3 parameters

  • num_class: This parameter is automatically inferred for multiclass tasks and does not have to be set.

Early Stopping and Validation

Early stopping can be used to find the optimal number of boosting rounds. Set early_stopping_rounds to an integer value to monitor the performance of the model on the validation set while training. For information on how to configure the validation set, see the Validation section of mlr3::Learner. The internal validation measure can be set the eval parameter which should be a list of mlr3::Measures, functions, or strings for the internal lightgbm measures. If first_metric_only = FALSE (default), the learner stops when any metric fails to improve.

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifLightGBM

Active bindings

internal_valid_scores

The last observation of the validation scores for all metrics. Extracted from model$evaluation_log

internal_tuned_values

Returns the early stopped iterations if early_stopping_rounds was set during training.

validate

How to construct the internal validation data. This parameter can be either NULL, a ratio, "test", or "predefined".

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerClassifLightGBM$new()

Method importance()

The importance scores are extracted from lbg.importance.

Usage
LearnerClassifLightGBM$importance()
Returns

Named numeric().


Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerClassifLightGBM$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

kapsner

References

Ke, Guolin, Meng, Qi, Finley, Thomas, Wang, Taifeng, Chen, Wei, Ma, Weidong, Ye, Qiwei, Liu, Tie-Yan (2017). “Lightgbm: A highly efficient gradient boosting decision tree.” Advances in neural information processing systems, 30.

See Also

Examples

# Define the Learner
learner = mlr3::lrn("classif.lightgbm")
print(learner)

# Define a Task
task = mlr3::tsk("sonar")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)
print(learner$importance())

# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Classification Logistic Model Trees Learner

Description

Classification tree with logistic regression models at the leaves. Calls RWeka::LMT() from RWeka.

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.LMT")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, mlr3extralearners, RWeka

Parameters

Id Type Default Levels Range
subset untyped - -
na.action untyped - -
B logical FALSE TRUE, FALSE -
R logical FALSE TRUE, FALSE -
C logical FALSE TRUE, FALSE -
P logical FALSE TRUE, FALSE -
I integer - [1,)[1, \infty)
M integer 15 [1,)[1, \infty)
W numeric 0 [0,1][0, 1]
A logical FALSE TRUE, FALSE -
doNotMakeSplitPointActualValue logical FALSE TRUE, FALSE -
output_debug_info logical FALSE TRUE, FALSE -
do_not_check_capabilities logical FALSE TRUE, FALSE -
num_decimal_places integer 2 [1,)[1, \infty)
batch_size integer 100 [1,)[1, \infty)
options untyped NULL -

Custom mlr3 parameters

  • output_debug_info:

    • original id: output-debug-info

  • do_not_check_capabilities:

    • original id: do-not-check-capabilities

  • num_decimal_places:

    • original id: num-decimal-places

  • batch_size:

    • original id: batch-size

  • Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifLMT

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerClassifLMT$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerClassifLMT$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

henrifnk

References

Landwehr, Niels, Hall, Mark, Frank, Eibe (2005). “Logistic model trees.” Machine learning, 59(1), 161–205.

See Also

Examples

# Define the Learner
learner = mlr3::lrn("classif.LMT")
print(learner)

# Define a Task
task = mlr3::tsk("sonar")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Classification Logistic Regression Learner

Description

Multinomial Logistic Regression model with a ridge estimator. Calls RWeka::Logistic() from RWeka.

Custom mlr3 parameters

  • output_debug_info:

    • original id: output-debug-info

  • do_not_check_capabilities:

    • original id: do-not-check-capabilities

  • num_decimal_places:

    • original id: num-decimal-places

  • batch_size:

    • original id: batch-size

  • Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.logistic")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, RWeka

Parameters

Id Type Default Levels Range
subset untyped - -
na.action untyped - -
C logical FALSE TRUE, FALSE -
R numeric - (,)(-\infty, \infty)
M integer -1 (,)(-\infty, \infty)
output_debug_info logical FALSE TRUE, FALSE -
do_not_check_capabilities logical FALSE TRUE, FALSE -
num_decimal_places integer 2 [1,)[1, \infty)
batch_size integer 100 [1,)[1, \infty)
options untyped NULL -

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifLogistic

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerClassifLogistic$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerClassifLogistic$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

damirpolat

References

le Cessie, S., van Houwelingen, J.C. (1992). “Ridge Estimators in Logistic Regression.” Applied Statistics, 41(1), 191-201.

See Also

Examples

# Define the Learner
learner = mlr3::lrn("classif.logistic")
print(learner)

# Define a Task
task = mlr3::tsk("sonar")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Classification Least Squares Support Vector Machine Learner

Description

Least squares support vector machine for classification. Calls kernlab::lssvm() from kernlab. Parameters sigma, degree, scale, offset, order, length, lambda, and normalized are added to make tuning kpar easier. If kpar is provided then these new parameters are ignored. If none are provided then the default "automatic" is used for kpar.

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.lssvm")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”

  • Feature Types: “integer”, “numeric”

  • Required Packages: mlr3, mlr3extralearners, kernlab

Parameters

Id Type Default Levels Range
scaled untyped TRUE -
kernel character rbfdot rbfdot, polydot, vanilladot, tanhdot, laplacedot, besseldot, anovadot, splinedot, stringdot -
sigma numeric - (,)(-\infty, \infty)
degree numeric - (,)(-\infty, \infty)
scale numeric - (,)(-\infty, \infty)
offset numeric - (,)(-\infty, \infty)
order numeric - (,)(-\infty, \infty)
length integer - [0,)[0, \infty)
lambda numeric - (,)(-\infty, \infty)
normalized logical - TRUE, FALSE -
kpar untyped "automatic" -
tau numeric 0.01 (,)(-\infty, \infty)
reduced logical TRUE TRUE, FALSE -
rank integer - (,)(-\infty, \infty)
delta integer 40 (,)(-\infty, \infty)
tol numeric 1e-04 (,)(-\infty, \infty)
fit logical TRUE TRUE, FALSE -
na.action untyped na.omit -
coupler character minpair minpair, pkpd -

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifLSSVM

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerClassifLSSVM$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerClassifLSSVM$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

RaphaelS1

References

Karatzoglou, Alexandros, Smola, Alex, Hornik, Kurt, Zeileis, Achim (2004). “kernlab-an S4 package for kernel methods in R.” Journal of statistical software, 11(9), 1–20.

See Also

Examples

# Define the Learner
learner = mlr3::lrn("classif.lssvm")
print(learner)

# Define a Task
task = mlr3::tsk("sonar")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Classification Model-based Recursive Partitioning Learner

Description

Model-based recursive partitioning algorithm. Calls partykit::mob() from mob.

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.mob")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “logical”, “integer”, “numeric”, “character”, “factor”, “ordered”

  • Required Packages: mlr3, mlr3extralearners, partykit, sandwich, coin

Parameters

Id Type Default Levels Range
rhs untyped - -
fit untyped - -
offset untyped - -
cluster untyped - -
alpha numeric 0.05 [0,1][0, 1]
bonferroni logical TRUE TRUE, FALSE -
minsize integer - [1,)[1, \infty)
minsplit integer - [1,)[1, \infty)
minbucket integer - [1,)[1, \infty)
maxdepth integer Inf [0,)[0, \infty)
mtry integer Inf [0,)[0, \infty)
trim numeric 0.1 [0,)[0, \infty)
breakties logical FALSE TRUE, FALSE -
parm untyped - -
dfsplit integer - [0,)[0, \infty)
prune untyped - -
restart logical TRUE TRUE, FALSE -
verbose logical FALSE TRUE, FALSE -
caseweights logical TRUE TRUE, FALSE -
ytype character vector vector, matrix, data.frame -
xtype character matrix vector, matrix, data.frame -
terminal untyped "object" -
inner untyped "object" -
model logical TRUE TRUE, FALSE -
numsplit character left left, center -
catsplit character binary binary, multiway -
vcov character opg opg, info, sandwich -
ordinal character chisq chisq, max, L2 -
nrep integer 10000 [0,)[0, \infty)
applyfun untyped - -
cores integer NULL (,)(-\infty, \infty)
additional untyped - -
predict_fun untyped - -

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifMob

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerClassifMob$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerClassifMob$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

sumny

References

Hothorn T, Zeileis A (2015). “partykit: A Modular Toolkit for Recursive Partytioning in R.” Journal of Machine Learning Research, 16(118), 3905-3909. http://jmlr.org/papers/v16/hothorn15a.html.

Hothorn T, Hornik K, Zeileis A (2006). “Unbiased Recursive Partitioning: A Conditional Inference Framework.” Journal of Computational and Graphical Statistics, 15(3), 651–674. doi:10.1198/106186006x133933, https://doi.org/10.1198/106186006x133933.

See Also

Examples

library(mlr3)
logit_ = function(y, x, start = NULL, weights = NULL, offset = NULL, ...) {
  glm(y ~ 1, family = binomial, start = start, ...)
}
learner = LearnerClassifMob$new()
learner$param_set$values$rhs = "."
learner$param_set$values$fit = logit_
learner$param_set$values$additional = list(maxit = 100)
learner$feature_types = c("logical", "integer", "numeric", "factor", "ordered")
learner$properties = c("twoclass", "weights")

predict_fun = function(object, newdata, task, .type) {
  p = unname(predict(object, newdata = newdata, type = "response"))
  levs = task$levels(task$target_names)[[1L]]

  if (.type == "response") {
    ifelse(p < 0.5, levs[1L], levs[2L])
  } else {
    prob_vector_to_matrix(p, levs)
  }
}
task = tsk("breast_cancer")
learner$param_set$values$predict_fun = predict_fun
ids = partition(task)
learner$train(task, row_ids = ids$train)
learner$predict(task, row_ids = ids$test)

Classification MultilayerPerceptron Learner

Description

Classifier that uses backpropagation to learn a multi-layer perceptron. Calls RWeka::make_Weka_classifier() from RWeka.

Custom mlr3 parameters

  • output_debug_info:

    • original id: output-debug-info

  • do_not_check_capabilities:

    • original id: do-not-check-capabilities

  • num_decimal_places:

    • original id: num-decimal-places

  • batch_size:

    • original id: batch-size

  • Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern

  • G removed:

    • GUI will be opened

  • Reason for change: The parameter is removed because we don't want to launch GUI.

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.multilayer_perceptron")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, RWeka

Parameters

Id Type Default Levels Range
subset untyped - -
na.action untyped - -
L numeric 0.3 [0,1][0, 1]
M numeric 0.2 [0,1][0, 1]
N integer 500 [1,)[1, \infty)
V numeric 0 [0,100][0, 100]
S integer 0 [0,)[0, \infty)
E integer 20 [1,)[1, \infty)
A logical FALSE TRUE, FALSE -
B logical FALSE TRUE, FALSE -
H untyped "a" -
C logical FALSE TRUE, FALSE -
I logical FALSE TRUE, FALSE -
R logical FALSE TRUE, FALSE -
D logical FALSE TRUE, FALSE -
output_debug_info logical FALSE TRUE, FALSE -
do_not_check_capabilities logical FALSE TRUE, FALSE -
num_decimal_places integer 2 [1,)[1, \infty)
batch_size integer 100 [1,)[1, \infty)
options untyped NULL -

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifMultilayerPerceptron

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerClassifMultilayerPerceptron$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerClassifMultilayerPerceptron$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

damirpolat

See Also

Examples

# Define the Learner
learner = mlr3::lrn("classif.multilayer_perceptron")
print(learner)

# Define a Task
task = mlr3::tsk("sonar")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Classification Multinomial Naive Bayes Learner From Weka

Description

Multinomial Naive Bayes classifier. Calls RWeka::make_Weka_classifier() from RWeka.

Custom mlr3 parameters

  • output_debug_info:

    • original id: output-debug-info

  • do_not_check_capabilities:

    • original id: do-not-check-capabilities

  • num_decimal_places:

    • original id: num-decimal-places

  • batch_size:

    • original id: batch-size

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.naive_bayes_multinomial")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “integer”, “numeric”

  • Required Packages: mlr3, RWeka

Parameters

Id Type Default Levels Range
subset untyped - -
na.action untyped - -
output_debug_info logical FALSE TRUE, FALSE -
do_not_check_capabilities logical FALSE TRUE, FALSE -
num_decimal_places integer 2 [1,)[1, \infty)
batch_size integer 100 [1,)[1, \infty)
options untyped NULL -

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifNaiveBayesMultinomial

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerClassifNaiveBayesMultinomial$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerClassifNaiveBayesMultinomial$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

damirpolat

References

Mccallum A, Nigam K (1998). “A Comparison of Event Models for Naive Bayes Text Classification.” In AAAI-98 Workshop on 'Learning for Text Categorization'.

See Also

Examples

# Define the Learner
learner = mlr3::lrn("classif.naive_bayes_multinomial")
print(learner)

# Define a Task
task = mlr3::tsk("sonar")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Classification Naive Bayes Learner From Weka

Description

Naive Bayes Classifier Using Estimator Classes. Calls RWeka::make_Weka_classifier() from RWeka.

Custom mlr3 parameters

  • output_debug_info:

    • original id: output-debug-info

  • do_not_check_capabilities:

    • original id: do-not-check-capabilities

  • num_decimal_places:

    • original id: num-decimal-places

  • batch_size:

    • original id: batch-size

  • Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.naive_bayes_weka")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, RWeka

Parameters

Id Type Default Levels Range
subset untyped - -
na.action untyped - -
K logical FALSE TRUE, FALSE -
D logical FALSE TRUE, FALSE -
O logical FALSE TRUE, FALSE -
output_debug_info logical FALSE TRUE, FALSE -
do_not_check_capabilities logical FALSE TRUE, FALSE -
num_decimal_places integer 2 [1,)[1, \infty)
batch_size integer 100 [1,)[1, \infty)
options untyped NULL -

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifNaiveBayesWeka

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerClassifNaiveBayesWeka$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerClassifNaiveBayesWeka$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

damirpolat

References

John GH, Langley P (1995). “Estimating Continuous Distributions in Bayesian Classifiers.” In Eleventh Conference on Uncertainty in Artificial Intelligence, 338-345.

See Also

Examples

# Define the Learner
learner = mlr3::lrn("classif.naive_bayes_weka")
print(learner)

# Define a Task
task = mlr3::tsk("sonar")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Classification OneR Learner

Description

One Rule classification algorithm that yields an extremely simple model. Calls RWeka::OneR() from RWeka.

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.OneR")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, mlr3extralearners, RWeka

Parameters

Id Type Default Levels Range
subset untyped - -
na.action untyped - -
B integer 6 [1,)[1, \infty)
output_debug_info logical FALSE TRUE, FALSE -
do_not_check_capabilities logical FALSE TRUE, FALSE -
num_decimal_places integer 2 [1,)[1, \infty)
batch_size integer 100 [1,)[1, \infty)
options untyped NULL -

Custom mlr3 parameters

  • output_debug_info:

    • original id: output-debug-info

  • do_not_check_capabilities:

    • original id: do-not-check-capabilities

  • num_decimal_places:

    • original id: num-decimal-places

  • batch_size:

    • original id: batch-size

  • Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifOneR

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerClassifOneR$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerClassifOneR$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

henrifnk

References

Holte, C R (1993). “Very simple classification rules perform well on most commonly used datasets.” Machine learning, 11(1), 63–90.

See Also

Examples

# Define the Learner
learner = mlr3::lrn("classif.OneR")
print(learner)

# Define a Task
task = mlr3::tsk("sonar")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Classification PART Learner

Description

Regression partition tree. Calls RWeka::PART() from RWeka.

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.PART")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, mlr3extralearners, RWeka

Parameters

Id Type Default Levels Range
subset untyped - -
na.action untyped - -
C numeric 0.25 [2.22044604925031e16,1][2.22044604925031e-16, 1]
M integer 2 [1,)[1, \infty)
R logical FALSE TRUE, FALSE -
N integer 3 [1,)[1, \infty)
B logical FALSE TRUE, FALSE -
U logical FALSE TRUE, FALSE -
J logical FALSE TRUE, FALSE -
Q integer 1 [1,)[1, \infty)
doNotMakeSplitPointActualValue logical FALSE TRUE, FALSE -
output_debug_info logical FALSE TRUE, FALSE -
do_not_check_capabilities logical FALSE TRUE, FALSE -
num_decimal_places integer 2 [1,)[1, \infty)
batch_size integer 100 [1,)[1, \infty)
options untyped NULL -

Custom mlr3 parameters

  • output_debug_info:

    • original id: output-debug-info

  • do_not_check_capabilities:

    • original id: do-not-check-capabilities

  • num_decimal_places:

    • original id: num-decimal-places

  • batch_size:

    • original id: batch-size

  • Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifPART

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerClassifPART$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerClassifPART$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

henrifnk

References

Frank, Eibe, Witten, H I (1998). “Generating accurate rule sets without global optimization.”

See Also

Examples

# Define the Learner
learner = mlr3::lrn("classif.PART")
print(learner)

# Define a Task
task = mlr3::tsk("sonar")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Classification Priority Lasso Learner

Description

Patient outcome prediction based on multi-omics data taking practitioners’ preferences into account. Calls prioritylasso::prioritylasso() from prioritylasso.

Initial parameter values

  • family is set to "binomial" and canno be changed

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.priority_lasso")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “logical”, “integer”, “numeric”

  • Required Packages: mlr3, prioritylasso

Parameters

Id Type Default Levels Range
blocks untyped - -
type.measure character - class, auc -
max.coef untyped NULL -
block1.penalization logical TRUE TRUE, FALSE -
lambda.type character lambda.min lambda.min, lambda.1se -
standardize logical TRUE TRUE, FALSE -
nfolds integer 5 [1,)[1, \infty)
foldid untyped NULL -
cvoffset logical FALSE TRUE, FALSE -
cvoffsetnfolds integer 10 [1,)[1, \infty)
return.x logical TRUE TRUE, FALSE -
handle.missingtestdata character - none, omit.prediction, set.zero, impute.block -
include.allintercepts logical FALSE TRUE, FALSE -
use.blocks untyped "all" -
alignment character lambda lambda, fraction -
alpha numeric 1 [0,1][0, 1]
big numeric 9.9e+35 (,)(-\infty, \infty)
devmax numeric 0.999 [0,1][0, 1]
dfmax integer - [0,)[0, \infty)
eps numeric 1e-06 [0,1][0, 1]
epsnr numeric 1e-08 [0,1][0, 1]
exclude untyped - -
exmx numeric 250 (,)(-\infty, \infty)
fdev numeric 1e-05 [0,1][0, 1]
gamma untyped - -
grouped logical TRUE TRUE, FALSE -
intercept logical TRUE TRUE, FALSE -
keep logical FALSE TRUE, FALSE -
lambda untyped - -
lambda.min.ratio numeric - [0,1][0, 1]
lower.limits untyped -Inf -
maxit integer 100000 [1,)[1, \infty)
mnlam integer 5 [1,)[1, \infty)
mxit integer 100 [1,)[1, \infty)
mxitnr integer 25 [1,)[1, \infty)
nlambda integer 100 [1,)[1, \infty)
offset untyped NULL -
parallel logical FALSE TRUE, FALSE -
penalty.factor untyped - -
pmax integer - [0,)[0, \infty)
pmin numeric 1e-09 [0,1][0, 1]
prec numeric 1e-10 (,)(-\infty, \infty)
predict.gamma numeric gamma.1se (,)(-\infty, \infty)
relax logical FALSE TRUE, FALSE -
s numeric lambda.1se [0,1][0, 1]
standardize.response logical FALSE TRUE, FALSE -
thresh numeric 1e-07 [0,)[0, \infty)
trace.it integer 0 [0,1][0, 1]
type.gaussian character - covariance, naive -
type.logistic character Newton Newton, modified.Newton -
type.multinomial character ungrouped ungrouped, grouped -
upper.limits untyped Inf -

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifPriorityLasso

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerClassifPriorityLasso$new()

Method selected_features()

Selected features, i.e. those where the coefficient is non-zero.

Usage
LearnerClassifPriorityLasso$selected_features()
Returns

character().


Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerClassifPriorityLasso$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

HarutyunyanLiana

References

Simon K, Vindi J, Roman H, Tobias H, Anne-Laure B (2018). “Priority-Lasso: a simple hierarchical approach to the prediction of clinical outcome using multi-omics data.” BMC Bioinformatics, 19. doi:10.1186/s12859-018-2344-6.

See Also

Examples

# Define the Learner and set parameter values
learner = lrn("classif.priority_lasso", type.measure = "auc",
  blocks = list(bp1 = 1:4, bp2 = 5:9, bp3 = 10:28, bp4 = 29:1028))
print(learner)

# Define a Task
task = mlr3::as_task_classif(prioritylasso::pl_data, target = "pl_out")

# Train the learner
learner$train(task)

# print the model
print(learner$model)

Classification Random Forest Learner from Weka

Description

Class for constructing a random forest. Calls RWeka::make_Weka_classifier() from RWeka.

Custom mlr3 parameters

  • output_debug_info:

    • original id: output-debug-info

  • do_not_check_capabilities:

    • original id: do-not-check-capabilities

  • num_decimal_places:

    • original id: num-decimal-places

  • batch_size:

    • original id: batch-size

  • store_out_of_bag_predictions:

    • original id: store-out-of-bag-predictions

  • output_out_of_bag_complexity_statistics:

    • original id: output-out-of-bag-complexity-statistics

  • num_slots:

    • original id: num-slots

  • Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern

  • attribute-importance removed:

    • Compute and output attribute importance (mean impurity decrease method)

  • Reason for change: The parameter is removed because it's unclear how to actually use it.

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.random_forest_weka")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, RWeka

Parameters

Id Type Default Levels Range
subset untyped - -
na.action untyped - -
P numeric 100 [0,100][0, 100]
O logical FALSE TRUE, FALSE -
store_out_of_bag_predictions logical FALSE TRUE, FALSE -
output_out_of_bag_complexity_statistics logical FALSE TRUE, FALSE -
print logical FALSE TRUE, FALSE -
I integer 100 [1,)[1, \infty)
num_slots integer 1 (,)(-\infty, \infty)
K integer 0 (,)(-\infty, \infty)
M integer 1 [1,)[1, \infty)
V numeric 0.001 (,)(-\infty, \infty)
S integer 1 (,)(-\infty, \infty)
depth integer 0 [0,)[0, \infty)
N integer 0 (,)(-\infty, \infty)
U logical FALSE TRUE, FALSE -
B logical FALSE TRUE, FALSE -
output_debug_info logical FALSE TRUE, FALSE -
do_not_check_capabilities logical FALSE TRUE, FALSE -
num_decimal_places integer 2 [1,)[1, \infty)
batch_size integer 100 [1,)[1, \infty)
options untyped NULL -

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifRandomForestWeka

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerClassifRandomForestWeka$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerClassifRandomForestWeka$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

damirpolat

References

Breiman, Leo (2001). “Random Forests.” Machine Learning, 45(1), 5–32. ISSN 1573-0565, doi:10.1023/A:1010933404324.

See Also

Examples

# Define the Learner
learner = mlr3::lrn("classif.random_forest_weka")
print(learner)

# Define a Task
task = mlr3::tsk("sonar")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Classification Random Tree Learner

Description

Tree that considers K randomly chosen attributes at each node. Calls RWeka::make_Weka_classifier() from RWeka.

Custom mlr3 parameters

  • output_debug_info:

    • original id: output-debug-info

  • do_not_check_capabilities:

    • original id: do-not-check-capabilities

  • num_decimal_places:

    • original id: num-decimal-places

  • batch_size:

    • original id: batch-size

  • Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.random_tree")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, RWeka

Parameters

Id Type Default Levels Range
subset untyped - -
na.action untyped - -
K integer 0 [0,)[0, \infty)
M integer 1 [1,)[1, \infty)
V numeric 0.001 (,)(-\infty, \infty)
S integer 1 (,)(-\infty, \infty)
depth integer 0 [0,)[0, \infty)
N integer 0 [0,)[0, \infty)
U logical FALSE TRUE, FALSE -
B logical FALSE TRUE, FALSE -
output_debug_info logical FALSE TRUE, FALSE -
do_not_check_capabilities logical FALSE TRUE, FALSE -
num_decimal_places integer 2 [1,)[1, \infty)
batch_size integer 100 [1,)[1, \infty)
options untyped NULL -

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifRandomTree

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerClassifRandomTree$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerClassifRandomTree$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

damirpolat

See Also

Examples

# Define the Learner
learner = mlr3::lrn("classif.random_tree")
print(learner)

# Define a Task
task = mlr3::tsk("sonar")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Classification Random Forest Learner

Description

Random forest for classification. Calls randomForest::randomForest() from randomForest.

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.randomForest")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, mlr3extralearners, randomForest

Parameters

Id Type Default Levels Range
ntree integer 500 [1,)[1, \infty)
mtry integer - [1,)[1, \infty)
replace logical TRUE TRUE, FALSE -
classwt untyped NULL -
cutoff untyped - -
strata untyped - -
sampsize untyped - -
nodesize integer 1 [1,)[1, \infty)
maxnodes integer - [1,)[1, \infty)
importance character FALSE accuracy, gini, none -
localImp logical FALSE TRUE, FALSE -
proximity logical FALSE TRUE, FALSE -
oob.prox logical - TRUE, FALSE -
norm.votes logical TRUE TRUE, FALSE -
do.trace logical FALSE TRUE, FALSE -
keep.forest logical TRUE TRUE, FALSE -
keep.inbag logical FALSE TRUE, FALSE -
predict.all logical FALSE TRUE, FALSE -
nodes logical FALSE TRUE, FALSE -

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifRandomForest

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerClassifRandomForest$new()

Method importance()

The importance scores are extracted from the slot importance. Parameter 'importance' must be set to either "accuracy" or "gini".

Usage
LearnerClassifRandomForest$importance()
Returns

Named numeric().


Method oob_error()

OOB errors are extracted from the model slot err.rate.

Usage
LearnerClassifRandomForest$oob_error()
Returns

numeric(1).


Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerClassifRandomForest$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

pat-s

References

Breiman, Leo (2001). “Random Forests.” Machine Learning, 45(1), 5–32. ISSN 1573-0565, doi:10.1023/A:1010933404324.

See Also

Examples

# Define the Learner
learner = mlr3::lrn("classif.randomForest", importance = "accuracy")
print(learner)

# Define a Task
task = mlr3::tsk("sonar")
# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)
print(learner$importance())

# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Classification Decision Tree Learner

Description

Fast decision tree learner. Calls RWeka::make_Weka_classifier() from RWeka.

Custom mlr3 parameters

  • output_debug_info:

    • original id: output-debug-info

  • do_not_check_capabilities:

    • original id: do-not-check-capabilities

  • num_decimal_places:

    • original id: num-decimal-places

  • batch_size:

    • original id: batch-size

  • Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.reptree")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, RWeka

Parameters

Id Type Default Levels Range
subset untyped - -
na.action untyped - -
M integer 2 (,)(-\infty, \infty)
V numeric 0.001 (,)(-\infty, \infty)
N integer 3 (,)(-\infty, \infty)
S integer 1 (,)(-\infty, \infty)
P logical - TRUE, FALSE -
L integer -1 (,)(-\infty, \infty)
I integer 0 (,)(-\infty, \infty)
R logical FALSE TRUE, FALSE -
output_debug_info logical FALSE TRUE, FALSE -
do_not_check_capabilities logical FALSE TRUE, FALSE -
num_decimal_places integer 2 [1,)[1, \infty)
batch_size integer 100 [1,)[1, \infty)
options untyped NULL -

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifREPTree

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerClassifREPTree$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerClassifREPTree$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

damirpolat

See Also

Examples

# Define the Learner
learner = mlr3::lrn("classif.reptree")
print(learner)

# Define a Task
task = mlr3::tsk("sonar")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Classification Random Forest SRC Learner

Description

Random forest for classification. Calls randomForestSRC::rfsrc() from randomForestSRC.

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.rfsrc")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “logical”, “integer”, “numeric”, “factor”

  • Required Packages: mlr3, mlr3extralearners, randomForestSRC

Parameters

Id Type Default Levels Range
ntree integer 500 [1,)[1, \infty)
mtry integer - [1,)[1, \infty)
mtry.ratio numeric - [0,1][0, 1]
nodesize integer 15 [1,)[1, \infty)
nodedepth integer - [1,)[1, \infty)
splitrule character gini gini, auc, entropy -
nsplit integer 10 [0,)[0, \infty)
importance character FALSE FALSE, TRUE, none, permute, random, anti -
block.size integer 10 [1,)[1, \infty)
bootstrap character by.root by.root, by.node, none, by.user -
samptype character swor swor, swr -
samp untyped - -
membership logical FALSE TRUE, FALSE -
sampsize untyped - -
sampsize.ratio numeric - [0,1][0, 1]
na.action character na.omit na.omit, na.impute -
nimpute integer 1 [1,)[1, \infty)
ntime integer - [1,)[1, \infty)
cause integer - [1,)[1, \infty)
proximity character FALSE FALSE, TRUE, inbag, oob, all -
distance character FALSE FALSE, TRUE, inbag, oob, all -
forest.wt character FALSE FALSE, TRUE, inbag, oob, all -
xvar.wt untyped - -
split.wt untyped - -
forest logical TRUE TRUE, FALSE -
var.used character FALSE FALSE, all.trees, by.tree -
split.depth character FALSE FALSE, all.trees, by.tree -
seed integer - (,1](-\infty, -1]
do.trace logical FALSE TRUE, FALSE -
statistics logical FALSE TRUE, FALSE -
get.tree untyped - -
outcome character train train, test -
ptn.count integer 0 [0,)[0, \infty)
cores integer 1 [1,)[1, \infty)
save.memory logical FALSE TRUE, FALSE -
perf.type character - gmean, misclass, brier, none -
case.depth logical FALSE TRUE, FALSE -

Custom mlr3 parameters

  • mtry: This hyperparameter can alternatively be set via the added hyperparameter mtry.ratio as mtry = max(ceiling(mtry.ratio * n_features), 1). Note that mtry and mtry.ratio are mutually exclusive.

  • sampsize: This hyperparameter can alternatively be set via the added hyperparameter sampsize.ratio as sampsize = max(ceiling(sampsize.ratio * n_obs), 1). Note that sampsize and sampsize.ratio are mutually exclusive.

  • cores: This value is set as the option rf.cores during training and is set to 1 by default.

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifRandomForestSRC

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerClassifRandomForestSRC$new()

Method importance()

The importance scores are extracted from the model slot importance, returned for 'all'.

Usage
LearnerClassifRandomForestSRC$importance()
Returns

Named numeric().


Method selected_features()

Selected features are extracted from the model slot var.used.

Usage
LearnerClassifRandomForestSRC$selected_features()
Returns

character().


Method oob_error()

OOB error extracted from the model slot err.rate.

Usage
LearnerClassifRandomForestSRC$oob_error()
Returns

numeric().


Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerClassifRandomForestSRC$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

RaphaelS1

References

Breiman, Leo (2001). “Random Forests.” Machine Learning, 45(1), 5–32. ISSN 1573-0565, doi:10.1023/A:1010933404324.

See Also

Examples

# Define the Learner
learner = mlr3::lrn("classif.rfsrc", importance = "TRUE")
print(learner)

# Define a Task
task = mlr3::tsk("sonar")
# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)
print(learner$importance())

# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Classification Random Planted Forest Learner

Description

Random Planted Forest: A directly interpretable tree ensemble.

Calls randomPlantedForest::rpf() from 'randomPlantedForest'.

Initial parameter values

  • loss:

    • Actual default: "L2".

    • Initial value: "exponential".

    • Reason for change: Using "L2" (or "L1") loss does not guarantee predictions are valid probabilities and more akin to the linear predictor of a GLM.

Custom mlr3 parameters

  • max_interaction:

    • This hyperparameter can alternatively be set via max_interaction_ratio as max_interaction = max(ceiling(max_interaction_ratio * n_features), 1). The parameter max_interaction_limit can optionally be set as an upper bound, such that max_interaction_ratio * min(n_features, max_interaction_limit) is used instead. This is analogous to mtry.ratio in classif.ranger, with max_interaction_limit as an additional constraint. The parameter max_interaction_limit is initialized to Inf.

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.rpf")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, randomPlantedForest

Parameters

Id Type Default Levels Range
max_interaction integer 1 [0,)[0, \infty)
max_interaction_ratio numeric - [0,1][0, 1]
max_interaction_limit integer - [1,)[1, \infty)
ntrees integer 50 [1,)[1, \infty)
splits integer 30 [1,)[1, \infty)
split_try integer 10 [1,)[1, \infty)
t_try numeric 0.4 [0,1][0, 1]
loss character L2 L1, L2, logit, exponential -
delta numeric 1 [0,1][0, 1]
epsilon numeric 0.1 [0,1][0, 1]
deterministic logical FALSE TRUE, FALSE -
nthreads integer 1 [1,)[1, \infty)
cv logical FALSE TRUE, FALSE -
purify logical FALSE TRUE, FALSE -

Installation

Package 'randomPlantedForest' is not on CRAN and has to be installed from GitHub via remotes::install_github("PlantedML/randomPlantedForest").

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifRandomPlantedForest

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerClassifRandomPlantedForest$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerClassifRandomPlantedForest$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

jemus42

References

Hiabu, Munir, Mammen, Enno, Meyer, T. J (2023). “Random Planted Forest: a directly interpretable tree ensemble.” arXiv preprint arXiv:2012.14563. doi:10.48550/ARXIV.2012.14563.

See Also

Examples

# Define the Learner
learner = mlr3::lrn("classif.rpf")
print(learner)

# Define a Task
task = mlr3::tsk("sonar")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Classification Stochastic Gradient Descent Learner

Description

Stochastic Gradient Descent for learning various linear models. Calls RWeka::make_Weka_classifier() from RWeka.

Initial parameter values

  • F:

    • Has only 2 out of 5 original loss functions: 0 = hinge loss (SVM) and 1 = log loss (logistic regression) with 0 (hinge loss) still being the default

    • Reason for change: this learner should only contain loss functions appropriate for classification tasks

Custom mlr3 parameters

  • output_debug_info:

    • original id: output-debug-info

  • do_not_check_capabilities:

    • original id: do-not-check-capabilities

  • num_decimal_places:

    • original id: num-decimal-places

  • batch_size:

    • original id: batch-size

  • Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.sgd")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, RWeka

Parameters

Id Type Default Levels Range
subset untyped - -
na.action untyped - -
F character 0 0, 1 -
L numeric 0.01 (,)(-\infty, \infty)
R numeric 1e-04 (,)(-\infty, \infty)
E integer 500 (,)(-\infty, \infty)
C numeric 0.001 (,)(-\infty, \infty)
N logical - TRUE, FALSE -
M logical - TRUE, FALSE -
S integer 1 (,)(-\infty, \infty)
output_debug_info logical FALSE TRUE, FALSE -
do_not_check_capabilities logical FALSE TRUE, FALSE -
num_decimal_places integer 2 [1,)[1, \infty)
batch_size integer 100 [1,)[1, \infty)
options untyped NULL -

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifSGD

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerClassifSGD$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerClassifSGD$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

damirpolat

See Also

Examples

# Define the Learner
learner = mlr3::lrn("classif.sgd")
print(learner)

# Define a Task
task = mlr3::tsk("sonar")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Classification SimpleLogistic Learner

Description

LogitBoost with simple regression functions as base learners. Calls RWeka::make_Weka_classifier() from RWeka.

Custom mlr3 parameters

  • output_debug_info:

    • original id: output-debug-info

  • do_not_check_capabilities:

    • original id: do-not-check-capabilities

  • num_decimal_places:

    • original id: num-decimal-places

  • batch_size:

    • original id: batch-size

  • Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.simple_logistic")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, RWeka

Parameters

Id Type Default Levels Range
subset untyped - -
na.action untyped - -
I integer - (,)(-\infty, \infty)
S logical FALSE TRUE, FALSE -
P logical FALSE TRUE, FALSE -
M integer - (,)(-\infty, \infty)
H integer 50 (,)(-\infty, \infty)
W numeric 0 (,)(-\infty, \infty)
A logical FALSE TRUE, FALSE -
output_debug_info logical FALSE TRUE, FALSE -
do_not_check_capabilities logical FALSE TRUE, FALSE -
num_decimal_places integer 2 [1,)[1, \infty)
batch_size integer 100 [1,)[1, \infty)
options untyped NULL -

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifSimpleLogistic

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerClassifSimpleLogistic$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerClassifSimpleLogistic$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

damirpolat

References

Landwehr, Niels, Hall, Mark, Frank, Eibe (2005). “Logistic model trees.” Machine learning, 59(1), 161–205.

Sumner M, Frank E, Hall M (2005). “Speeding up Logistic Model Tree Induction.” In 9th European Conference on Principles and Practice of Knowledge Discovery in Databases, 675-683.

See Also

Examples

# Define the Learner
learner = mlr3::lrn("classif.simple_logistic")
print(learner)

# Define a Task
task = mlr3::tsk("sonar")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Classification Support Vector Machine Learner

Description

Support Vector classifier trained with John Platt's sequential minimal optimization algorithm. Calls RWeka::SMO() from RWeka.

Custom mlr3 parameters

  • output_debug_info:

    • original id: output-debug-info

  • do_not_check_capabilities:

    • original id: do-not-check-capabilities

  • num_decimal_places:

    • original id: num-decimal-places

  • batch_size:

    • original id: batch-size

  • E_poly:

    • original id: E

  • L_poly:

    • original id: L

  • C_poly:

    • original id: C

  • C_logistic:

    • original id: C

  • R_logistic:

    • original id: R

  • M_logistic:

    • original id: M

  • Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.smo")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, RWeka

Parameters

Id Type Default Levels Range
subset untyped - -
na.action untyped - -
no_checks logical FALSE TRUE, FALSE -
C numeric 1 (,)(-\infty, \infty)
N character 0 0, 1, 2 -
L numeric 0.001 (,)(-\infty, \infty)
P numeric 1e-12 (,)(-\infty, \infty)
M logical FALSE TRUE, FALSE -
V integer -1 (,)(-\infty, \infty)
W integer 1 (,)(-\infty, \infty)
K character PolyKernel NormalizedPolyKernel, PolyKernel, Puk, RBFKernel, StringKernel -
calibrator untyped "weka.classifiers.functions.Logistic" -
E_poly numeric 1 (,)(-\infty, \infty)
L_poly logical FALSE TRUE, FALSE -
C_poly integer 25007 (,)(-\infty, \infty)
C_logistic logical FALSE TRUE, FALSE -
R_logistic numeric - (,)(-\infty, \infty)
M_logistic integer -1 (,)(-\infty, \infty)
output_debug_info logical FALSE TRUE, FALSE -
do_not_check_capabilities logical FALSE TRUE, FALSE -
num_decimal_places integer 2 [1,)[1, \infty)
batch_size integer 100 [1,)[1, \infty)
options untyped NULL -

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifSMO

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerClassifSMO$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerClassifSMO$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

damirpolat

References

Platt J (1998). “Fast Training of Support Vector Machines using Sequential Minimal Optimization.” In Schoelkopf B, Burges C, Smola A (eds.), Advances in Kernel Methods - Support Vector Learning. MIT Press. http://research.microsoft.com/jplatt/smo.html.

Keerthi S, Shevade S, Bhattacharyya C, Murthy K (2001). “Improvements to Platt's SMO Algorithm for SVM Classifier Design.” Neural Computation, 13(3), 637-649.

Hastie T, Tibshirani R (1998). “Classification by Pairwise Coupling.” In Jordan MI, Kearns MJ, Solla SA (eds.), Advances in Neural Information Processing Systems, volume 10.

See Also

Examples

# Define the Learner
learner = mlr3::lrn("classif.smo")
print(learner)

# Define a Task
task = mlr3::tsk("sonar")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Classification Voted Perceptron Learner

Description

Voted Perceptron Algorithm by Freund and Schapire. Calls RWeka::make_Weka_classifier() from RWeka.

Custom mlr3 parameters

  • output_debug_info:

    • original id: output-debug-info

  • do_not_check_capabilities:

    • original id: do-not-check-capabilities

  • num_decimal_places:

    • original id: num-decimal-places

  • batch_size:

    • original id: batch-size

  • Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern

Dictionary

This Learner can be instantiated via lrn():

lrn("classif.voted_perceptron")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, RWeka

Parameters

Id Type Default Levels Range
subset untyped - -
na.action untyped - -
I integer 1 [1,)[1, \infty)
E numeric 1 (,)(-\infty, \infty)
S integer 1 (,)(-\infty, \infty)
M integer 10000 (,)(-\infty, \infty)
output_debug_info logical FALSE TRUE, FALSE -
do_not_check_capabilities logical FALSE TRUE, FALSE -
num_decimal_places integer 2 [1,)[1, \infty)
batch_size integer 100 [1,)[1, \infty)
options untyped NULL -

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifVotedPerceptron

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerClassifVotedPerceptron$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerClassifVotedPerceptron$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

damirpolat

References

Freund Y, Schapire RE (1998). “Large margin classification using the perceptron algorithm.” In 11th Annual Conference on Computational Learning Theory, 209-217.

See Also

Examples

# Define the Learner
learner = mlr3::lrn("classif.voted_perceptron")
print(learner)

# Define a Task
task = mlr3::tsk("sonar")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Density KS Kernel Learner

Description

Kernel density estimator. Calls ks::kde() from ks.

Dictionary

This Learner can be instantiated via lrn():

lrn("dens.kde_ks")

Meta Information

Parameters

Id Type Default Levels Range
h numeric - [0,)[0, \infty)
H untyped - -
gridsize untyped - -
gridtype untyped - -
xmin numeric - (,)(-\infty, \infty)
xmax numeric - (,)(-\infty, \infty)
supp numeric 3.7 (,)(-\infty, \infty)
binned numeric - (,)(-\infty, \infty)
bgridsize untyped - -
positive logical FALSE TRUE, FALSE -
adj.positive untyped - -
w untyped - -
compute.cont logical TRUE TRUE, FALSE -
approx.cont logical TRUE TRUE, FALSE -
unit.interval logical FALSE TRUE, FALSE -
verbose logical FALSE TRUE, FALSE -
density logical FALSE TRUE, FALSE -

Super classes

mlr3::Learner -> mlr3proba::LearnerDens -> LearnerDensKDEks

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerDensKDEks$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerDensKDEks$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

RaphaelS1

References

Gramacki, Artur, Gramacki, Jarosław (2017). “FFT-based fast computation of multivariate kernel density estimators with unconstrained bandwidth matrices.” Journal of Computational and Graphical Statistics, 26(2), 459–462.

See Also

Examples

# Define the Learner
learner = mlr3::lrn("dens.kde_ks")
print(learner)

# Define a Task
task = mlr3::tsk("faithful")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Density Locfit Learner

Description

Local density estimation. Calls locfit::density.lf() from locfit.

Dictionary

This Learner can be instantiated via lrn():

lrn("dens.locfit")

Meta Information

Parameters

Id Type Default Levels Range
window character gaus tcub, rect, trwt, tria, epan, bisq, gaus -
width numeric - (,)(-\infty, \infty)
from numeric - (,)(-\infty, \infty)
to numeric - (,)(-\infty, \infty)
cut numeric - (,)(-\infty, \infty)
deg numeric 0 (,)(-\infty, \infty)
link character ident ident, log, logit, inverse, sqrt, arcsin -
kern character tcub rect, trwt, tria, epan, bisq, gauss, tcub -
kt character sph sph, prod -
renorm logical FALSE TRUE, FALSE -
maxk integer 100 [0,)[0, \infty)
itype character - prod, mult, mlin, haz -
mint integer 20 [1,)[1, \infty)
maxit integer 20 [1,)[1, \infty)

Super classes

mlr3::Learner -> mlr3proba::LearnerDens -> LearnerDensLocfit

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerDensLocfit$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerDensLocfit$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

RaphaelS1

References

Loader, Clive (2006). Local regression and likelihood. Springer Science & Business Media.

See Also

Examples

# Define the Learner
learner = mlr3::lrn("dens.locfit")
print(learner)

# Define a Task
task = mlr3::tsk("faithful")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Density Logspline Learner

Description

Density logspline learner. Calls logspline::logspline() from logspline.

Dictionary

This Learner can be instantiated via lrn():

lrn("dens.logspline")

Meta Information

Parameters

Id Type Default Levels Range
lbound numeric - (,)(-\infty, \infty)
ubound numeric - (,)(-\infty, \infty)
maxknots numeric 0 [0,)[0, \infty)
knots untyped - -
nknots numeric 0 [0,)[0, \infty)
penalty untyped - -
silent logical TRUE TRUE, FALSE -
mind numeric -1 (,)(-\infty, \infty)
error.action integer 2 [0,2][0, 2]

Super classes

mlr3::Learner -> mlr3proba::LearnerDens -> LearnerDensLogspline

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerDensLogspline$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerDensLogspline$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

RaphaelS1

References

Kooperberg, Charles, Stone, J C (1992). “Logspline density estimation for censored data.” Journal of Computational and Graphical Statistics, 1(4), 301–328.

See Also

Examples

# Define the Learner
learner = mlr3::lrn("dens.logspline")
print(learner)

# Define a Task
task = mlr3::tsk("faithful")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Density Mixed Data Kernel Learner

Description

Density estimator for discrete and continuous variables. Calls np::npudens() from np.

Dictionary

This Learner can be instantiated via lrn():

lrn("dens.mixed")

Meta Information

Parameters

Id Type Default Levels Range
bws untyped - -
ckertype character gaussian gaussian, epanechnikov, uniform -
bwscaling logical FALSE TRUE, FALSE -
bwmethod character cv.ml cv.ml, cv.ls, normal-reference -
bwtype character fixed fixed, generalized_nn, adaptive_nn -
bandwidth.compute logical FALSE TRUE, FALSE -
ckerorder integer 2 [2,8][2, 8]
remin logical TRUE TRUE, FALSE -
itmax integer 10000 [1,)[1, \infty)
nmulti integer - [1,)[1, \infty)
ftol numeric 1.490116e-07 (,)(-\infty, \infty)
tol numeric 0.0001490116 (,)(-\infty, \infty)
small numeric 1.490116e-05 (,)(-\infty, \infty)
lbc.dir numeric 0.5 (,)(-\infty, \infty)
dfc.dir numeric 0.5 (,)(-\infty, \infty)
cfac.dir untyped 2.5 * (3 - sqrt(5)) -
initc.dir numeric 1 (,)(-\infty, \infty)
lbd.dir numeric 0.1 (,)(-\infty, \infty)
hbd.dir numeric 1 (,)(-\infty, \infty)
dfac.dir untyped 0.25 * (3 - sqrt(5)) -
initd.dir numeric 1 (,)(-\infty, \infty)
lbc.init numeric 0.1 (,)(-\infty, \infty)
hbc.init numeric 2 (,)(-\infty, \infty)
cfac.init numeric 0.5 (,)(-\infty, \infty)
lbd.init numeric 0.1 (,)(-\infty, \infty)
hbd.init numeric 0.9 (,)(-\infty, \infty)
dfac.init numeric 0.37 (,)(-\infty, \infty)
ukertype character - aitchisonaitken, liracine -
okertype character - wangvanryzin, liracine -

Super classes

mlr3::Learner -> mlr3proba::LearnerDens -> LearnerDensMixed

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerDensMixed$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerDensMixed$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

RaphaelS1

References

Li, Qi, Racine, Jeff (2003). “Nonparametric estimation of distributions with categorical and continuous data.” journal of multivariate analysis, 86(2), 266–292.

See Also

Examples

# Define the Learner
learner = mlr3::lrn("dens.mixed")
print(learner)

# Define a Task
task = mlr3::tsk("faithful")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Density Nonparametric Learner

Description

Nonparametric density estimation. Calls sm::sm.density() from sm.

Dictionary

This Learner can be instantiated via lrn():

lrn("dens.nonpar")

Meta Information

Parameters

Id Type Default Levels Range
h numeric - (,)(-\infty, \infty)
group untyped - -
delta numeric - (,)(-\infty, \infty)
h.weights numeric 1 (,)(-\infty, \infty)
hmult untyped 1 -
method character normal normal, cv, sj, df, aicc -
positive logical FALSE TRUE, FALSE -
verbose untyped 1 -

Super classes

mlr3::Learner -> mlr3proba::LearnerDens -> LearnerDensNonparametric

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerDensNonparametric$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerDensNonparametric$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

RaphaelS1

References

Bowman, A.W., Azzalini, A. (1997). Applied Smoothing Techniques for Data Analysis: The Kernel Approach with S-Plus Illustrations, series Oxford Statistical Science Series. OUP Oxford. ISBN 9780191545696, https://books.google.de/books?id=7WBMrZ9umRYC.

See Also

Examples

# Define the Learner
learner = mlr3::lrn("dens.nonpar")
print(learner)

# Define a Task
task = mlr3::tsk("faithful")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Density Penalized Learner

Description

Density estimation using penalized B-splines with automatic selection of smoothing parameter. Calls pendensity::pendensity() from pendensity.

Dictionary

This Learner can be instantiated via lrn():

lrn("dens.pen")

Meta Information

Parameters

Id Type Default Levels Range
base character bspline bspline, gaussian -
no.base numeric 41 (,)(-\infty, \infty)
max.iter numeric 20 (,)(-\infty, \infty)
lambda0 numeric 500 (,)(-\infty, \infty)
q numeric 3 (,)(-\infty, \infty)
sort logical TRUE TRUE, FALSE -
with.border untyped - -
m numeric 3 (,)(-\infty, \infty)
eps numeric 0.01 (,)(-\infty, \infty)

Super classes

mlr3::Learner -> mlr3proba::LearnerDens -> LearnerDensPenalized

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerDensPenalized$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerDensPenalized$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

RaphaelS1

References

Schellhase, Christian, Kauermann, Göran (2012). “Density estimation and comparison with a penalized mixture approach.” Computational Statistics, 27(4), 757–777.

See Also

Examples

# Define the Learner
learner = mlr3::lrn("dens.pen")
print(learner)

# Define a Task
task = mlr3::tsk("faithful")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Density Plug-In Kernel Learner

Description

Kernel density estimation with global bandwidth selection via "plug-in". Calls plugdensity::plugin.density() from plugdensity.

Dictionary

This Learner can be instantiated via lrn():

lrn("dens.plug")

Meta Information

Parameters

Id Type Default Levels
na.rm logical FALSE TRUE, FALSE

Super classes

mlr3::Learner -> mlr3proba::LearnerDens -> LearnerDensPlugin

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerDensPlugin$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerDensPlugin$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

RaphaelS1

References

Engel, Joachim, Herrmann, Eva, Gasser, Theo (1994). “An iterative bandwidth selector for kernel estimation of densities and their derivatives.” Journaltitle of Nonparametric Statistics, 4(1), 21–34.

See Also

Examples

# Define the Learner
learner = mlr3::lrn("dens.plug")
print(learner)

# Define a Task
task = mlr3::tsk("faithful")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Density Smoothing Splines Learner

Description

Density Smoothing Splines Learner. Calls gss::ssden() from gss.

Dictionary

This Learner can be instantiated via lrn():

lrn("dens.spline")

Meta Information

Parameters

Id Type Default Levels Range
type untyped - -
alpha numeric 1.4 (,)(-\infty, \infty)
weights untyped - -
na.action untyped stats::na.omit -
id.basis untyped - -
nbasis integer - (,)(-\infty, \infty)
seed numeric - (,)(-\infty, \infty)
domain untyped - -
quad untyped - -
qdsz.depth numeric - (,)(-\infty, \infty)
bias untyped - -
prec numeric 1e-07 (,)(-\infty, \infty)
maxiter integer 30 [1,)[1, \infty)
skip.iter logical - TRUE, FALSE -

Super classes

mlr3::Learner -> mlr3proba::LearnerDens -> LearnerDensSpline

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerDensSpline$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerDensSpline$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

RaphaelS1

References

Gu, Chong, Wang, Jingyuan (2003). “Penalized likelihood density estimation: Direct cross-validation and scalable approximation.” Statistica Sinica, 811–826.

See Also

Examples

# Define the Learner
learner = mlr3::lrn("dens.spline")
print(learner)

# Define a Task
task = mlr3::tsk("faithful")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Regression Abess Learner

Description

Adaptive best-subset selection for regression. Calls abess::abess() from abess.

Dictionary

This Learner can be instantiated via lrn():

lrn("regr.abess")

Meta Information

  • Task type: “regr”

  • Predict Types: “response”

  • Feature Types: “integer”, “numeric”

  • Required Packages: mlr3, abess

Parameters

Id Type Default Levels Range
family character gaussian gaussian, mgaussian, poisson, gamma -
tune.path character sequence sequence, gsection -
tune.type character gic gic, aic, bic, ebic, cv -
normalize integer NULL (,)(-\infty, \infty)
support.size untyped NULL -
c.max integer 2 [1,)[1, \infty)
gs.range untyped NULL -
lambda numeric 0 [0,)[0, \infty)
always.include untyped NULL -
group.index untyped NULL -
init.active.set untyped NULL -
splicing.type integer 2 [1,2][1, 2]
max.splicing.iter integer 20 [1,)[1, \infty)
screening.num integer NULL [0,)[0, \infty)
important.search integer NULL [0,)[0, \infty)
warm.start logical TRUE TRUE, FALSE -
nfolds integer 5 (,)(-\infty, \infty)
foldid untyped NULL -
cov.update logical FALSE TRUE, FALSE -
newton character exact exact, approx -
newton.thresh numeric 1e-06 [0,)[0, \infty)
max.newton.iter integer NULL [1,)[1, \infty)
early.stop logical FALSE TRUE, FALSE -
ic.scale numeric 1 [0,)[0, \infty)
num.threads integer 0 [0,)[0, \infty)
seed integer 1 (,)(-\infty, \infty)

Initial parameter values

  • num.threads: This parameter is initialized to 1 (default is 0) to avoid conflicts with the mlr3 parallelization.

  • family: Depends on the task type, if the parameter family is NULL, it is set to "binomial" for binary classification tasks and to "multinomial" for multiclass classification problems.

Super classes

mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrAbess

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerRegrAbess$new()

Method selected_features()

Extract the name of selected features from the model by abess::extract().

Usage
LearnerRegrAbess$selected_features()
Returns

The names of selected features


Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerRegrAbess$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

abess-team

See Also

Examples

# Define the Learner
learner = mlr3::lrn("regr.abess")
print(learner)

# Define a Task
task = mlr3::tsk("mtcars")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Regression BART (Bayesian Additive Regression Trees) Learner

Description

Bayesian Additive Regression Trees are similar to gradient boosting algorithms. Calls dbarts::bart() from dbarts.

Dictionary

This Learner can be instantiated via lrn():

lrn("regr.bart")

Meta Information

  • Task type: “regr”

  • Predict Types: “response”

  • Feature Types: “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, mlr3extralearners, dbarts

Parameters

Id Type Default Levels Range
ntree integer 200 [1,)[1, \infty)
sigest untyped NULL -
sigdf integer 3 [1,)[1, \infty)
sigquant numeric 0.9 [0,1][0, 1]
k numeric 2 [0,)[0, \infty)
power numeric 2 [0,)[0, \infty)
base numeric 0.95 [0,1][0, 1]
ndpost integer 1000 [1,)[1, \infty)
nskip integer 100 [0,)[0, \infty)
printevery integer 100 [0,)[0, \infty)
keepevery integer 1 [1,)[1, \infty)
keeptrainfits logical TRUE TRUE, FALSE -
usequants logical FALSE TRUE, FALSE -
numcut integer 100 [1,)[1, \infty)
printcutoffs integer 0 (,)(-\infty, \infty)
verbose logical FALSE TRUE, FALSE -
nthread integer 1 (,)(-\infty, \infty)
keeptrees logical FALSE TRUE, FALSE -
keepcall logical TRUE TRUE, FALSE -
sampleronly logical FALSE TRUE, FALSE -
seed integer NA (,)(-\infty, \infty)
proposalprobs untyped NULL -
splitprobs untyped NULL -
keepsampler logical - TRUE, FALSE -

Custom mlr3 parameters

  • Parameter: offset

    • The parameter is removed, because only dbarts::bart2 allows an offset during training, and therefore the offset parameter in dbarts:::predict.bart is irrelevant for dbarts::dbart.

  • Parameter: nchain, combineChains, combinechains

    • The parameters are removed as parallelization of multiple models is handled by future.

Initial parameter values

  • keeptrees is initialized to TRUE because it is required for prediction.

Super classes

mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrBart

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerRegrBart$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerRegrBart$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

ck37

References

Sparapani, Rodney, Spanbauer, Charles, McCulloch, Robert (2021). “Nonparametric machine learning and efficient computation with bayesian additive regression trees: the BART R package.” Journal of Statistical Software, 97, 1–66.

Chipman, A H, George, I E, McCulloch, E R (2010). “BART: Bayesian additive regression trees.” The Annals of Applied Statistics, 4(1), 266–298.

See Also

Examples

# Define the Learner
learner = mlr3::lrn("regr.bart")
print(learner)

# Define a Task
task = mlr3::tsk("mtcars")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Gradient Boosted Decision Trees Regression Learner

Description

Gradient boosting algorithm that also supports categorical data. Calls catboost::catboost.train() from package 'catboost'.

Dictionary

This Learner can be instantiated via lrn():

lrn("regr.catboost")

Meta Information

  • Task type: “regr”

  • Predict Types: “response”

  • Feature Types: “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, mlr3extralearners, catboost

Parameters

Id Type Default Levels Range
loss_function character RMSE MAE, MAPE, Poisson, Quantile, RMSE, LogLinQuantile, Lq, Huber, Expectile, Tweedie -
learning_rate numeric 0.03 [0.001,1][0.001, 1]
random_seed integer 0 [0,)[0, \infty)
l2_leaf_reg numeric 3 [0,)[0, \infty)
bootstrap_type character - Bayesian, Bernoulli, MVS, Poisson, No -
bagging_temperature numeric 1 [0,)[0, \infty)
subsample numeric - [0,1][0, 1]
sampling_frequency character PerTreeLevel PerTree, PerTreeLevel -
sampling_unit character Object Object, Group -
mvs_reg numeric - [0,)[0, \infty)
random_strength numeric 1 [0,)[0, \infty)
depth integer 6 [1,16][1, 16]
grow_policy character SymmetricTree SymmetricTree, Depthwise, Lossguide -
min_data_in_leaf integer 1 [1,)[1, \infty)
max_leaves integer 31 [1,)[1, \infty)
has_time logical FALSE TRUE, FALSE -
rsm numeric 1 [0.001,1][0.001, 1]
nan_mode character Min Min, Max -
fold_permutation_block integer - [1,256][1, 256]
leaf_estimation_method character - Newton, Gradient, Exact -
leaf_estimation_iterations integer - [1,)[1, \infty)
leaf_estimation_backtracking character AnyImprovement No, AnyImprovement, Armijo -
fold_len_multiplier numeric 2 [1.001,)[1.001, \infty)
approx_on_full_history logical TRUE TRUE, FALSE -
boosting_type character - Ordered, Plain -
boost_from_average logical - TRUE, FALSE -
langevin logical FALSE TRUE, FALSE -
diffusion_temperature numeric 10000 [0,)[0, \infty)
score_function character Cosine Cosine, L2, NewtonCosine, NewtonL2 -
monotone_constraints untyped - -
feature_weights untyped - -
first_feature_use_penalties untyped - -
penalties_coefficient numeric 1 [0,)[0, \infty)
per_object_feature_penalties untyped - -
model_shrink_rate numeric - (,)(-\infty, \infty)
model_shrink_mode character - Constant, Decreasing -
target_border numeric - (,)(-\infty, \infty)
border_count integer - [1,65535][1, 65535]
feature_border_type character GreedyLogSum Median, Uniform, UniformAndQuantiles, MaxLogSum, MinEntropy, GreedyLogSum -
per_float_feature_quantization untyped - -
thread_count integer 1 [1,)[-1, \infty)
task_type character CPU CPU, GPU -
devices untyped - -
logging_level character Silent Silent, Verbose, Info, Debug -
metric_period integer 1 [1,)[1, \infty)
train_dir untyped "catboost_info" -
model_size_reg numeric 0.5 [0,1][0, 1]
allow_writing_files logical FALSE TRUE, FALSE -
save_snapshot logical FALSE TRUE, FALSE -
snapshot_file untyped - -
snapshot_interval integer 600 [1,)[1, \infty)
simple_ctr untyped - -
combinations_ctr untyped - -
ctr_target_border_count integer - [1,255][1, 255]
counter_calc_method character Full SkipTest, Full -
max_ctr_complexity integer - [1,)[1, \infty)
ctr_leaf_count_limit integer - [1,)[1, \infty)
store_all_simple_ctr logical FALSE TRUE, FALSE -
final_ctr_computation_mode character Default Default, Skip -
verbose logical FALSE TRUE, FALSE -
ntree_start integer 0 [0,)[0, \infty)
ntree_end integer 0 [0,)[0, \infty)
early_stopping_rounds integer - [1,)[1, \infty)
eval_metric untyped - -
use_best_model logical - TRUE, FALSE -
iterations integer 1000 [1,)[1, \infty)

Installation

See https://catboost.ai/en/docs/concepts/r-installation.

Initial parameter values

  • logging_level:

    • Actual default: "Verbose"

    • Adjusted default: "Silent"

    • Reason for change: consistent with other mlr3 learners

  • thread_count:

    • Actual default: -1

    • Adjusted default: 1

    • Reason for change: consistent with other mlr3 learners

  • allow_writing_files:

    • Actual default: TRUE

    • Adjusted default: FALSE

    • Reason for change: consistent with other mlr3 learners

  • save_snapshot:

    • Actual default: TRUE

    • Adjusted default: FALSE

    • Reason for change: consistent with other mlr3 learners

Early stopping

Early stopping can be used to find the optimal number of boosting rounds. Set early_stopping_rounds to an integer value to monitor the performance of the model on the validation set while training. For information on how to configure the validation set, see the Validation section of mlr3::Learner.

Super classes

mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrCatboost

Active bindings

internal_valid_scores

The last observation of the validation scores for all metrics. Extracted from model$evaluation_log

internal_tuned_values

Returns the early stopped iterations if early_stopping_rounds was set during training.

validate

How to construct the internal validation data. This parameter can be either NULL, a ratio, "test", or "predefined".

Methods

Public methods

Inherited methods

Method new()

Create a LearnerRegrCatboost object.

Usage
LearnerRegrCatboost$new()

Method importance()

The importance scores are calculated using catboost.get_feature_importance, setting type = "FeatureImportance", returned for 'all'.

Usage
LearnerRegrCatboost$importance()
Returns

Named numeric().


Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerRegrCatboost$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

sumny

References

Dorogush, Veronika A, Ershov, Vasily, Gulin, Andrey (2018). “CatBoost: gradient boosting with categorical features support.” arXiv preprint arXiv:1810.11363.

See Also

Examples

# Define the Learner
learner = mlr3::lrn("regr.catboost")
print(learner)

# Define a Task
task = mlr3::tsk("mtcars")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)
print(learner$importance())

# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Regression Conditional Random Forest Learner

Description

A random forest based on conditional inference trees (ctree). Calls partykit::cforest() from partykit.

Dictionary

This Learner can be instantiated via lrn():

lrn("regr.cforest")

Meta Information

Parameters

Id Type Default Levels Range
ntree integer 500 [1,)[1, \infty)
replace logical FALSE TRUE, FALSE -
fraction numeric 0.632 [0,1][0, 1]
mtry integer - [0,)[0, \infty)
mtryratio numeric - [0,1][0, 1]
applyfun untyped - -
cores integer NULL (,)(-\infty, \infty)
trace logical FALSE TRUE, FALSE -
offset untyped - -
cluster untyped - -
scores untyped - -
teststat character quadratic quadratic, maximum -
splitstat character quadratic quadratic, maximum -
splittest logical FALSE TRUE, FALSE -
testtype character Univariate Bonferroni, MonteCarlo, Univariate, Teststatistic -
nmax untyped - -
pargs untyped - -
alpha numeric 0.05 [0,1][0, 1]
mincriterion numeric 0 [0,1][0, 1]
logmincriterion numeric 0 (,)(-\infty, \infty)
minsplit integer 20 [1,)[1, \infty)
minbucket integer 7 [1,)[1, \infty)
minprob numeric 0.01 [0,1][0, 1]
stump logical FALSE TRUE, FALSE -
lookahead logical FALSE TRUE, FALSE -
MIA logical FALSE TRUE, FALSE -
maxvar integer - [1,)[1, \infty)
nresample integer 9999 [1,)[1, \infty)
tol numeric 1.490116e-08 [0,)[0, \infty)
maxsurrogate integer 0 [0,)[0, \infty)
numsurrogate logical FALSE TRUE, FALSE -
maxdepth integer Inf [0,)[0, \infty)
multiway logical FALSE TRUE, FALSE -
splittry integer 2 [0,)[0, \infty)
intersplit logical FALSE TRUE, FALSE -
majority logical FALSE TRUE, FALSE -
caseweights logical TRUE TRUE, FALSE -
saveinfo logical FALSE TRUE, FALSE -
update logical FALSE TRUE, FALSE -
splitflavour character ctree ctree, exhaustive -
OOB logical FALSE TRUE, FALSE -
simplify logical TRUE TRUE, FALSE -
scale logical TRUE TRUE, FALSE -
nperm integer 1 [0,)[0, \infty)
risk character loglik loglik, misclassification -
conditional logical FALSE TRUE, FALSE -
threshold numeric 0.2 (,)(-\infty, \infty)

Custom mlr3 parameters

  • mtry:

    • This hyperparameter can alternatively be set via the added hyperparameter mtryratio as mtry = max(ceiling(mtryratio * n_features), 1). Note that mtry and mtryratio are mutually exclusive.

Super classes

mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrCForest

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerRegrCForest$new()

Method oob_error()

The out-of-bag error, calculated using the OOB predictions from partykit.

Usage
LearnerRegrCForest$oob_error()
Returns

numeric(1).


Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerRegrCForest$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

sumny

References

Hothorn T, Zeileis A (2015). “partykit: A Modular Toolkit for Recursive Partytioning in R.” Journal of Machine Learning Research, 16(118), 3905-3909. http://jmlr.org/papers/v16/hothorn15a.html.

Hothorn T, Hornik K, Zeileis A (2006). “Unbiased Recursive Partitioning: A Conditional Inference Framework.” Journal of Computational and Graphical Statistics, 15(3), 651–674. doi:10.1198/106186006x133933, https://doi.org/10.1198/106186006x133933.

See Also

Examples

# Define the Learner
learner = mlr3::lrn("regr.cforest")
print(learner)

# Define a Task
task = mlr3::tsk("mtcars")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Regression Conditional Inference Tree Learner

Description

Regression Partition Tree where a significance test is used to determine the univariate splits. Calls partykit::ctree() from partykit.

Dictionary

This Learner can be instantiated via lrn():

lrn("regr.ctree")

Meta Information

Parameters

Id Type Default Levels Range
teststat character quadratic quadratic, maximum -
splitstat character quadratic quadratic, maximum -
splittest logical FALSE TRUE, FALSE -
testtype character Bonferroni Bonferroni, MonteCarlo, Univariate, Teststatistic -
nmax untyped - -
alpha numeric 0.05 [0,1][0, 1]
mincriterion numeric 0.95 [0,1][0, 1]
logmincriterion numeric - (,)(-\infty, \infty)
minsplit integer 20 [1,)[1, \infty)
minbucket integer 7 [1,)[1, \infty)
minprob numeric 0.01 [0,)[0, \infty)
stump logical FALSE TRUE, FALSE -
lookahead logical FALSE TRUE, FALSE -
MIA logical FALSE TRUE, FALSE -
maxvar integer - [1,)[1, \infty)
nresample integer 9999 [1,)[1, \infty)
tol numeric - [0,)[0, \infty)
maxsurrogate integer 0 [0,)[0, \infty)
numsurrogate logical FALSE TRUE, FALSE -
mtry integer Inf [0,)[0, \infty)
maxdepth integer Inf [0,)[0, \infty)
multiway logical FALSE TRUE, FALSE -
splittry integer 2 [0,)[0, \infty)
intersplit logical FALSE TRUE, FALSE -
majority logical FALSE TRUE, FALSE -
caseweights logical FALSE TRUE, FALSE -
applyfun untyped - -
cores integer NULL (,)(-\infty, \infty)
saveinfo logical TRUE TRUE, FALSE -
update logical FALSE TRUE, FALSE -
splitflavour character ctree ctree, exhaustive -
offset untyped - -
cluster untyped - -
scores untyped - -
doFit logical TRUE TRUE, FALSE -
maxpts integer 25000 (,)(-\infty, \infty)
abseps numeric 0.001 [0,)[0, \infty)
releps numeric 0 [0,)[0, \infty)

Super classes

mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrCTree

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerRegrCTree$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerRegrCTree$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

sumny

References

Hothorn T, Zeileis A (2015). “partykit: A Modular Toolkit for Recursive Partytioning in R.” Journal of Machine Learning Research, 16(118), 3905-3909. http://jmlr.org/papers/v16/hothorn15a.html.

Hothorn T, Hornik K, Zeileis A (2006). “Unbiased Recursive Partitioning: A Conditional Inference Framework.” Journal of Computational and Graphical Statistics, 15(3), 651–674. doi:10.1198/106186006x133933, https://doi.org/10.1198/106186006x133933.

See Also

Examples

# Define the Learner
learner = mlr3::lrn("regr.ctree")
print(learner)

# Define a Task
task = mlr3::tsk("mtcars")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Regression Cubist Learner

Description

Rule-based model that is an extension of Quinlan's M5 model tree. Each tree contains linear regression models at the terminal leaves. Calls Cubist::cubist() from Cubist.

Dictionary

This Learner can be instantiated via lrn():

lrn("regr.cubist")

Meta Information

  • Task type: “regr”

  • Predict Types: “response”

  • Feature Types: “integer”, “numeric”, “character”, “factor”, “ordered”

  • Required Packages: mlr3, mlr3extralearners, Cubist

Parameters

Id Type Default Levels Range
committees integer - [1,100][1, 100]
unbiased logical FALSE TRUE, FALSE -
rules integer 100 [1,)[1, \infty)
extrapolation numeric 100 [0,100][0, 100]
sample integer 0 [0,)[0, \infty)
seed integer - (,)(-\infty, \infty)
label untyped "outcome" -
neighbors integer - [0,9][0, 9]

Super classes

mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrCubist

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerRegrCubist$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerRegrCubist$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

sumny

References

Quinlan, R J, others (1992). “Learning with continuous classes.” In 5th Australian joint conference on artificial intelligence, volume 92, 343–348. World Scientific.

Quinlan, Ross J (1993). “Combining instance-based and model-based learning.” In Proceedings of the tenth international conference on machine learning, 236–243.

See Also

Examples

# Define the Learner
learner = mlr3::lrn("regr.cubist")
print(learner)

# Define a Task
task = mlr3::tsk("mtcars")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Regression Decision Stump Learner

Description

Decision Stump Learner. Calls RWeka::DecisionStump() from RWeka.

Custom mlr3 parameters

  • output_debug_info:

    • original id: output-debug-info

  • do_not_check_capabilities:

    • original id: do-not-check-capabilities

  • num_decimal_places:

    • original id: num-decimal-places

  • batch_size:

    • original id: batch-size

  • Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern

Dictionary

This Learner can be instantiated via lrn():

lrn("regr.decision_stump")

Meta Information

  • Task type: “regr”

  • Predict Types: “response”

  • Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, RWeka

Parameters

Id Type Default Levels Range
subset untyped - -
na.action untyped - -
output_debug_info logical FALSE TRUE, FALSE -
do_not_check_capabilities logical FALSE TRUE, FALSE -
num_decimal_places integer 2 [1,)[1, \infty)
batch_size integer 100 [1,)[1, \infty)
options untyped NULL -

Super classes

mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrDecisionStump

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerRegrDecisionStump$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerRegrDecisionStump$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

damirpolat

See Also

Examples

# Define the Learner
learner = mlr3::lrn("regr.decision_stump")
print(learner)

# Define a Task
task = mlr3::tsk("mtcars")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Regression Decision Table Learner

Description

Simple Decision Table majority regressor. Calls RWeka::make_Weka_classifier() from RWeka.

Initial parameter values

  • E:

    • Has only 2 out of 4 original evaluation measures : rmse and mae with rmse being the default

    • Reason for change: this learner should only contain evaluation measures appropriate for regression tasks

Custom mlr3 parameters

  • output_debug_info:

    • original id: output-debug-info

  • do_not_check_capabilities:

    • original id: do-not-check-capabilities

  • num_decimal_places:

    • original id: num-decimal-places

  • batch_size:

    • original id: batch-size

  • P_best:

    • original id: P

  • D_best:

    • original id: D

  • N_best:

    • original id: N

  • S_best:

    • original id: S

  • Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern

Dictionary

This Learner can be instantiated via lrn():

lrn("regr.decision_table")

Meta Information

  • Task type: “regr”

  • Predict Types: “response”

  • Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, RWeka

Parameters

Id Type Default Levels Range
subset untyped - -
na.action untyped - -
S character BestFirst BestFirst, GreedyStepwise -
X integer 1 (,)(-\infty, \infty)
E character rmse rmse, mae -
I logical - TRUE, FALSE -
R logical - TRUE, FALSE -
output_debug_info logical FALSE TRUE, FALSE -
do_not_check_capabilities logical FALSE TRUE, FALSE -
num_decimal_places integer 2 [1,)[1, \infty)
batch_size integer 100 [1,)[1, \infty)
P_best untyped - -
D_best character 1 0, 1, 2 -
N_best integer - (,)(-\infty, \infty)
S_best integer 1 (,)(-\infty, \infty)
options untyped NULL -

Super classes

mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrDecisionTable

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerRegrDecisionTable$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerRegrDecisionTable$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

damirpolat

References

Kohavi R (1995). “The Power of Decision Tables.” In 8th European Conference on Machine Learning, 174–189.

See Also

Examples

# Define the Learner
learner = mlr3::lrn("regr.decision_table")
print(learner)

# Define a Task
task = mlr3::tsk("mtcars")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Implementation of Multivariate Adaptive Regression Splines

Description

This is an alternative implementation of MARS (Multivariate Adaptive Regression Splines). MARS is trademarked and thus not used as the name. The name "earth" stands for "Enhanced Adaptive Regression Through Hinges".

Calls earth::earth() from earth.

Details

Methods for variance estimations are not yet implemented.

Dictionary

This Learner can be instantiated via lrn():

lrn("regr.earth")

Meta Information

  • Task type: “regr”

  • Predict Types: “response”, “se”

  • Feature Types: “integer”, “numeric”, “factor”

  • Required Packages: mlr3, mlr3extralearners, earth

Parameters

Id Type Default Levels Range
wp untyped NULL -
offset untyped NULL -
keepxy logical FALSE TRUE, FALSE -
trace character 0 0, .3, .5, 1, 2, 3, 4, 5 -
degree integer 1 [1,)[1, \infty)
penalty numeric 2 [1,)[-1, \infty)
nk untyped NULL -
thresh numeric 0.001 (,)(-\infty, \infty)
minspan numeric 0 [0,)[0, \infty)
endspan numeric 0 [0,)[0, \infty)
newvar.penalty numeric 0 [0,)[0, \infty)
fast.k integer 20 [0,)[0, \infty)
fast.beta integer 1 [0,1][0, 1]
linpreds untyped FALSE -
allowed untyped - -
pmethod character backward backward, none, exhaustive, forward, seqrep, cv -
nprune integer - [0,)[0, \infty)
nfold integer 0 [0,)[0, \infty)
ncross integer 1 [0,)[0, \infty)
stratify logical TRUE TRUE, FALSE -
varmod.method character none none, const, lm, rlm, earth, gam, power, power0, x.lm, x.rlm, ... -
varmod.exponent numeric 1 (,)(-\infty, \infty)
varmod.conv numeric 1 [0,1][0, 1]
varmod.clamp numeric 0.1 (,)(-\infty, \infty)
varmod.minspan numeric -3 (,)(-\infty, \infty)
Scale.y logical FALSE TRUE, FALSE -
Adjust.endspan numeric 2 (,)(-\infty, \infty)
Auto.linpreds logical TRUE TRUE, FALSE -
Force.weights logical FALSE TRUE, FALSE -
Use.beta.cache logical TRUE TRUE, FALSE -
Force.xtx.prune logical FALSE TRUE, FALSE -
Get.leverages logical TRUE TRUE, FALSE -
Exhaustive.tol numeric 1e-10 (,)(-\infty, \infty)

Super classes

mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrEarth

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerRegrEarth$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerRegrEarth$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

pkopper

References

Milborrow, Stephen, Hastie, T, Tibshirani, R (2014). “Earth: multivariate adaptive regression spline models.” R package version, 3(7).

Friedman, H J (1991). “Multivariate adaptive regression splines.” The annals of statistics, 19(1), 1–67.

See Also

Examples

# Define the Learner
learner = mlr3::lrn("regr.earth")
print(learner)

# Define a Task
task = mlr3::tsk("mtcars")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Regression Fast Nearest Neighbor Search Learner

Description

Fast Nearest Neighbour Regression. Calls FNN::knn.reg() from FNN.

Dictionary

This Learner can be instantiated via lrn():

lrn("regr.fnn")

Meta Information

  • Task type: “regr”

  • Predict Types: “response”

  • Feature Types: “integer”, “numeric”

  • Required Packages: mlr3, mlr3extralearners, FNN

Parameters

Id Type Default Levels Range
k integer 1 [1,)[1, \infty)
algorithm character kd_tree kd_tree, cover_tree, brute -

Super classes

mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrFNN

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerRegrFNN$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerRegrFNN$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

be-marc

References

Boltz, Sylvain, Debreuve, Eric, Barlaud, Michel (2007). “kNN-based high-dimensional Kullback-Leibler distance for tracking.” In Eighth International Workshop on Image Analysis for Multimedia Interactive Services (WIAMIS'07), 16–16. IEEE.

See Also

Examples

# Define the Learner
learner = mlr3::lrn("regr.fnn")
print(learner)

# Define a Task
task = mlr3::tsk("mtcars")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Regression Generalized Additive Model Learner

Description

Generalized additive models. Calls mgcv::gam() from package mgcv.

Formula

A gam formula specific to the task at hand is required for the formula parameter (see example and ?mgcv::formula.gam). Beware, if no formula is provided, a fallback formula is used that will make the gam behave like a glm (this behavior is required for the unit tests). Only features specified in the formula will be used, superseding columns with col_roles "feature" in the task.

Dictionary

This Learner can be instantiated via lrn():

lrn("regr.gam")

Meta Information

  • Task type: “regr”

  • Predict Types: “response”, “se”

  • Feature Types: “logical”, “integer”, “numeric”, “factor”

  • Required Packages: mlr3, mlr3extralearners, mgcv

Parameters

Id Type Default Levels Range
family character gaussian gaussian, poisson -
formula untyped - -
offset untyped NULL -
method character GCV.Cp GCV.Cp, GACV.Cp, REML, P-REML, ML, P-ML -
optimizer untyped c("outer", "newton") -
scale numeric 0 (,)(-\infty, \infty)
select logical FALSE TRUE, FALSE -
knots untyped NULL -
sp untyped NULL -
min.sp untyped NULL -
H untyped NULL -
gamma numeric 1 [1,)[1, \infty)
paraPen untyped NULL -
G untyped NULL -
in.out untyped NULL -
drop.unused.levels logical TRUE TRUE, FALSE -
drop.intercept logical FALSE TRUE, FALSE -
nthreads integer 1 [1,)[1, \infty)
irls.reg numeric 0 [0,)[0, \infty)
epsilon numeric 1e-07 [0,)[0, \infty)
maxit integer 200 (,)(-\infty, \infty)
trace logical FALSE TRUE, FALSE -
mgcv.tol numeric 1e-07 [0,)[0, \infty)
mgcv.half integer 15 [0,)[0, \infty)
rank.tol numeric 1.490116e-08 [0,)[0, \infty)
nlm untyped list() -
optim untyped list() -
newton untyped list() -
outerPIsteps integer 0 [0,)[0, \infty)
idLinksBases logical TRUE TRUE, FALSE -
scalePenalty logical TRUE TRUE, FALSE -
efs.lspmax integer 15 [0,)[0, \infty)
efs.tol numeric 0.1 [0,)[0, \infty)
scale.est character fletcher fletcher, pearson, deviance -
nei untyped - -
ncv.threads integer 1 [1,)[1, \infty)
edge.correct logical FALSE TRUE, FALSE -
block.size integer 1000 (,)(-\infty, \infty)
unconditional logical FALSE TRUE, FALSE -

Super classes

mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrGam

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerRegrGam$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerRegrGam$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

pierrecamilleri

References

Hastie, J T, Tibshirani, J R (2017). Generalized additive models. Routledge.

Wood, Simon (2012). “mgcv: Mixed GAM Computation Vehicle with GCV/AIC/REML smoothness estimation.”

Examples

# simple example
t = mlr3::tsk("mtcars")
l = mlr3::lrn("regr.gam")
l$param_set$values$formula = mpg ~ cyl + am + s(disp) + s(hp)
l$train(t)
l$model

Boosted Generalized Additive Regression Learner

Description

Fit a generalized additive regression model using a boosting algorithm. Calls mboost::gamboost() from mboost.

Dictionary

This Learner can be instantiated via lrn():

lrn("regr.gamboost")

Meta Information

  • Task type: “regr”

  • Predict Types: “response”

  • Feature Types: “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, mlr3extralearners, mboost

Parameters

Id Type Default Levels Range
baselearner character bbs bbs, bols, btree -
dfbase integer 4 (,)(-\infty, \infty)
offset numeric NULL (,)(-\infty, \infty)
family character Gaussian Gaussian, Laplace, Huber, Poisson, GammaReg, NBinomial, Hurdle, custom -
custom.family untyped - -
nuirange untyped c(0, 100) -
d numeric NULL (,)(-\infty, \infty)
mstop integer 100 (,)(-\infty, \infty)
nu numeric 0.1 (,)(-\infty, \infty)
risk character inbag inbag, oobag, none -
oobweights untyped NULL -
trace logical FALSE TRUE, FALSE -
stopintern untyped FALSE -
na.action untyped stats::na.omit -

Super classes

mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrGAMBoost

Methods

Public methods

Inherited methods

Method new()

Create a LearnerRegrGAMBoost object.

Usage
LearnerRegrGAMBoost$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerRegrGAMBoost$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

be-marc

References

Bühlmann, Peter, Yu, Bin (2003). “Boosting with the L 2 loss: regression and classification.” Journal of the American Statistical Association, 98(462), 324–339.

See Also

Examples

# Define the Learner
learner = lrn("regr.gamboost", baselearner = "bols")
print(learner)

Regression Gaussian Processes Learner From Weka

Description

Gaussian Processes. Calls RWeka::make_Weka_classifier() from RWeka.

Custom mlr3 parameters

  • output_debug_info:

    • original id: output-debug-info

  • do_not_check_capabilities:

    • original id: do-not-check-capabilities

  • num_decimal_places:

    • original id: num-decimal-places

  • batch_size:

    • original id: batch-size

  • E_poly:

    • original id: E

  • L_poly:

    • original id: L (duplicated L for when K is set to PolyKernel)

  • C_poly:

    • original id: C

  • Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern

  • output-debug-info for kernel parameter removed:

    • enables debugging output (if available) to be printed

  • Reason for change: The parameter is removed because it's unclear how to actually use it.

Dictionary

This Learner can be instantiated via lrn():

lrn("regr.gaussian_processes")

Meta Information

  • Task type: “regr”

  • Predict Types: “response”

  • Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, RWeka

Parameters

Id Type Default Levels Range
subset untyped - -
na.action untyped - -
L numeric 1 (,)(-\infty, \infty)
N character 0 0, 1, 2 -
K character supportVector.PolyKernel supportVector.NormalizedPolyKernel, supportVector.PolyKernel, supportVector.Puk, supportVector.RBFKernel, supportVector.StringKernel -
S integer 1 (,)(-\infty, \infty)
E_poly numeric 1 (,)(-\infty, \infty)
L_poly logical FALSE TRUE, FALSE -
C_poly integer 250007 (,)(-\infty, \infty)
output_debug_info logical FALSE TRUE, FALSE -
do_not_check_capabilities logical FALSE TRUE, FALSE -
num_decimal_places integer 2 [1,)[1, \infty)
batch_size integer 100 [1,)[1, \infty)
options untyped NULL -

Super classes

mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrGaussianProcesses

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerRegrGaussianProcesses$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerRegrGaussianProcesses$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

damirpolat

References

Mackay DJ (1998). “Introduction to Gaussian Processes.”

See Also

Examples

# Define the Learner
learner = mlr3::lrn("regr.gaussian_processes")
print(learner)

# Define a Task
task = mlr3::tsk("mtcars")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Regression Gaussian Process Learner

Description

Gaussian process for regression. Calls kernlab::gausspr() from kernlab. Parameters sigma, degree, scale, offset and order are added to make tuning kpar easier. If kpar is provided then these new parameters are ignored. If none are provided then the default "automatic" is used for kpar.

Dictionary

This Learner can be instantiated via lrn():

lrn("regr.gausspr")

Meta Information

  • Task type: “regr”

  • Predict Types: “response”

  • Feature Types: “logical”, “integer”, “numeric”, “character”, “factor”, “ordered”

  • Required Packages: mlr3, mlr3extralearners, kernlab

Parameters

Id Type Default Levels Range
scaled untyped TRUE -
kernel character rbfdot rbfdot, polydot, vanilladot, tanhdot, laplacedot, besseldot, anovadot, splinedot -
sigma numeric - (,)(-\infty, \infty)
degree numeric - (,)(-\infty, \infty)
scale numeric - (,)(-\infty, \infty)
offset numeric - (,)(-\infty, \infty)
order numeric - (,)(-\infty, \infty)
kpar untyped "automatic" -
var numeric 0.001 [0.001,)[0.001, \infty)
variance.model logical FALSE TRUE, FALSE -
tol numeric 0.001 [0,)[0, \infty)
fit logical TRUE TRUE, FALSE -
na.action untyped na.omit -

Super classes

mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrGausspr

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerRegrGausspr$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerRegrGausspr$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

RaphaelS1

References

Karatzoglou, Alexandros, Smola, Alex, Hornik, Kurt, Zeileis, Achim (2004). “kernlab-an S4 package for kernel methods in R.” Journal of statistical software, 11(9), 1–20.

See Also

Examples

# Define the Learner
learner = mlr3::lrn("regr.gausspr")
print(learner)

# Define a Task
task = mlr3::tsk("mtcars")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Regression Gradient Boosting Machine Learner

Description

Gradient Boosting Regression Algorithm. Calls gbm::gbm() from gbm.

Weights are ignored for quantile prediction.

Dictionary

This Learner can be instantiated via lrn():

lrn("regr.gbm")

Meta Information

  • Task type: “regr”

  • Predict Types: “response”, “quantiles”

  • Feature Types: “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, mlr3extralearners, gbm

Parameters

Id Type Default Levels Range
distribution character gaussian gaussian, laplace, poisson, tdist -
n.trees integer 100 [1,)[1, \infty)
interaction.depth integer 1 [1,)[1, \infty)
n.minobsinnode integer 10 [1,)[1, \infty)
shrinkage numeric 0.001 [0,)[0, \infty)
bag.fraction numeric 0.5 [0,1][0, 1]
train.fraction numeric 1 [0,1][0, 1]
cv.folds integer 0 (,)(-\infty, \infty)
keep.data logical FALSE TRUE, FALSE -
verbose logical FALSE TRUE, FALSE -
n.cores integer 1 (,)(-\infty, \infty)
var.monotone untyped - -

Parameter changes

  • keep.data:

    • Actual default: TRUE

    • Adjusted default: FALSE

    • Reason for change: keep.data = FALSE saves memory during model fitting.

  • n.cores:

    • Actual default: NULL

    • Adjusted default: 1

    • Reason for change: Suppressing the automatic internal parallelization if cv.folds > 0.

Super classes

mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrGBM

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerRegrGBM$new()

Method importance()

The importance scores are extracted by gbm::relative.influence() from the model.

Usage
LearnerRegrGBM$importance()
Returns

Named numeric().


Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerRegrGBM$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

be-marc

References

Friedman, H J (2002). “Stochastic gradient boosting.” Computational statistics & data analysis, 38(4), 367–378.

See Also

Examples

# Define the Learner
learner = lrn("regr.gbm")
print(learner)

Generalized Linear Regression

Description

Generalized linear model. Calls stats::glm() from base package 'stats'. For logistic regression please use mlr_learners_classif.log_reg.

Dictionary

This Learner can be instantiated via lrn():

lrn("regr.glm")

Meta Information

  • Task type: “regr”

  • Predict Types: “response”, “se”

  • Feature Types: “logical”, “integer”, “numeric”, “character”, “factor”, “ordered”

  • Required Packages: mlr3, mlr3extralearners, 'stats'

Parameters

Id Type Default Levels Range
singular.ok logical TRUE TRUE, FALSE -
x logical FALSE TRUE, FALSE -
y logical TRUE TRUE, FALSE -
model logical TRUE TRUE, FALSE -
etastart untyped - -
mustart untyped - -
start untyped NULL -
offset untyped - -
family character gaussian gaussian, poisson, quasipoisson, Gamma, inverse.gaussian -
na.action character - na.omit, na.pass, na.fail, na.exclude -
link character - logit, probit, cauchit, cloglog, identity, log, sqrt, 1/mu^2, inverse -
epsilon numeric 1e-08 (,)(-\infty, \infty)
maxit numeric 25 (,)(-\infty, \infty)
trace logical FALSE TRUE, FALSE -
dispersion untyped NULL -
type character link response, link, terms -

Initial parameter values

  • type

    • Actual default: "link"

    • Adjusted default: "response"

    • Reason for change: Response scale more natural for predictions.

Super classes

mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrGlm

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerRegrGlm$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerRegrGlm$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

salauer

References

Hosmer Jr, W D, Lemeshow, Stanley, Sturdivant, X R (2013). Applied logistic regression, volume 398. John Wiley & Sons.

See Also

Examples

# Define the Learner
learner = mlr3::lrn("regr.glm")
print(learner)

# Define a Task
task = mlr3::tsk("mtcars")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Boosted Generalized Linear Regression Learner

Description

Fit a generalized linear regression model using a boosting algorithm. Calls mboost::glmboost() from mboost.

Dictionary

This Learner can be instantiated via lrn():

lrn("regr.glmboost")

Meta Information

  • Task type: “regr”

  • Predict Types: “response”

  • Feature Types: “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, mlr3extralearners, mboost

Parameters

Id Type Default Levels Range
offset numeric NULL (,)(-\infty, \infty)
family character Gaussian Gaussian, Laplace, Huber, Poisson, GammaReg, NBinomial, Hurdle, custom -
custom.family untyped - -
nuirange untyped c(0, 100) -
d numeric NULL (,)(-\infty, \infty)
center logical TRUE TRUE, FALSE -
mstop integer 100 (,)(-\infty, \infty)
nu numeric 0.1 (,)(-\infty, \infty)
risk character inbag inbag, oobag, none -
oobweights untyped NULL -
trace logical FALSE TRUE, FALSE -
stopintern untyped FALSE -
na.action untyped stats::na.omit -
contrasts.arg untyped - -

Super classes

mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrGLMBoost

Methods

Public methods

Inherited methods

Method new()

Create a LearnerRegrGLMBoost object.

Usage
LearnerRegrGLMBoost$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerRegrGLMBoost$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

be-marc

References

Bühlmann, Peter, Yu, Bin (2003). “Boosting with the L 2 loss: regression and classification.” Journal of the American Statistical Association, 98(462), 324–339.

See Also

Examples

# Define the Learner
learner = mlr3::lrn("regr.glmboost")
print(learner)

# Define a Task
task = mlr3::tsk("mtcars")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Regression IBk Learner

Description

Instance based algorithm: K-nearest neighbours regression. Calls RWeka::IBk() from RWeka.

Dictionary

This Learner can be instantiated via lrn():

lrn("regr.IBk")

Meta Information

  • Task type: “regr”

  • Predict Types: “response”

  • Feature Types: “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, mlr3extralearners, RWeka

Parameters

Id Type Default Levels Range
subset untyped - -
na.action untyped - -
weight character - I, F -
K integer 1 [1,)[1, \infty)
E logical FALSE TRUE, FALSE -
W integer 0 [0,)[0, \infty)
X logical FALSE TRUE, FALSE -
A character LinearNNSearch BallTree, CoverTree, FilteredNeighbourSearch, KDTree, LinearNNSearch -
output_debug_info logical FALSE TRUE, FALSE -
do_not_check_capabilities logical FALSE TRUE, FALSE -
num_decimal_places integer 2 [1,)[1, \infty)
batch_size integer 100 [1,)[1, \infty)
options untyped NULL -

Custom mlr3 parameters

  • output_debug_info:

    • original id: output-debug-info

  • do_not_check_capabilities:

    • original id: do-not-check-capabilities

  • num_decimal_places:

    • original id: num-decimal-places

  • batch_size:

    • original id: batch-size

  • Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern

  • weight:

    • original id: I and F

  • Reason for change: original I and F params are interdependent (I can only be TRUE when F is FALSE and vice versa). The easiest way to encode this is to combine I and F into one factor param.

Super classes

mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrIBk

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerRegrIBk$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerRegrIBk$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

henrifnk

References

Aha, W D, Kibler, Dennis, Albert, K M (1991). “Instance-based learning algorithms.” Machine learning, 6(1), 37–66.

See Also

Examples

# Define the Learner
learner = mlr3::lrn("regr.IBk")
print(learner)

# Define a Task
task = mlr3::tsk("mtcars")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Regression KStar Learner

Description

Instance-based regressor which differs from other instance-based learners in that it uses an entropy-based distance function. Calls RWeka::make_Weka_classifier() from RWeka.

Custom mlr3 parameters

  • output_debug_info:

    • original id: output-debug-info

  • do_not_check_capabilities:

    • original id: do-not-check-capabilities

  • num_decimal_places:

    • original id: num-decimal-places

  • batch_size:

    • original id: batch-size

  • Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern

Dictionary

This Learner can be instantiated via lrn():

lrn("regr.kstar")

Meta Information

  • Task type: “regr”

  • Predict Types: “response”

  • Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, RWeka

Parameters

Id Type Default Levels Range
subset untyped - -
na.action untyped - -
B integer 20 (,)(-\infty, \infty)
E logical - TRUE, FALSE -
M character a a, d, m, n -
output_debug_info logical FALSE TRUE, FALSE -
do_not_check_capabilities logical FALSE TRUE, FALSE -
num_decimal_places integer 2 [1,)[1, \infty)
batch_size integer 100 [1,)[1, \infty)
options untyped NULL -

Super classes

mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrKStar

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerRegrKStar$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerRegrKStar$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

damirpolat

References

Cleary JG, Trigg LE (1995). “K*: An Instance-based Learner Using an Entropic Distance Measure.” In 12th International Conference on Machine Learning, 108-114.

See Also

Examples

# Define the Learner
learner = mlr3::lrn("regr.kstar")
print(learner)

# Define a Task
task = mlr3::tsk("mtcars")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Regression Kernlab Support Vector Machine

Description

Support Vector Regression. Calls kernlab::ksvm() from kernlab.

Dictionary

This Learner can be instantiated via lrn():

lrn("regr.ksvm")

Meta Information

  • Task type: “regr”

  • Predict Types: “response”

  • Feature Types: “logical”, “integer”, “numeric”, “character”, “factor”, “ordered”

  • Required Packages: mlr3, mlr3extralearners, kernlab

Parameters

Id Type Default Levels Range
scaled logical TRUE TRUE, FALSE -
type character eps-svr eps-svr, nu-svr, eps-bsvr -
kernel character rbfdot rbfdot, polydot, vanilladot, laplacedot, besseldot, anovadot -
C numeric 1 (,)(-\infty, \infty)
nu numeric 0.2 [0,)[0, \infty)
epsilon numeric 0.1 (,)(-\infty, \infty)
cache integer 40 [1,)[1, \infty)
tol numeric 0.001 [0,)[0, \infty)
shrinking logical TRUE TRUE, FALSE -
sigma numeric - [0,)[0, \infty)
degree integer - [1,)[1, \infty)
scale numeric - [0,)[0, \infty)
order integer - (,)(-\infty, \infty)
offset numeric - (,)(-\infty, \infty)
na.action untyped na.omit -
fit logical TRUE TRUE, FALSE -

Super classes

mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrKSVM

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerRegrKSVM$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerRegrKSVM$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

mboecker

References

Karatzoglou, Alexandros, Smola, Alex, Hornik, Kurt, Zeileis, Achim (2004). “kernlab-an S4 package for kernel methods in R.” Journal of statistical software, 11(9), 1–20.

See Also

Examples

# Define the Learner
learner = mlr3::lrn("regr.ksvm")
print(learner)

# Define a Task
task = mlr3::tsk("mtcars")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

L2-Regularized Support Vector Regression Learner

Description

L2 regularized support vector regression. Calls LiblineaR::LiblineaR() from LiblineaR.

Details

Type of SVR depends on type argument:

  • type = 11 - L2-regularized L2-loss support vector regression (primal)

  • type = 12 – L2-regularized L2-loss support vector regression (dual)

  • type = 13 – L2-regularized L1-loss support vector regression (dual)

Dictionary

This Learner can be instantiated via lrn():

lrn("regr.liblinear")

Meta Information

  • Task type: “regr”

  • Predict Types: “response”

  • Feature Types: “integer”, “numeric”

  • Required Packages: mlr3, mlr3extralearners, LiblineaR

Parameters

Id Type Default Levels Range
type integer 11 [11,13][11, 13]
cost numeric 1 [0,)[0, \infty)
bias numeric 1 (,)(-\infty, \infty)
svr_eps numeric NULL [0,)[0, \infty)
cross integer 0 [0,)[0, \infty)
verbose logical FALSE TRUE, FALSE -
findC logical FALSE TRUE, FALSE -
useInitC logical TRUE TRUE, FALSE -

Initial parameter values

  • svr_eps:

    • Actual default: NULL

    • Initial value: 0.001

    • Reason for change: svr_eps is type dependent and the "type" is handled by the mlr3learner. The default value is set to th default of the respective "type".

Super classes

mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrLiblineaR

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerRegrLiblineaR$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerRegrLiblineaR$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

be-marc

References

Fan, Rong-En, Chang, Kai-Wei, Hsieh, Cho-Jui, Wang, Xiang-Rui, Lin, Chih-Jen (2008). “LIBLINEAR: A library for large linear classification.” the Journal of machine Learning research, 9, 1871–1874.

See Also

Examples

# Define the Learner
learner = mlr3::lrn("regr.liblinear")
print(learner)

# Define a Task
task = mlr3::tsk("mtcars")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Regression LightGBM Learner

Description

Gradient boosting algorithm. Calls lightgbm::lightgbm() from lightgbm. The list of parameters can be found here and in the documentation of lightgbm::lgb.train().

Dictionary

This Learner can be instantiated via lrn():

lrn("regr.lightgbm")

Meta Information

  • Task type: “regr”

  • Predict Types: “response”

  • Feature Types: “logical”, “integer”, “numeric”, “factor”

  • Required Packages: mlr3, mlr3extralearners, lightgbm

Parameters

Id Type Default Levels Range
objective character regression regression, regression_l1, huber, fair, poisson, quantile, mape, gamma, tweedie -
eval untyped - -
verbose integer 1 (,)(-\infty, \infty)
record logical TRUE TRUE, FALSE -
eval_freq integer 1 [1,)[1, \infty)
callbacks untyped - -
reset_data logical FALSE TRUE, FALSE -
boosting character gbdt gbdt, rf, dart, goss -
linear_tree logical FALSE TRUE, FALSE -
learning_rate numeric 0.1 [0,)[0, \infty)
num_leaves integer 31 [1,131072][1, 131072]
tree_learner character serial serial, feature, data, voting -
num_threads integer 0 [0,)[0, \infty)
device_type character cpu cpu, gpu -
seed integer - (,)(-\infty, \infty)
deterministic logical FALSE TRUE, FALSE -
data_sample_strategy character bagging bagging, goss -
force_col_wise logical FALSE TRUE, FALSE -
force_row_wise logical FALSE TRUE, FALSE -
histogram_pool_size integer -1 (,)(-\infty, \infty)
max_depth integer -1 (,)(-\infty, \infty)
min_data_in_leaf integer 20 [0,)[0, \infty)
min_sum_hessian_in_leaf numeric 0.001 [0,)[0, \infty)
bagging_fraction numeric 1 [0,1][0, 1]
bagging_freq integer 0 [0,)[0, \infty)
bagging_seed integer 3 (,)(-\infty, \infty)
bagging_by_query logical FALSE TRUE, FALSE -
feature_fraction numeric 1 [0,1][0, 1]
feature_fraction_bynode numeric 1 [0,1][0, 1]
feature_fraction_seed integer 2 (,)(-\infty, \infty)
extra_trees logical FALSE TRUE, FALSE -
extra_seed integer 6 (,)(-\infty, \infty)
max_delta_step numeric 0 (,)(-\infty, \infty)
lambda_l1 numeric 0 [0,)[0, \infty)
lambda_l2 numeric 0 [0,)[0, \infty)
linear_lambda numeric 0 [0,)[0, \infty)
min_gain_to_split numeric 0 [0,)[0, \infty)
drop_rate numeric 0.1 [0,1][0, 1]
max_drop integer 50 (,)(-\infty, \infty)
skip_drop numeric 0.5 [0,1][0, 1]
xgboost_dart_mode logical FALSE TRUE, FALSE -
uniform_drop logical FALSE TRUE, FALSE -
drop_seed integer 4 (,)(-\infty, \infty)
top_rate numeric 0.2 [0,1][0, 1]
other_rate numeric 0.1 [0,1][0, 1]
min_data_per_group integer 100 [1,)[1, \infty)
max_cat_threshold integer 32 [1,)[1, \infty)
cat_l2 numeric 10 [0,)[0, \infty)
cat_smooth numeric 10 [0,)[0, \infty)
max_cat_to_onehot integer 4 [1,)[1, \infty)
top_k integer 20 [1,)[1, \infty)
monotone_constraints untyped NULL -
monotone_constraints_method character basic basic, intermediate, advanced -
monotone_penalty numeric 0 [0,)[0, \infty)
feature_contri untyped NULL -
forcedsplits_filename untyped "" -
refit_decay_rate numeric 0.9 [0,1][0, 1]
cegb_tradeoff numeric 1 [0,)[0, \infty)
cegb_penalty_split numeric 0 [0,)[0, \infty)
cegb_penalty_feature_lazy untyped - -
cegb_penalty_feature_coupled untyped - -
path_smooth numeric 0 [0,)[0, \infty)
interaction_constraints untyped - -
use_quantized_grad logical TRUE TRUE, FALSE -
num_grad_quant_bins integer 4 (,)(-\infty, \infty)
quant_train_renew_leaf logical FALSE TRUE, FALSE -
stochastic_rounding logical TRUE TRUE, FALSE -
serializable logical TRUE TRUE, FALSE -
max_bin integer 255 [2,)[2, \infty)
max_bin_by_feature untyped NULL -
min_data_in_bin integer 3 [1,)[1, \infty)
bin_construct_sample_cnt integer 200000 [1,)[1, \infty)
data_random_seed integer 1 (,)(-\infty, \infty)
is_enable_sparse logical TRUE TRUE, FALSE -
enable_bundle logical TRUE TRUE, FALSE -
use_missing logical TRUE TRUE, FALSE -
zero_as_missing logical FALSE TRUE, FALSE -
feature_pre_filter logical TRUE TRUE, FALSE -
pre_partition logical FALSE TRUE, FALSE -
two_round logical FALSE TRUE, FALSE -
forcedbins_filename untyped "" -
boost_from_average logical TRUE TRUE, FALSE -
reg_sqrt logical FALSE TRUE, FALSE -
alpha numeric 0.9 [0,)[0, \infty)
fair_c numeric 1 [0,)[0, \infty)
poisson_max_delta_step numeric 0.7 [0,)[0, \infty)
tweedie_variance_power numeric 1.5 [1,2][1, 2]
metric_freq integer 1 [1,)[1, \infty)
num_machines integer 1 [1,)[1, \infty)
local_listen_port integer 12400 [1,)[1, \infty)
time_out integer 120 [1,)[1, \infty)
machines untyped "" -
gpu_platform_id integer -1 (,)(-\infty, \infty)
gpu_device_id integer -1 (,)(-\infty, \infty)
gpu_use_dp logical FALSE TRUE, FALSE -
num_gpu integer 1 [1,)[1, \infty)
start_iteration_predict integer 0 (,)(-\infty, \infty)
num_iteration_predict integer -1 (,)(-\infty, \infty)
pred_early_stop logical FALSE TRUE, FALSE -
pred_early_stop_freq integer 10 (,)(-\infty, \infty)
pred_early_stop_margin numeric 10 (,)(-\infty, \infty)
num_iterations integer 100 [1,)[1, \infty)
early_stopping_rounds integer - [1,)[1, \infty)
early_stopping_min_delta numeric - [0,)[0, \infty)
first_metric_only logical FALSE TRUE, FALSE -

Initial parameter values

  • num_threads:

    • Actual default: 0L

    • Initital value: 1L

    • Reason for change: Prevents accidental conflicts with future.

  • verbose:

    • Actual default: 1L

    • Initial value: -1L

    • Reason for change: Prevents accidental conflicts with mlr messaging system.

Early Stopping and Validation

Early stopping can be used to find the optimal number of boosting rounds. Set early_stopping_rounds to an integer value to monitor the performance of the model on the validation set while training. For information on how to configure the validation set, see the Validation section of mlr3::Learner. The internal validation measure can be set the eval parameter which should be a list of mlr3::Measures, functions, or strings for the internal lightgbm measures. If first_metric_only = FALSE (default), the learner stops when any metric fails to improve.

Super classes

mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrLightGBM

Active bindings

internal_valid_scores

The last observation of the validation scores for all metrics. Extracted from model$evaluation_log

internal_tuned_values

Returns the early stopped iterations if early_stopping_rounds was set during training.

validate

How to construct the internal validation data. This parameter can be either NULL, a ratio, "test", or "predefined".

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerRegrLightGBM$new()

Method importance()

The importance scores are extracted from lbg.importance.

Usage
LearnerRegrLightGBM$importance()
Returns

Named numeric().


Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerRegrLightGBM$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

kapsner

References

Ke, Guolin, Meng, Qi, Finley, Thomas, Wang, Taifeng, Chen, Wei, Ma, Weidong, Ye, Qiwei, Liu, Tie-Yan (2017). “Lightgbm: A highly efficient gradient boosting decision tree.” Advances in neural information processing systems, 30.

See Also

Examples

# Define the Learner
learner = mlr3::lrn("regr.lightgbm")
print(learner)

# Define a Task
task = mlr3::tsk("mtcars")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)
print(learner$importance())

# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Regression Linear Regression Learner From Weka

Description

Linear Regression learner that uses the Akaike criterion for model selection and is able to deal with weighted instances. Calls RWeka::LinearRegression() RWeka.

Custom mlr3 parameters

  • output_debug_info:

    • original id: output-debug-info

  • do_not_check_capabilities:

    • original id: do-not-check-capabilities

  • num_decimal_places:

    • original id: num-decimal-places

  • batch_size:

    • original id: batch-size

  • additional_stats:

    • original id: additional-stats

  • use_qr:

    • original id: use-qr

  • Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern

Dictionary

This Learner can be instantiated via lrn():

lrn("regr.linear_regression")

Meta Information

  • Task type: “regr”

  • Predict Types: “response”

  • Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, RWeka

Parameters

Id Type Default Levels Range
subset untyped - -
na.action untyped - -
S character 0 0, 1, 2 -
C logical FALSE TRUE, FALSE -
R numeric 1e-08 (,)(-\infty, \infty)
minimal logical FALSE TRUE, FALSE -
additional_stats logical FALSE TRUE, FALSE -
use_qr logical FALSE TRUE, FALSE -
output_debug_info logical FALSE TRUE, FALSE -
do_not_check_capabilities logical FALSE TRUE, FALSE -
num_decimal_places integer 2 [1,)[1, \infty)
batch_size integer 100 [1,)[1, \infty)
options untyped NULL -

Super classes

mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrLinearRegression

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerRegrLinearRegression$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerRegrLinearRegression$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

damirpolat

See Also

Examples

# Define the Learner
learner = mlr3::lrn("regr.linear_regression")
print(learner)

# Define a Task
task = mlr3::tsk("mtcars")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Regression Linear Mixed Effects Learner

Description

Linear model with random effects. Calls lme4::lmer() from lme4.

Formula

Although most mlr3 learners don't allow to specify the formula manually, and automatically set it by valling task$formula(), this learner allows to set the formula because it's core functionality depends it. This means that it might not always use all features that are available in the task. Be aware, that this can sometimes lead to unexpected error messages, because mlr3 checks the compatibility between the learner and the task on all available features.

Dictionary

This Learner can be instantiated via lrn():

lrn("regr.lmer")

Meta Information

  • Task type: “regr”

  • Predict Types: “response”

  • Feature Types: “logical”, “integer”, “numeric”, “factor”

  • Required Packages: mlr3, lme4

Parameters

Id Type Default Levels Range
formula untyped - -
REML logical TRUE TRUE, FALSE -
start untyped NULL -
verbose integer 0 [0,)[0, \infty)
offset untyped NULL -
contrasts untyped NULL -
optimizer character nloptwrap Nelder_Mead, bobyqa, nlminbwrap, nloptwrap -
restart_edge logical FALSE TRUE, FALSE -
boundary.tol numeric 1e-05 [0,)[0, \infty)
calc.derivs logical TRUE TRUE, FALSE -
check.nobs.vs.rankZ character ignore ignore, warning, message, stop -
check.nobs.vs.nlev character stop ignore, warning, message, stop -
check.nlev.gtreq.5 character ignore ignore, warning, message, stop -
check.nlev.gtr.1 character stop ignore, warning, message, stop -
check.nobs.vs.nRE character stop ignore, warning, message, stop -
check.rankX character message+drop.cols message+drop.cols, silent.drop.cols, warn+drop.cols, stop.deficient, ignore -
check.scaleX character warning warning, stop, silent.rescale, message+rescale, warn+rescale, ignore -
check.formula.LHS character stop ignore, warning, message, stop -
check.conv.grad untyped "lme4::.makeCC(\"warning\", tol = 2e-3, relTol = NULL)" -
check.conv.singular untyped "lme4::.makeCC(action = \"message\", tol = formals(lme4::isSingular)$tol)" -
check.conv.hess untyped "lme4::.makeCC(action = \"warning\", tol = 1e-6)" -
optCtrl untyped list() -
newparams untyped NULL -
re.form untyped NULL -
random.only logical FALSE TRUE, FALSE -
allow.new.levels logical FALSE TRUE, FALSE -
na.action untyped "stats::na.pass" -

Super classes

mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrLmer

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerRegrLmer$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerRegrLmer$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

s-kganz

References

Bates, M D (2010). “lme4: Mixed-effects modeling with R.”

See Also

Examples

# Define the Learner and set parameter values
learner = lrn("regr.lmer", formula = cmedv ~ (1 | town))

# Define a Task
task = tsk("boston_housing")

learner$train(task)
print(learner$model)

Regression M5P Learner

Description

Implements base routines for generating M5 Model trees and rules. Calls RWeka::M5P() from RWeka.

Custom mlr3 parameters

  • output_debug_info:

    • original id: output-debug-info

  • do_not_check_capabilities:

    • original id: do-not-check-capabilities

  • num_decimal_places:

    • original id: num-decimal-places

  • batch_size:

    • original id: batch-size

  • Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern

Dictionary

This Learner can be instantiated via lrn():

lrn("regr.m5p")

Meta Information

  • Task type: “regr”

  • Predict Types: “response”

  • Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, RWeka

Parameters

Id Type Default Levels Range
subset untyped - -
na.action untyped - -
N logical - TRUE, FALSE -
U logical - TRUE, FALSE -
R logical - TRUE, FALSE -
M integer 4 (,)(-\infty, \infty)
output_debug_info logical FALSE TRUE, FALSE -
do_not_check_capabilities logical FALSE TRUE, FALSE -
num_decimal_places integer 2 [1,)[1, \infty)
batch_size integer 100 [1,)[1, \infty)
L logical - TRUE, FALSE -
options untyped NULL -

Super classes

mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrM5P

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerRegrM5P$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerRegrM5P$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

damirpolat

References

Quinlan RJ (1992). “Learning with Continuous Classes.” In 5th Australian Joint Conference on Artificial Intelligence, 343-348.

Wang Y, Witten IH (1997). “Induction of model trees for predicting continuous classes.” In Poster papers of the 9th European Conference on Machine Learning.

See Also

Examples

# Define the Learner
learner = mlr3::lrn("regr.m5p")
print(learner)

# Define a Task
task = mlr3::tsk("mtcars")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Regression M5Rules Learner

Description

Algorithm for inducing decision lists from model trees. Calls RWeka::M5Rules() from RWeka.

Dictionary

This Learner can be instantiated via lrn():

lrn("regr.M5Rules")

Meta Information

  • Task type: “regr”

  • Predict Types: “response”

  • Feature Types: “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, mlr3extralearners, RWeka

Parameters

Id Type Default Levels Range
subset untyped - -
na.action untyped - -
N logical FALSE TRUE, FALSE -
U logical FALSE TRUE, FALSE -
R logical FALSE TRUE, FALSE -
M integer 4 (,)(-\infty, \infty)
output_debug_info logical FALSE TRUE, FALSE -
do_not_check_capabilities logical FALSE TRUE, FALSE -
num_decimal_places integer 2 [1,)[1, \infty)
batch_size integer 100 [1,)[1, \infty)
options untyped NULL -

Custom mlr3 parameters

  • output_debug_info:

    • original id: output-debug-info

  • do_not_check_capabilities:

    • original id: do-not-check-capabilities

  • num_decimal_places:

    • original id: num-decimal-places

  • batch_size:

    • original id: batch-size

  • Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern

Super classes

mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrM5Rules

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerRegrM5Rules$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerRegrM5Rules$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

henrifnk

References

Holmes, Geoffrey, Hall, Mark, Prank, Eibe (1999). “Generating rule sets from model trees.” In Australasian joint conference on artificial intelligence, 1–12. Springer.

See Also

Examples

# Define the Learner
learner = mlr3::lrn("regr.M5Rules")
print(learner)

# Define a Task
task = mlr3::tsk("mtcars")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Regression Mars Learner

Description

Multivariate Adaptive Regression Splines. Calls mda::mars() from mda.

Dictionary

This Learner can be instantiated via lrn():

lrn("regr.mars")

Meta Information

  • Task type: “regr”

  • Predict Types: “response”

  • Feature Types: “integer”, “numeric”

  • Required Packages: mlr3, mlr3extralearners, mda

Parameters

Id Type Default Levels Range
degree integer 1 [1,)[1, \infty)
nk integer - [1,)[1, \infty)
penalty numeric 2 [0,)[0, \infty)
thresh numeric 0.001 [0,)[0, \infty)
prune logical TRUE TRUE, FALSE -
trace.mars logical FALSE TRUE, FALSE -
forward.step logical FALSE TRUE, FALSE -

Super classes

mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrMars

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerRegrMars$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerRegrMars$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

sumny

References

Friedman, H J (1991). “Multivariate adaptive regression splines.” The annals of statistics, 19(1), 1–67.

See Also

Examples

# Define the Learner
learner = mlr3::lrn("regr.mars")
print(learner)

# Define a Task
task = mlr3::tsk("mtcars")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Regression Model-based Recursive Partitioning Learner

Description

Model-based recursive partitioning algorithm. Calls partykit::mob() from mob.

Dictionary

This Learner can be instantiated via lrn():

lrn("regr.mob")

Meta Information

  • Task type: “regr”

  • Predict Types: “response”, “se”

  • Feature Types: “logical”, “integer”, “numeric”, “character”, “factor”, “ordered”

  • Required Packages: mlr3, mlr3extralearners, partykit, sandwich, coin

Parameters

Id Type Default Levels Range
rhs untyped - -
fit untyped - -
offset untyped - -
cluster untyped - -
alpha numeric 0.05 [0,1][0, 1]
bonferroni logical TRUE TRUE, FALSE -
minsize integer - [1,)[1, \infty)
minsplit integer - [1,)[1, \infty)
minbucket integer - [1,)[1, \infty)
maxdepth integer Inf [0,)[0, \infty)
mtry integer Inf [0,)[0, \infty)
trim numeric 0.1 [0,)[0, \infty)
breakties logical FALSE TRUE, FALSE -
parm untyped - -
dfsplit integer - [0,)[0, \infty)
prune untyped - -
restart logical TRUE TRUE, FALSE -
verbose logical FALSE TRUE, FALSE -
caseweights logical TRUE TRUE, FALSE -
ytype character vector vector, matrix, data.frame -
xtype character matrix vector, matrix, data.frame -
terminal untyped "object" -
inner untyped "object" -
model logical TRUE TRUE, FALSE -
numsplit character left left, center -
catsplit character binary binary, multiway -
vcov character opg opg, info, sandwich -
ordinal character chisq chisq, max, L2 -
nrep integer 10000 [0,)[0, \infty)
applyfun untyped - -
cores integer NULL (,)(-\infty, \infty)
additional untyped - -
predict_fun untyped - -

Super classes

mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrMob

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerRegrMob$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerRegrMob$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

sumny

References

Hothorn T, Zeileis A (2015). “partykit: A Modular Toolkit for Recursive Partytioning in R.” Journal of Machine Learning Research, 16(118), 3905-3909. http://jmlr.org/papers/v16/hothorn15a.html.

Hothorn T, Hornik K, Zeileis A (2006). “Unbiased Recursive Partitioning: A Conditional Inference Framework.” Journal of Computational and Graphical Statistics, 15(3), 651–674. doi:10.1198/106186006x133933, https://doi.org/10.1198/106186006x133933.

See Also

Examples

library(mlr3)
lm_ = function(y, x, start = NULL, weights = NULL, offset = NULL, ...) {
  lm(y ~ 1, ...)
}
learner = LearnerRegrMob$new()
learner$param_set$values$rhs = "."
learner$param_set$values$fit = lm_
learner$feature_types = c("logical", "integer", "numeric", "factor", "ordered")

predict_fun = function(object, newdata, task, .type) {
  preds = predict(object, newdata = newdata, type = "response", se.fit = TRUE)
  cbind(preds$fit, preds$se.fit)
}
learner$param_set$values$predict_fun = predict_fun
task = tsk("mtcars")
ids = partition(task)
learner$train(task, row_ids = ids$train)
learner$predict(task, row_ids = ids$test)

Regression MultilayerPerceptron Learner

Description

Regressor that uses backpropagation to learn a multi-layer perceptron. Calls RWeka::make_Weka_classifier() from RWeka.

Custom mlr3 parameters

  • output_debug_info:

    • original id: output-debug-info

  • do_not_check_capabilities:

    • original id: do-not-check-capabilities

  • num_decimal_places:

    • original id: num-decimal-places

  • batch_size:

    • original id: batch-size

  • Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern

  • G removed:

    • GUI will be opened

  • Reason for change: The parameter is removed because we don't want to launch GUI.

Dictionary

This Learner can be instantiated via lrn():

lrn("regr.multilayer_perceptron")

Meta Information

  • Task type: “regr”

  • Predict Types: “response”

  • Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, RWeka

Parameters

Id Type Default Levels Range
subset untyped - -
na.action untyped - -
L numeric 0.3 [0,1][0, 1]
M numeric 0.2 [0,1][0, 1]
N integer 500 [1,)[1, \infty)
V numeric 0 [0,100][0, 100]
S integer 0 [0,)[0, \infty)
E integer 20 [1,)[1, \infty)
A logical FALSE TRUE, FALSE -
B logical FALSE TRUE, FALSE -
H untyped "a" -
C logical FALSE TRUE, FALSE -
I logical FALSE TRUE, FALSE -
R logical FALSE TRUE, FALSE -
D logical FALSE TRUE, FALSE -
output_debug_info logical FALSE TRUE, FALSE -
do_not_check_capabilities logical FALSE TRUE, FALSE -
num_decimal_places integer 2 [1,)[1, \infty)
batch_size integer 100 [1,)[1, \infty)
options untyped NULL -

Super classes

mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrMultilayerPerceptron

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerRegrMultilayerPerceptron$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerRegrMultilayerPerceptron$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

damirpolat

See Also

Examples

# Define the Learner
learner = mlr3::lrn("regr.multilayer_perceptron")
print(learner)

# Define a Task
task = mlr3::tsk("mtcars")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Regression Priority Lasso Learner

Description

Patient outcome prediction based on multi-omics data taking practitioners’ preferences into account. Calls prioritylasso::prioritylasso() from prioritylasso.

Initial parameter values

  • family is set to "gaussian" and cannot be changed

  • type.measure set to "mse" (cross-validation measure)

Dictionary

This Learner can be instantiated via lrn():

lrn("regr.priority_lasso")

Meta Information

  • Task type: “regr”

  • Predict Types: “response”

  • Feature Types: “logical”, “integer”, “numeric”

  • Required Packages: mlr3, prioritylasso

Parameters

Id Type Default Levels Range
blocks untyped - -
max.coef untyped NULL -
block1.penalization logical TRUE TRUE, FALSE -
lambda.type character lambda.min lambda.min, lambda.1se -
standardize logical TRUE TRUE, FALSE -
nfolds integer 5 [1,)[1, \infty)
foldid untyped NULL -
cvoffset logical FALSE TRUE, FALSE -
cvoffsetnfolds integer 10 [1,)[1, \infty)
handle.missingtestdata character - none, omit.prediction, set.zero, impute.block -
include.allintercepts logical FALSE TRUE, FALSE -
use.blocks untyped "all" -
alignment character lambda lambda, fraction -
alpha numeric 1 [0,1][0, 1]
big numeric 9.9e+35 (,)(-\infty, \infty)
devmax numeric 0.999 [0,1][0, 1]
dfmax integer - [0,)[0, \infty)
eps numeric 1e-06 [0,1][0, 1]
epsnr numeric 1e-08 [0,1][0, 1]
exclude untyped - -
exmx numeric 250 (,)(-\infty, \infty)
fdev numeric 1e-05 [0,1][0, 1]
gamma untyped - -
grouped logical TRUE TRUE, FALSE -
intercept logical TRUE TRUE, FALSE -
keep logical FALSE TRUE, FALSE -
lambda untyped - -
lambda.min.ratio numeric - [0,1][0, 1]
lower.limits untyped -Inf -
maxit integer 100000 [1,)[1, \infty)
mnlam integer 5 [1,)[1, \infty)
mxit integer 100 [1,)[1, \infty)
mxitnr integer 25 [1,)[1, \infty)
nlambda integer 100 [1,)[1, \infty)
offset untyped NULL -
parallel logical FALSE TRUE, FALSE -
penalty.factor untyped - -
pmax integer - [0,)[0, \infty)
pmin numeric 1e-09 [0,1][0, 1]
prec numeric 1e-10 (,)(-\infty, \infty)
standardize.response logical FALSE TRUE, FALSE -
thresh numeric 1e-07 [0,)[0, \infty)
trace.it integer 0 [0,1][0, 1]
type.gaussian character - covariance, naive -
type.logistic character Newton Newton, modified.Newton -
type.multinomial character ungrouped ungrouped, grouped -
upper.limits untyped Inf -
scale.y logical FALSE TRUE, FALSE -
return.x logical TRUE TRUE, FALSE -
predict.gamma numeric gamma.1se (,)(-\infty, \infty)
relax logical FALSE TRUE, FALSE -
s numeric lambda.1se [0,1][0, 1]

Super classes

mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrPriorityLasso

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerRegrPriorityLasso$new()

Method selected_features()

Selected features when coef is positive

Usage
LearnerRegrPriorityLasso$selected_features()
Returns

character().


Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerRegrPriorityLasso$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

HarutyunyanLiana

References

Simon K, Vindi J, Roman H, Tobias H, Anne-Laure B (2018). “Priority-Lasso: a simple hierarchical approach to the prediction of clinical outcome using multi-omics data.” BMC Bioinformatics, 19. doi:10.1186/s12859-018-2344-6.

See Also

Examples

# Define the Learner and set parameter values
learner = lrn("regr.priority_lasso",
  blocks = list(bp1 = 1:4, bp2 = 5:9, bp3 = 10:28, bp4 = 29:1028))
print(learner)

# Define a Task
task = mlr3::as_task_regr(prioritylasso::pl_data, target = "pl_out")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

# print the model
print(learner$model)

 # Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Regression Random Forest Learner from Weka

Description

Class for constructing a forest of random trees. Calls RWeka::make_Weka_classifier() from RWeka.

Custom mlr3 parameters

  • output_debug_info:

    • original id: output-debug-info

  • do_not_check_capabilities:

    • original id: do-not-check-capabilities

  • num_decimal_places:

    • original id: num-decimal-places

  • batch_size:

    • original id: batch-size

  • store_out_of_bag_predictions:

    • original id: store-out-of-bag-predictions

  • output_out_of_bag_complexity_statistics:

    • original id: output-out-of-bag-complexity-statistics

  • num_slots:

    • original id: num-slots

  • Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern

  • attribute-importance removed:

    • Compute and output attribute importance (mean impurity decrease method)

  • Reason for change: The parameter is removed because it's unclear how to actually use it.

Dictionary

This Learner can be instantiated via lrn():

lrn("regr.random_forest_weka")

Meta Information

  • Task type: “regr”

  • Predict Types: “response”

  • Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, RWeka

Parameters

Id Type Default Levels Range
subset untyped - -
na.action untyped - -
P numeric 100 [0,100][0, 100]
O logical FALSE TRUE, FALSE -
store_out_of_bag_predictions logical FALSE TRUE, FALSE -
output_out_of_bag_complexity_statistics logical FALSE TRUE, FALSE -
print logical FALSE TRUE, FALSE -
I integer 100 [1,)[1, \infty)
num_slots integer 1 (,)(-\infty, \infty)
K integer 0 (,)(-\infty, \infty)
M integer 1 [1,)[1, \infty)
V numeric 0.001 (,)(-\infty, \infty)
S integer 1 (,)(-\infty, \infty)
depth integer 0 [0,)[0, \infty)
N integer 0 (,)(-\infty, \infty)
U logical FALSE TRUE, FALSE -
B logical FALSE TRUE, FALSE -
output_debug_info logical FALSE TRUE, FALSE -
do_not_check_capabilities logical FALSE TRUE, FALSE -
num_decimal_places integer 2 [1,)[1, \infty)
batch_size integer 100 [1,)[1, \infty)
options untyped NULL -

Super classes

mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrRandomForestWeka

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerRegrRandomForestWeka$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerRegrRandomForestWeka$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

damirpolat

References

Breiman, Leo (2001). “Random Forests.” Machine Learning, 45(1), 5–32. ISSN 1573-0565, doi:10.1023/A:1010933404324.

See Also

Examples

# Define the Learner
learner = mlr3::lrn("regr.random_forest_weka")
print(learner)

# Define a Task
task = mlr3::tsk("mtcars")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Regression Random Tree Learner

Description

Tree that considers K randomly chosen attributes at each node. Calls RWeka::make_Weka_classifier() from RWeka.

Custom mlr3 parameters

  • output_debug_info:

    • original id: output-debug-info

  • do_not_check_capabilities:

    • original id: do-not-check-capabilities

  • num_decimal_places:

    • original id: num-decimal-places

  • batch_size:

    • original id: batch-size

  • Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern

Dictionary

This Learner can be instantiated via lrn():

lrn("regr.random_tree")

Meta Information

  • Task type: “regr”

  • Predict Types: “response”

  • Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, RWeka

Parameters

Id Type Default Levels Range
subset untyped - -
na.action untyped - -
K integer 0 [0,)[0, \infty)
M integer 1 [1,)[1, \infty)
V numeric 0.001 (,)(-\infty, \infty)
S integer 1 (,)(-\infty, \infty)
depth integer 0 [0,)[0, \infty)
N integer 0 [0,)[0, \infty)
U logical FALSE TRUE, FALSE -
B logical FALSE TRUE, FALSE -
output_debug_info logical FALSE TRUE, FALSE -
do_not_check_capabilities logical FALSE TRUE, FALSE -
num_decimal_places integer 2 [1,)[1, \infty)
batch_size integer 100 [1,)[1, \infty)
options untyped NULL -

Super classes

mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrRandomTree

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerRegrRandomTree$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerRegrRandomTree$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

damirpolat

See Also

Examples

# Define the Learner
learner = mlr3::lrn("regr.random_tree")
print(learner)

# Define a Task
task = mlr3::tsk("mtcars")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Regression Random Forest Learner

Description

Random forest for regression. Calls randomForest::randomForest() from randomForest.

Dictionary

This Learner can be instantiated via lrn():

lrn("regr.randomForest")

Meta Information

  • Task type: “regr”

  • Predict Types: “response”

  • Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, mlr3extralearners, randomForest

Parameters

Id Type Default Levels Range
ntree integer 500 [1,)[1, \infty)
mtry integer - [1,)[1, \infty)
replace logical TRUE TRUE, FALSE -
strata untyped - -
sampsize untyped - -
nodesize integer 5 [1,)[1, \infty)
maxnodes integer - [1,)[1, \infty)
importance character FALSE mse, nudepurity, none -
localImp logical FALSE TRUE, FALSE -
proximity logical FALSE TRUE, FALSE -
oob.prox logical - TRUE, FALSE -
norm.votes logical TRUE TRUE, FALSE -
do.trace logical FALSE TRUE, FALSE -
keep.forest logical TRUE TRUE, FALSE -
keep.inbag logical FALSE TRUE, FALSE -
predict.all logical FALSE TRUE, FALSE -
nodes logical FALSE TRUE, FALSE -

Super classes

mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrRandomForest

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerRegrRandomForest$new()

Method importance()

The importance scores are extracted from the slot importance. Parameter 'importance' must be set to either "mse" or "nodepurity".

Usage
LearnerRegrRandomForest$importance()
Returns

Named numeric().


Method oob_error()

OOB errors are extracted from the model slot mse.

Usage
LearnerRegrRandomForest$oob_error()
Returns

numeric(1).


Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerRegrRandomForest$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

pat-s

References

Breiman, Leo (2001). “Random Forests.” Machine Learning, 45(1), 5–32. ISSN 1573-0565, doi:10.1023/A:1010933404324.

See Also

Examples

# Define the Learner
learner = mlr3::lrn("regr.randomForest", importance = "mse")
print(learner)

# Define a Task
task = mlr3::tsk("mtcars")
# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)
print(learner$importance())

# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Regression Decision Tree Learner

Description

Fast decision tree learner. Calls RWeka::make_Weka_classifier() from RWeka.

Custom mlr3 parameters

  • output_debug_info:

    • original id: output-debug-info

  • do_not_check_capabilities:

    • original id: do-not-check-capabilities

  • num_decimal_places:

    • original id: num-decimal-places

  • batch_size:

    • original id: batch-size

  • Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern

Dictionary

This Learner can be instantiated via lrn():

lrn("regr.reptree")

Meta Information

  • Task type: “regr”

  • Predict Types: “response”

  • Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, RWeka

Parameters

Id Type Default Levels Range
subset untyped - -
na.action untyped - -
M integer 2 (,)(-\infty, \infty)
V numeric 0.001 (,)(-\infty, \infty)
N integer 3 (,)(-\infty, \infty)
S integer 1 (,)(-\infty, \infty)
P logical - TRUE, FALSE -
L integer -1 (,)(-\infty, \infty)
I integer 0 (,)(-\infty, \infty)
R logical FALSE TRUE, FALSE -
output_debug_info logical FALSE TRUE, FALSE -
do_not_check_capabilities logical FALSE TRUE, FALSE -
num_decimal_places integer 2 [1,)[1, \infty)
batch_size integer 100 [1,)[1, \infty)
options untyped NULL -

Super classes

mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrREPTree

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerRegrREPTree$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerRegrREPTree$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

damirpolat

See Also

Examples

# Define the Learner
learner = mlr3::lrn("regr.reptree")
print(learner)

# Define a Task
task = mlr3::tsk("mtcars")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Regression Random Forest SRC Learner

Description

Random forest for regression. Calls randomForestSRC::rfsrc() from randomForestSRC.

Dictionary

This Learner can be instantiated via lrn():

lrn("regr.rfsrc")

Meta Information

  • Task type: “regr”

  • Predict Types: “response”

  • Feature Types: “logical”, “integer”, “numeric”, “factor”

  • Required Packages: mlr3, mlr3extralearners, randomForestSRC

Parameters

Id Type Default Levels Range
ntree integer 500 [1,)[1, \infty)
mtry integer - [1,)[1, \infty)
mtry.ratio numeric - [0,1][0, 1]
nodesize integer 15 [1,)[1, \infty)
nodedepth integer - [1,)[1, \infty)
splitrule character mse mse, quantile.regr, la.quantile.regr -
nsplit integer 10 [0,)[0, \infty)
importance character FALSE FALSE, TRUE, none, permute, random, anti -
block.size integer 10 [1,)[1, \infty)
bootstrap character by.root by.root, by.node, none, by.user -
samptype character swor swor, swr -
samp untyped - -
membership logical FALSE TRUE, FALSE -
sampsize untyped - -
sampsize.ratio numeric - [0,1][0, 1]
na.action character na.omit na.omit, na.impute -
nimpute integer 1 [1,)[1, \infty)
ntime integer - [1,)[1, \infty)
cause integer - [1,)[1, \infty)
proximity character FALSE FALSE, TRUE, inbag, oob, all -
distance character FALSE FALSE, TRUE, inbag, oob, all -
forest.wt character FALSE FALSE, TRUE, inbag, oob, all -
xvar.wt untyped - -
split.wt untyped - -
forest logical TRUE TRUE, FALSE -
var.used character FALSE FALSE, all.trees, by.tree -
split.depth character FALSE FALSE, all.trees, by.tree -
seed integer - (,1](-\infty, -1]
do.trace logical FALSE TRUE, FALSE -
statistics logical FALSE TRUE, FALSE -
get.tree untyped - -
outcome character train train, test -
ptn.count integer 0 [0,)[0, \infty)
cores integer 1 [1,)[1, \infty)
save.memory logical FALSE TRUE, FALSE -
perf.type character - none -
case.depth logical FALSE TRUE, FALSE -

Custom mlr3 parameters

  • mtry: This hyperparameter can alternatively be set via the added hyperparameter mtry.ratio as mtry = max(ceiling(mtry.ratio * n_features), 1). Note that mtry and mtry.ratio are mutually exclusive.

  • sampsize: This hyperparameter can alternatively be set via the added hyperparameter sampsize.ratio as sampsize = max(ceiling(sampsize.ratio * n_obs), 1). Note that sampsize and sampsize.ratio are mutually exclusive.

  • cores: This value is set as the option rf.cores during training and is set to 1 by default.

Super classes

mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrRandomForestSRC

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerRegrRandomForestSRC$new()

Method importance()

The importance scores are extracted from the model slot importance.

Usage
LearnerRegrRandomForestSRC$importance()
Returns

Named numeric().


Method selected_features()

Selected features are extracted from the model slot var.used.

Usage
LearnerRegrRandomForestSRC$selected_features()
Returns

character().


Method oob_error()

OOB error extracted from the model slot err.rate.

Usage
LearnerRegrRandomForestSRC$oob_error()
Returns

numeric().


Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerRegrRandomForestSRC$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

RaphaelS1

References

Breiman, Leo (2001). “Random Forests.” Machine Learning, 45(1), 5–32. ISSN 1573-0565, doi:10.1023/A:1010933404324.

See Also

Examples

# Define the Learner
learner = mlr3::lrn("regr.rfsrc", importance = "TRUE")
print(learner)

# Define a Task
task = mlr3::tsk("mtcars")
# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)
print(learner$importance())

# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Regression Random Planted Forest Learner

Description

Random Planted Forest: A directly interpretable tree ensemble.

Calls randomPlantedForest::rpf() from 'randomPlantedForest'.

Dictionary

This Learner can be instantiated via lrn():

lrn("regr.rpf")

Meta Information

  • Task type: “regr”

  • Predict Types: “response”

  • Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, randomPlantedForest

Parameters

Id Type Default Levels Range
max_interaction integer 1 [0,)[0, \infty)
max_interaction_ratio numeric - [0,1][0, 1]
max_interaction_limit integer - [1,)[1, \infty)
ntrees integer 50 [1,)[1, \infty)
splits integer 30 [1,)[1, \infty)
split_try integer 10 [1,)[1, \infty)
t_try numeric 0.4 [0,1][0, 1]
deterministic logical FALSE TRUE, FALSE -
nthreads integer 1 [1,)[1, \infty)
cv logical FALSE TRUE, FALSE -
purify logical FALSE TRUE, FALSE -

Custom mlr3 parameters

  • max_interaction:

    • This hyperparameter can alternatively be set via max_interaction_ratio as max_interaction = max(ceiling(max_interaction_ratio * n_features), 1). The parameter max_interaction_limit can optionally be set as an upper bound, such that max_interaction_ratio * min(n_features, max_interaction_limit) is used instead. This is analogous to mtry.ratio in classif.ranger, with max_interaction_limit as an additional constraint. The parameter max_interaction_limit is initialized to Inf.

Installation

Package 'randomPlantedForest' is not on CRAN and has to be installed from GitHub via remotes::install_github("PlantedML/randomPlantedForest").

Super classes

mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrRandomPlantedForest

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerRegrRandomPlantedForest$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerRegrRandomPlantedForest$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

jemus42

References

Hiabu, Munir, Mammen, Enno, Meyer, T. J (2023). “Random Planted Forest: a directly interpretable tree ensemble.” arXiv preprint arXiv:2012.14563. doi:10.48550/ARXIV.2012.14563.

See Also

Examples

# Define the Learner
learner = mlr3::lrn("regr.rpf")
print(learner)

# Define a Task
task = mlr3::tsk("mtcars")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Regression Response Surface Model Learner

Description

Fit a linear model with a response-surface component. Calls rsm::rsm() from rsm.

Custom mlr3 parameters

  • modelfun: This parameter controls how the formula for rsm::rsm() is created. Possible values are:

    • "FO" - first order

    • "TWI" - wo-way interactions, this is with 1st oder terms

    • "SO" - full second order

Dictionary

This Learner can be instantiated via lrn():

lrn("regr.rsm")

Meta Information

  • Task type: “regr”

  • Predict Types: “response”

  • Feature Types: “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, rsm

Parameters

Id Type Default Levels
modelfun character - FO, TWI, SO

Super classes

mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrRSM

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerRegrRSM$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerRegrRSM$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

sebffischer

References

Lenth, V R (2010). “Response-surface methods in R, using rsm.” Journal of Statistical Software, 32, 1–17.

See Also

Examples

# Define the Learner
learner = mlr3::lrn("regr.rsm")
print(learner)

# Define a Task
task = mlr3::tsk("mtcars")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Regression Relevance Vector Machine Learner

Description

Bayesian version of the support vector machine. Parameters sigma, degree, scale, offset, order, length, lambda, and normalized are added to make tuning kpar easier. If kpar is provided then these new parameters are ignored. If none are provided then the default "automatic" is used for kpar. Calls kernlab::rvm() from package kernlab.

Dictionary

This Learner can be instantiated via lrn():

lrn("regr.rvm")

Meta Information

  • Task type: “regr”

  • Predict Types: “response”

  • Feature Types: “logical”, “integer”, “numeric”, “character”, “factor”, “ordered”

  • Required Packages: mlr3, mlr3extralearners, kernlab

Parameters

Id Type Default Levels Range
kernel character rbfdot rbfdot, polydot, vanilladot, tanhdot, laplacedot, besseldot, anovadot, splinedot, stringdot -
sigma numeric - (,)(-\infty, \infty)
degree numeric - (,)(-\infty, \infty)
scale numeric - (,)(-\infty, \infty)
offset numeric - (,)(-\infty, \infty)
order numeric - (,)(-\infty, \infty)
length integer - [0,)[0, \infty)
lambda numeric - (,)(-\infty, \infty)
normalized logical - TRUE, FALSE -
kpar untyped "automatic" -
alpha untyped 5 -
var numeric 0.1 [0.001,)[0.001, \infty)
var.fix logical FALSE TRUE, FALSE -
iterations integer 100 [0,)[0, \infty)
tol numeric 2.220446e-16 [0,)[0, \infty)
minmaxdiff numeric 0.001 [0,)[0, \infty)
verbosity logical FALSE TRUE, FALSE -
fit logical TRUE TRUE, FALSE -
na.action untyped na.omit -

Super classes

mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrRVM

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerRegrRVM$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerRegrRVM$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

RaphaelS1

References

Karatzoglou, Alexandros, Smola, Alex, Hornik, Kurt, Zeileis, Achim (2004). “kernlab-an S4 package for kernel methods in R.” Journal of statistical software, 11(9), 1–20.

See Also

Examples

# Define the Learner
learner = mlr3::lrn("regr.rvm")
print(learner)

# Define a Task
task = mlr3::tsk("mtcars")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Regression Stochastic Gradient Descent Learner

Description

Stochastic Gradient Descent for learning various linear models. Calls RWeka::make_Weka_classifier() from RWeka.

Initial parameter values

  • F:

    • Has only 3 out of 5 original loss functions: 2 = squared loss (regression), 3 = epsilon insensitive loss (regression) and 4 = Huber loss (regression) with 2 (squared loss) being the new default

    • Reason for change: this learner should only contain loss functions appropriate for regression tasks

Custom mlr3 parameters

  • output_debug_info:

    • original id: output-debug-info

  • do_not_check_capabilities:

    • original id: do-not-check-capabilities

  • num_decimal_places:

    • original id: num-decimal-places

  • batch_size:

    • original id: batch-size

  • Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern

Dictionary

This Learner can be instantiated via lrn():

lrn("regr.sgd")

Meta Information

  • Task type: “regr”

  • Predict Types: “response”

  • Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, RWeka

Parameters

Id Type Default Levels Range
subset untyped - -
na.action untyped - -
F character 2 2, 3, 4 -
L numeric 0.01 (,)(-\infty, \infty)
R numeric 1e-04 (,)(-\infty, \infty)
E integer 500 (,)(-\infty, \infty)
C numeric 0.001 (,)(-\infty, \infty)
N logical - TRUE, FALSE -
M logical - TRUE, FALSE -
S integer 1 (,)(-\infty, \infty)
output_debug_info logical FALSE TRUE, FALSE -
do_not_check_capabilities logical FALSE TRUE, FALSE -
num_decimal_places integer 2 [1,)[1, \infty)
batch_size integer 100 [1,)[1, \infty)
options untyped NULL -

Super classes

mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrSGD

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerRegrSGD$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerRegrSGD$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

damirpolat

See Also

Examples

# Define the Learner
learner = mlr3::lrn("regr.sgd")
print(learner)

# Define a Task
task = mlr3::tsk("mtcars")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Regression SimpleLinearRegression Learner from Weka

Description

Simple linear regression model that picks the attribute that results in the lowest squared error. Calls RWeka::make_Weka_classifier() from RWeka.

Custom mlr3 parameters

  • output_debug_info:

    • original id: output-debug-info

  • do_not_check_capabilities:

    • original id: do-not-check-capabilities

  • num_decimal_places:

    • original id: num-decimal-places

  • batch_size:

    • original id: batch-size

  • additional_stats:

    • original id: additional-stats

  • Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern

Dictionary

This Learner can be instantiated via lrn():

lrn("regr.simple_linear_regression")

Meta Information

  • Task type: “regr”

  • Predict Types: “response”

  • Feature Types: “integer”, “numeric”

  • Required Packages: mlr3, RWeka

Parameters

Id Type Default Levels Range
subset untyped - -
na.action untyped - -
additional_stats logical FALSE TRUE, FALSE -
output_debug_info logical FALSE TRUE, FALSE -
do_not_check_capabilities logical FALSE TRUE, FALSE -
num_decimal_places integer 2 [1,)[1, \infty)
batch_size integer 100 [1,)[1, \infty)
options untyped NULL -

Super classes

mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrSimpleLinearRegression

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerRegrSimpleLinearRegression$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerRegrSimpleLinearRegression$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

damirpolat

See Also

Examples

# Define the Learner
learner = mlr3::lrn("regr.simple_linear_regression")
print(learner)

# Define a Task
task = mlr3::tsk("mtcars")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Regression Support Vector Machine Learner

Description

Support Vector Machine for regression. Calls RWeka::make_Weka_classifier() from RWeka.

Custom mlr3 parameters

  • output_debug_info:

    • original id: output-debug-info

  • do_not_check_capabilities:

    • original id: do-not-check-capabilities

  • num_decimal_places:

    • original id: num-decimal-places

  • batch_size:

    • original id: batch-size

  • T_improved:

    • original id: T

  • V_improved:

    • original id: V

  • P_improved:

    • original id: P

  • L_improved:

    • original id: L (duplicated L for when I is set to RegSMOImproved)

  • W_improved:

    • original id: W

  • C_poly:

    • original id: C

  • E_poly:

    • original id: E

  • L_poly:

    • original id: L (duplicated L for when K is set to PolyKernel)

  • Reason for change: This learner contains changed ids of the following control arguments since their ids contain irregular pattern

Dictionary

This Learner can be instantiated via lrn():

lrn("regr.smo_reg")

Meta Information

  • Task type: “regr”

  • Predict Types: “response”

  • Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, RWeka

Parameters

Id Type Default Levels Range
subset untyped - -
na.action untyped - -
C numeric 1 (,)(-\infty, \infty)
N character 0 0, 1, 2 -
I character RegSMOImproved RegSMO, RegSMOImproved -
K character PolyKernel NormalizedPolyKernel, PolyKernel, Puk, RBFKernel, StringKernel -
T_improved numeric 0.001 (,)(-\infty, \infty)
V_improved logical TRUE TRUE, FALSE -
P_improved numeric 1e-12 (,)(-\infty, \infty)
L_improved numeric 0.001 (,)(-\infty, \infty)
W_improved integer 1 (,)(-\infty, \infty)
C_poly integer 250007 (,)(-\infty, \infty)
E_poly numeric 1 (,)(-\infty, \infty)
L_poly logical FALSE TRUE, FALSE -
output_debug_info logical FALSE TRUE, FALSE -
do_not_check_capabilities logical FALSE TRUE, FALSE -
num_decimal_places integer 2 [1,)[1, \infty)
batch_size integer 100 [1,)[1, \infty)
options untyped NULL -

Super classes

mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrSMOreg

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerRegrSMOreg$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerRegrSMOreg$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

damirpolat

References

Shevade S, Keerthi S, Bhattacharyya C, Murthy K (1999). “Improvements to the SMO Algorithm for SVM Regression.” In IEEE Transactions on Neural Networks.

See Also

Examples

# Define the Learner
learner = mlr3::lrn("regr.smo_reg")
print(learner)

# Define a Task
task = mlr3::tsk("mtcars")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Survival Akritas Estimator Learner

Description

Survival akritas estimator. Calls survivalmodels::akritas() from package 'survivalmodels'.

Prediction types

This learner returns two prediction types:

  1. distr: a survival matrix in two dimensions, where observations are represented in rows and time points in columns. Calculated using the internal survivalmodels::predict.akritas() function. The survival matrix uses the unique time points from the training set. We advise to set the parameter ntime which allows to adjust the granularity of these time points to a reasonable number (e.g. 150). This avoids large execution times during prediction.

  2. crank: the expected mortality using survivalmodels::surv_to_risk().

Dictionary

This Learner can be instantiated via lrn():

lrn("surv.akritas")

Meta Information

Parameters

Id Type Default Levels Range
lambda numeric 0.5 [0,1][0, 1]
reverse logical FALSE TRUE, FALSE -
ntime integer NULL [1,)[1, \infty)
round_time integer 2 [0,)[0, \infty)

Installation

Package 'survivalmodels' is not on CRAN and has to be install from GitHub via remotes::install_github("RaphaelS1/survivalmodels").

Super classes

mlr3::Learner -> mlr3proba::LearnerSurv -> LearnerSurvAkritas

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerSurvAkritas$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerSurvAkritas$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

RaphaelS1

References

Akritas, G M (1994). “Nearest neighbor estimation of a bivariate distribution under random censoring.” The Annals of Statistics, 1299–1327.

See Also

Examples

# Define the Learner
learner = mlr3::lrn("surv.akritas")
print(learner)

# Define a Task
task = mlr3::tsk("grace")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Accelerated Oblique Random Survival Forest Learner

Description

Accelerated oblique random survival forest. Calls aorsf::orsf() from aorsf. Note that although the learner has the property "missing" and it can in principle deal with missing values, the behaviour has to be configured using the parameter na_action.

Initial parameter values

  • n_thread: This parameter is initialized to 1 (default is 0) to avoid conflicts with the mlr3 parallelization.

  • mtry:

    • This hyperparameter can alternatively be set via the added hyperparameter mtry_ratio as mtry = max(ceiling(mtry_ratio * n_features), 1). Note that mtry and mtry_ratio are mutually exclusive.

Prediction types

This learner returns three prediction types:

  1. distr: a survival matrix in two dimensions, where observations are represented in rows and (unique event) time points in columns. Calculated using the internal predict.ObliqueForest() function.

  2. response: the restricted mean survival time of each test observation, derived from the survival matrix prediction (distr).

  3. crank: the expected mortality using mlr3proba::.surv_return().

Dictionary

This Learner can be instantiated via lrn():

lrn("surv.aorsf")

Meta Information

  • Task type: “surv”

  • Predict Types: “crank”, “distr”, “response”

  • Feature Types: “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, mlr3proba, mlr3extralearners, aorsf, pracma

Parameters

Id Type Default Levels Range
n_tree integer 500 [1,)[1, \infty)
n_split integer 5 [1,)[1, \infty)
n_retry integer 3 [0,)[0, \infty)
n_thread integer 0 [0,)[0, \infty)
pred_aggregate logical TRUE TRUE, FALSE -
pred_simplify logical FALSE TRUE, FALSE -
oobag logical FALSE TRUE, FALSE -
mtry integer NULL [1,)[1, \infty)
mtry_ratio numeric - [0,1][0, 1]
sample_with_replacement logical TRUE TRUE, FALSE -
sample_fraction numeric 0.632 [0,1][0, 1]
control_type character fast fast, cph, net -
split_rule character logrank logrank, cstat -
control_fast_do_scale logical FALSE TRUE, FALSE -
control_fast_ties character efron efron, breslow -
control_cph_ties character efron efron, breslow -
control_cph_eps numeric 1e-09 [0,)[0, \infty)
control_cph_iter_max integer 20 [1,)[1, \infty)
control_net_alpha numeric 0.5 (,)(-\infty, \infty)
control_net_df_target integer NULL [1,)[1, \infty)
leaf_min_events integer 1 [1,)[1, \infty)
leaf_min_obs integer 5 [1,)[1, \infty)
split_min_events integer 5 [1,)[1, \infty)
split_min_obs integer 10 [1,)[1, \infty)
split_min_stat numeric NULL [0,)[0, \infty)
oobag_pred_type character risk none, surv, risk, chf, mort -
importance character anova none, anova, negate, permute -
importance_max_pvalue numeric 0.01 [1e04,0.9999][1e-04, 0.9999]
tree_seeds integer NULL [1,)[1, \infty)
oobag_pred_horizon numeric NULL [0,)[0, \infty)
oobag_eval_every integer NULL [1,)[1, \infty)
oobag_fun untyped NULL -
attach_data logical TRUE TRUE, FALSE -
verbose_progress logical FALSE TRUE, FALSE -
na_action character fail fail, omit, impute_meanmode -

Super classes

mlr3::Learner -> mlr3proba::LearnerSurv -> LearnerSurvAorsf

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerSurvAorsf$new()

Method oob_error()

OOB concordance error extracted from the model slot eval_oobag$stat_values

Usage
LearnerSurvAorsf$oob_error()
Returns

numeric().


Method importance()

The importance scores are extracted from the model.

Usage
LearnerSurvAorsf$importance()
Returns

Named numeric().


Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerSurvAorsf$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

bcjaeger

References

Jaeger BC, Long DL, Long DM, Sims M, Szychowski JM, Min Y, Mcclure LA, Howard G, Simon N (2019). “Oblique random survival forests.” The Annals of Applied Statistics, 13(3). doi:10.1214/19-aoas1261.

Jaeger BC, Welden S, Lenoir K, Speiser JL, Segar MW, Pandey A, Pajewski NM (2023). “Accelerated and interpretable oblique random survival forests.” Journal of Computational and Graphical Statistics, 1–16. doi:10.1080/10618600.2023.2231048.

See Also

Examples

# Define the Learner
learner = mlr3::lrn("surv.aorsf")
print(learner)

# Define a Task
task = mlr3::tsk("grace")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)
print(learner$importance())

# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Survival Bayesian Additive Regression Trees Learner

Description

Fits a Bayesian Additive Regression Trees (BART) learner to right-censored survival data. Calls BART::mc.surv.bart() from BART.

Prediction types

This learner returns two prediction types:

  1. distr: a 3d survival array with observations as 1st dimension, time points as 2nd and the posterior draws as 3rd dimension. Calculated using the internal predict.survbart() function.

  2. crank: the expected mortality using mlr3proba::.surv_return(). The parameter which.curve decides which posterior draw (3rd dimension) will be used for the calculation of the expected mortality. Note that the median posterior is by default used for the calculation of survival measures that require a distr prediction, see more info on PredictionSurv.

Initial parameter values

  • mc.cores is initialized to 1 to avoid threading conflicts with future.

Custom mlr3 parameters

  • quiet allows to suppress messages generated by the wrapped C++ code. Is initialized to TRUE.

  • importance allows to choose the type of importance. Default is count, see documentation of method ⁠$importance()⁠ for more details.

  • which.curve allows to choose which posterior draw will be used for the calculation of the crank prediction. If between (0,1) it is taken as the quantile of the curves otherwise if greater than 1 it is taken as the curve index, can also be 'mean'. By default the median posterior is used, i.e. which.curve is 0.5.

Dictionary

This Learner can be instantiated via lrn():

lrn("surv.bart")

Meta Information

  • Task type: “surv”

  • Predict Types: “crank”, “distr”

  • Feature Types: “logical”, “integer”, “numeric”

  • Required Packages: mlr3, mlr3proba, BART

Parameters

Id Type Default Levels Range
K numeric NULL [1,)[1, \infty)
events untyped NULL -
ztimes untyped NULL -
zdelta untyped NULL -
sparse logical FALSE TRUE, FALSE -
theta numeric 0 (,)(-\infty, \infty)
omega numeric 1 (,)(-\infty, \infty)
a numeric 0.5 [0.5,1][0.5, 1]
b numeric 1 (,)(-\infty, \infty)
augment logical FALSE TRUE, FALSE -
rho numeric NULL (,)(-\infty, \infty)
usequants logical FALSE TRUE, FALSE -
rm.const logical TRUE TRUE, FALSE -
type character pbart pbart, lbart -
ntype integer - [1,3][1, 3]
k numeric 2 [0,)[0, \infty)
power numeric 2 [0,)[0, \infty)
base numeric 0.95 [0,1][0, 1]
offset numeric NULL (,)(-\infty, \infty)
ntree integer 50 [1,)[1, \infty)
numcut integer 100 [1,)[1, \infty)
ndpost integer 1000 [1,)[1, \infty)
nskip integer 250 [0,)[0, \infty)
keepevery integer 10 [1,)[1, \infty)
printevery integer 100 [1,)[1, \infty)
seed integer 99 (,)(-\infty, \infty)
mc.cores integer 2 [1,)[1, \infty)
nice integer 19 [0,19][0, 19]
openmp logical TRUE TRUE, FALSE -
quiet logical TRUE TRUE, FALSE -
importance character count count, prob -
which.curve numeric - [0,)[0, \infty)

Super classes

mlr3::Learner -> mlr3proba::LearnerSurv -> LearnerSurvLearnerSurvBART

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerSurvLearnerSurvBART$new()

Method importance()

Two types of importance scores are supported based on the value of the parameter importance:

  1. prob: The mean selection probability of each feature in the trees, extracted from the slot varprob.mean. If sparse = FALSE (default), this is a fixed constant. Recommended to use this option when sparse = TRUE.

  2. count: The mean observed count of each feature in the trees (average number of times the feature was used in a tree decision rule across all posterior draws), extracted from the slot varcount.mean. This is the default importance scores.

In both cases, higher values signify more important variables.

Usage
LearnerSurvLearnerSurvBART$importance()
Returns

Named numeric().


Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerSurvLearnerSurvBART$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

bblodfon

References

Sparapani, Rodney, Spanbauer, Charles, McCulloch, Robert (2021). “Nonparametric machine learning and efficient computation with bayesian additive regression trees: the BART R package.” Journal of Statistical Software, 97, 1–66.

Chipman, A H, George, I E, McCulloch, E R (2010). “BART: Bayesian additive regression trees.” The Annals of Applied Statistics, 4(1), 266–298.

See Also

Examples

lrn("surv.bart")

Gradient Boosting with Regression Trees Survival Learner

Description

Gradient boosting with regression trees for survival analysis. Calls mboost::blackboost() from mboost.

Details

distr prediction made by mboost::survFit().

Prediction types

This learner returns two to three prediction types:

  1. lp: a vector containing the linear predictors (relative risk scores), where each score corresponds to a specific test observation. Calculated using mboost::predict.blackboost(). If the family parameter is not "coxph", -lp is returned, since non-coxph families represent AFT-style distributions where lower lp values indicate higher risk.

  2. crank: same as lp.

  3. distr: a survival matrix in two dimensions, where observations are represented in rows and time points in columns. Calculated using mboost::survFit(). This prediction type is present only when the family distribution parameter is equal to "coxph" (default). By default the Breslow estimator is used for computing the baseline hazard.

Dictionary

This Learner can be instantiated via lrn():

lrn("surv.blackboost")

Meta Information

Parameters

Id Type Default Levels Range
family character coxph coxph, weibull, loglog, lognormal, gehan, cindex, custom -
custom.family untyped - -
nuirange untyped c(0, 100) -
offset untyped - -
center logical TRUE TRUE, FALSE -
mstop integer 100 [0,)[0, \infty)
nu numeric 0.1 [0,1][0, 1]
risk character - inbag, oobag, none -
stopintern logical FALSE TRUE, FALSE -
trace logical FALSE TRUE, FALSE -
oobweights untyped - -
teststat character quadratic quadratic, maximum -
splitstat character quadratic quadratic, maximum -
splittest logical FALSE TRUE, FALSE -
testtype character Bonferroni Bonferroni, MonteCarlo, Univariate, Teststatistic -
maxpts integer 25000 [1,)[1, \infty)
abseps numeric 0.001 (,)(-\infty, \infty)
releps numeric 0 (,)(-\infty, \infty)
nmax untyped - -
alpha numeric 0.05 [0,1][0, 1]
mincriterion numeric 0.95 [0,1][0, 1]
logmincriterion numeric -0.05129329 (,0](-\infty, 0]
minsplit integer 20 [0,)[0, \infty)
minbucket integer 7 [0,)[0, \infty)
minprob numeric 0.01 [0,1][0, 1]
stump logical FALSE TRUE, FALSE -
lookahead logical FALSE TRUE, FALSE -
MIA logical FALSE TRUE, FALSE -
nresample integer 9999 [1,)[1, \infty)
tol numeric 1.490116e-08 [0,)[0, \infty)
maxsurrogate integer 0 [0,)[0, \infty)
mtry integer - [0,)[0, \infty)
maxdepth integer - [0,)[0, \infty)
multiway logical FALSE TRUE, FALSE -
splittry integer 2 [1,)[1, \infty)
intersplit logical FALSE TRUE, FALSE -
majority logical FALSE TRUE, FALSE -
caseweights logical TRUE TRUE, FALSE -
sigma numeric 0.1 [0,1][0, 1]
ipcw untyped 1 -
na.action untyped stats::na.omit -

Super classes

mlr3::Learner -> mlr3proba::LearnerSurv -> LearnerSurvBlackBoost

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerSurvBlackBoost$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerSurvBlackBoost$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

RaphaelS1

References

Bühlmann, Peter, Yu, Bin (2003). “Boosting with the L 2 loss: regression and classification.” Journal of the American Statistical Association, 98(462), 324–339.

See Also

Examples

# Define the Learner
learner = mlr3::lrn("surv.blackboost")
print(learner)

# Define a Task
task = mlr3::tsk("grace")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Survival Conditional Random Forest Learner

Description

A random forest based on conditional inference trees (ctree). Calls partykit::cforest() from partykit.

Prediction types

This learner returns two prediction types:

  1. distr: a survival matrix in two dimensions, where observations are represented in rows and time points in columns. Calculated using the internal partykit::predict.cforest() function.

  2. crank: the expected mortality using mlr3proba::.surv_return().

Dictionary

This Learner can be instantiated via lrn():

lrn("surv.cforest")

Meta Information

Parameters

Id Type Default Levels Range
ntree integer 500 [1,)[1, \infty)
replace logical FALSE TRUE, FALSE -
fraction numeric 0.632 [0,1][0, 1]
mtry integer - [0,)[0, \infty)
mtryratio numeric - [0,1][0, 1]
applyfun untyped - -
cores integer NULL (,)(-\infty, \infty)
trace logical FALSE TRUE, FALSE -
offset untyped - -
cluster untyped - -
na.action untyped "stats::na.pass" -
scores untyped - -
teststat character quadratic quadratic, maximum -
splitstat character quadratic quadratic, maximum -
splittest logical FALSE TRUE, FALSE -
testtype character Univariate Bonferroni, MonteCarlo, Univariate, Teststatistic -
nmax untyped - -
alpha numeric 0.05 [0,1][0, 1]
mincriterion numeric 0.95 [0,1][0, 1]
logmincriterion numeric -0.05129329 (,)(-\infty, \infty)
minsplit integer 20 [1,)[1, \infty)
minbucket integer 7 [1,)[1, \infty)
minprob numeric 0.01 [0,1][0, 1]
stump logical FALSE TRUE, FALSE -
lookahead logical FALSE TRUE, FALSE -
MIA logical FALSE TRUE, FALSE -
nresample integer 9999 [1,)[1, \infty)
tol numeric 1.490116e-08 [0,)[0, \infty)
maxsurrogate integer 0 [0,)[0, \infty)
numsurrogate logical FALSE TRUE, FALSE -
maxdepth integer Inf [0,)[0, \infty)
multiway logical FALSE TRUE, FALSE -
splittry integer 2 [0,)[0, \infty)
intersplit logical FALSE TRUE, FALSE -
majority logical FALSE TRUE, FALSE -
caseweights logical TRUE TRUE, FALSE -
saveinfo logical FALSE TRUE, FALSE -
update logical FALSE TRUE, FALSE -
splitflavour character ctree ctree, exhaustive -
maxvar integer - [1,)[1, \infty)
OOB logical FALSE TRUE, FALSE -
simplify logical TRUE TRUE, FALSE -
scale logical TRUE TRUE, FALSE -
maxpts integer 25000 (,)(-\infty, \infty)
abseps numeric 0.001 [0,)[0, \infty)
releps numeric 0 [0,)[0, \infty)

Initial parameter values

  • cores: This parameter is initialized to 1 (default is NULL) to avoid threading conflicts with future.

Custom mlr3 parameters

  • mtry:

    • This hyperparameter can alternatively be set via the added hyperparameter mtryratio as mtry = max(ceiling(mtryratio * n_features), 1). Note that mtry and mtryratio are mutually exclusive.

Super classes

mlr3::Learner -> mlr3proba::LearnerSurv -> LearnerSurvCForest

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerSurvCForest$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerSurvCForest$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

RaphaelS1

References

Hothorn T, Zeileis A (2015). “partykit: A Modular Toolkit for Recursive Partytioning in R.” Journal of Machine Learning Research, 16(118), 3905-3909. http://jmlr.org/papers/v16/hothorn15a.html.

Hothorn T, Hornik K, Zeileis A (2006). “Unbiased Recursive Partitioning: A Conditional Inference Framework.” Journal of Computational and Graphical Statistics, 15(3), 651–674. doi:10.1198/106186006x133933, https://doi.org/10.1198/106186006x133933.

See Also

Examples

task = tsk("rats")
learner = lrn("surv.cforest", ntree = 50)
splits = partition(task)
learner$train(task, splits$train)
pred = learner$predict(task, splits$test)

Survival Cox Model with Likelihood Based Boosting Learner

Description

Fit a Survival Cox model with a likelihood based boosting algorithm. Calls CoxBoost::CoxBoost() from package 'CoxBoost'.

Details

Use LearnerSurvCoxboost and LearnerSurvCVCoxboost for Cox boosting without and with internal cross-validation of boosting step number, respectively. Tuning using the internal optimizer in LearnerSurvCVCoxboost may be more efficient when tuning stepno only. However, for tuning multiple hyperparameters, mlr3tuning and LearnerSurvCoxboost will likely give better results.

Prediction types

This learner returns three prediction types, using the internal predict.CoxBoost() function:

  1. lp: a vector containing the linear predictors (relative risk scores), where each score corresponds to a specific test observation.

  2. crank: same as lp.

  3. distr: a 2d survival matrix, with observations as rows and time points as columns. The internal transformation uses the Breslow estimator to compute the baseline hazard and compose the survival distributions from the lp predictions.

Dictionary

This Learner can be instantiated via lrn():

lrn("surv.coxboost")

Meta Information

Parameters

Id Type Default Levels Range
unpen.index untyped - -
standardize logical TRUE TRUE, FALSE -
stepno integer 100 [0,)[0, \infty)
penalty numeric - (,)(-\infty, \infty)
criterion character pscore pscore, score, hpscore, hscore -
stepsize.factor numeric 1 (,)(-\infty, \infty)
sf.scheme character sigmoid sigmoid, linear -
pendistmat untyped - -
connected.index untyped - -
x.is.01 logical FALSE TRUE, FALSE -
return.score logical TRUE TRUE, FALSE -
trace logical FALSE TRUE, FALSE -
at.step untyped - -

Installation

The package 'CoxBoost' is not on CRAN and has to be installed from GitHub using remotes::install_github("binderh/CoxBoost").

Super classes

mlr3::Learner -> mlr3proba::LearnerSurv -> LearnerSurvCoxboost

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerSurvCoxboost$new()

Method selected_features()

Returns the set of selected features which have non-zero coefficients. Calls the internal coef.CoxBoost() function.

Usage
LearnerSurvCoxboost$selected_features(at_step = NULL)
Arguments
at_step

(integer(1))
Which boosting step to get the coefficients for. If no step is given (default), the final boosting step is used.

Returns

(character()) vector of feature names.


Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerSurvCoxboost$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

RaphaelS1

References

Binder, Harald, Allignol, Arthur, Schumacher, Martin, Beyersmann, Jan (2009). “Boosting for high-dimensional time-to-event data with competing risks.” Bioinformatics, 25(7), 890–896.

See Also

Examples

# Define the Learner
learner = mlr3::lrn("surv.coxboost")
print(learner)

# Define a Task
task = mlr3::tsk("grace")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Survival Cox-Time Learner

Description

Cox-Time survival model. Calls survivalmodels::coxtime() from package 'survivalmodels'.

Prediction types

This learner returns two prediction types:

  1. distr: a survival matrix in two dimensions, where observations are represented in rows and time points in columns. Calculated using the internal survivalmodels::predict.pycox() function.

  2. crank: the expected mortality using survivalmodels::surv_to_risk().

Dictionary

This Learner can be instantiated via lrn():

lrn("surv.coxtime")

Meta Information

Parameters

Id Type Default Levels Range
frac numeric 0 [0,1][0, 1]
standardize_time logical FALSE TRUE, FALSE -
log_duration logical FALSE TRUE, FALSE -
with_mean logical TRUE TRUE, FALSE -
with_std logical TRUE TRUE, FALSE -
num_nodes untyped c(32L, 32L) -
batch_norm logical TRUE TRUE, FALSE -
dropout numeric - [0,1][0, 1]
activation character relu celu, elu, gelu, glu, hardshrink, hardsigmoid, hardswish, hardtanh, relu6, leakyrelu, ... -
device untyped - -
shrink numeric 0 [0,)[0, \infty)
optimizer character adam adadelta, adagrad, adam, adamax, adamw, asgd, rmsprop, rprop, sgd, sparse_adam -
rho numeric 0.9 (,)(-\infty, \infty)
eps numeric 1e-08 (,)(-\infty, \infty)
lr numeric 1 (,)(-\infty, \infty)
weight_decay numeric 0 (,)(-\infty, \infty)
learning_rate numeric 0.01 (,)(-\infty, \infty)
lr_decay numeric 0 (,)(-\infty, \infty)
betas untyped c(0.9, 0.999) -
amsgrad logical FALSE TRUE, FALSE -
lambd numeric 1e-04 [0,)[0, \infty)
alpha numeric 0.75 [0,)[0, \infty)
t0 numeric 1e+06 (,)(-\infty, \infty)
momentum numeric 0 (,)(-\infty, \infty)
centered logical TRUE TRUE, FALSE -
etas untyped c(0.5, 1.2) -
step_sizes untyped c(1e-06, 50) -
dampening numeric 0 (,)(-\infty, \infty)
nesterov logical FALSE TRUE, FALSE -
batch_size integer 256 (,)(-\infty, \infty)
epochs integer 1 [1,)[1, \infty)
verbose logical TRUE TRUE, FALSE -
num_workers integer 0 (,)(-\infty, \infty)
shuffle logical TRUE TRUE, FALSE -
best_weights logical FALSE TRUE, FALSE -
early_stopping logical FALSE TRUE, FALSE -
min_delta numeric 0 (,)(-\infty, \infty)
patience integer 10 (,)(-\infty, \infty)

Installation

Package 'survivalmodels' is not on CRAN and has to be install from GitHub via remotes::install_github("RaphaelS1/survivalmodels").

Super classes

mlr3::Learner -> mlr3proba::LearnerSurv -> LearnerSurvCoxtime

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerSurvCoxtime$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerSurvCoxtime$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

RaphaelS1

References

Kvamme, Håvard, Borgan Ø, Scheel I (2019). “Time-to-event prediction with neural networks and Cox regression.” arXiv preprint arXiv:1907.00825.

See Also

Examples

lrn("surv.coxtime")

Survival Conditional Inference Tree Learner

Description

Survival Partition Tree where a significance test is used to determine the univariate splits. Calls partykit::ctree() from partykit.

Prediction types

This learner returns two prediction types:

  1. distr: a survival matrix in two dimensions, where observations are represented in rows and time points in columns. Calculated using the internal partykit::predict.party() function.

  2. crank: the expected mortality using mlr3proba::.surv_return().

Dictionary

This Learner can be instantiated via lrn():

lrn("surv.ctree")

Meta Information

Parameters

Id Type Default Levels Range
teststat character quadratic quadratic, maximum -
splitstat character quadratic quadratic, maximum -
splittest logical FALSE TRUE, FALSE -
testtype character Bonferroni Bonferroni, MonteCarlo, Univariate, Teststatistic -
nmax untyped - -
alpha numeric 0.05 [0,1][0, 1]
mincriterion numeric 0.95 [0,1][0, 1]
logmincriterion numeric - (,)(-\infty, \infty)
minsplit integer 20 [1,)[1, \infty)
minbucket integer 7 [1,)[1, \infty)
minprob numeric 0.01 [0,)[0, \infty)
stump logical FALSE TRUE, FALSE -
lookahead logical FALSE TRUE, FALSE -
MIA logical FALSE TRUE, FALSE -
nresample integer 9999 [1,)[1, \infty)
tol numeric - [0,)[0, \infty)
maxsurrogate integer 0 [0,)[0, \infty)
numsurrogate logical FALSE TRUE, FALSE -
mtry integer Inf [0,)[0, \infty)
maxdepth integer Inf [0,)[0, \infty)
maxvar integer - [1,)[1, \infty)
multiway logical FALSE TRUE, FALSE -
splittry integer 2 [0,)[0, \infty)
intersplit logical FALSE TRUE, FALSE -
majority logical FALSE TRUE, FALSE -
caseweights logical FALSE TRUE, FALSE -
applyfun untyped - -
cores integer NULL (,)(-\infty, \infty)
saveinfo logical TRUE TRUE, FALSE -
update logical FALSE TRUE, FALSE -
splitflavour character ctree ctree, exhaustive -
offset untyped - -
cluster untyped - -
scores untyped - -
doFit logical TRUE TRUE, FALSE -
maxpts integer 25000 (,)(-\infty, \infty)
abseps numeric 0.001 [0,)[0, \infty)
releps numeric 0 [0,)[0, \infty)

Super classes

mlr3::Learner -> mlr3proba::LearnerSurv -> LearnerSurvCTree

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerSurvCTree$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerSurvCTree$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

adibender

References

Hothorn T, Zeileis A (2015). “partykit: A Modular Toolkit for Recursive Partytioning in R.” Journal of Machine Learning Research, 16(118), 3905-3909. http://jmlr.org/papers/v16/hothorn15a.html.

Hothorn T, Hornik K, Zeileis A (2006). “Unbiased Recursive Partitioning: A Conditional Inference Framework.” Journal of Computational and Graphical Statistics, 15(3), 651–674. doi:10.1198/106186006x133933, https://doi.org/10.1198/106186006x133933.

See Also

Examples

# Define the Learner
learner = mlr3::lrn("surv.ctree")
print(learner)

# Define a Task
task = mlr3::tsk("grace")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Survival Cox Model with Cross-Validation Likelihood Based Boosting Learner

Description

Fits a survival Cox model using likelihood based boosting and internal cross-validation for the number of steps. Calls CoxBoost::CoxBoost() or CoxBoost::cv.CoxBoost() from package 'CoxBoost'.

Details

Use LearnerSurvCoxboost and LearnerSurvCVCoxboost for Cox boosting without and with internal cross-validation of boosting step number, respectively. Tuning using the internal optimizer in LearnerSurvCVCoxboost may be more efficient when tuning stepno only. However, for tuning multiple hyperparameters, mlr3tuning and LearnerSurvCoxboost will likely give better results.

If penalty == "optimCoxBoostPenalty" then CoxBoost::optimCoxBoostPenalty is used to determine the penalty value to be used in CoxBoost::cv.CoxBoost.

Dictionary

This Learner can be instantiated via lrn():

lrn("surv.cv_coxboost")

Meta Information

Parameters

Id Type Default Levels Range
maxstepno integer 100 [0,)[0, \infty)
K integer 10 [2,)[2, \infty)
type character verweij verweij, naive -
folds untyped NULL -
minstepno integer 50 [0,)[0, \infty)
start.penalty numeric - (,)(-\infty, \infty)
iter.max integer 10 [1,)[1, \infty)
upper.margin numeric 0.05 [0,1][0, 1]
unpen.index untyped - -
standardize logical TRUE TRUE, FALSE -
penalty numeric - (,)(-\infty, \infty)
criterion character pscore pscore, score, hpscore, hscore -
stepsize.factor numeric 1 (,)(-\infty, \infty)
sf.scheme character sigmoid sigmoid, linear -
pendistmat untyped - -
connected.index untyped - -
x.is.01 logical FALSE TRUE, FALSE -
return.score logical TRUE TRUE, FALSE -
trace logical FALSE TRUE, FALSE -
at.step untyped - -

Installation

The package 'CoxBoost' is not on CRAN and has to be installed from GitHub using remotes::install_github("binderh/CoxBoost").

Prediction types

This learner returns three prediction types, using the internal predict.CoxBoost() function:

  1. lp: a vector containing the linear predictors (relative risk scores), where each score corresponds to a specific test observation.

  2. crank: same as lp.

  3. distr: a 2d survival matrix, with observations as rows and time points as columns. The internal transformation uses the Breslow estimator to compute the baseline hazard and compose the survival distributions from the lp predictions.

Super classes

mlr3::Learner -> mlr3proba::LearnerSurv -> LearnerSurvCVCoxboost

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerSurvCVCoxboost$new()

Method selected_features()

Returns the set of selected features which have non-zero coefficients. Calls the internal coef.CoxBoost() function.

Usage
LearnerSurvCVCoxboost$selected_features(at_step = NULL)
Arguments
at_step

(integer(1))
Which boosting step to get the coefficients for. If no step is given (default), the final boosting step is used.

Returns

(character()) vector of feature names.


Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerSurvCVCoxboost$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

RaphaelS1

References

Binder, Harald, Allignol, Arthur, Schumacher, Martin, Beyersmann, Jan (2009). “Boosting for high-dimensional time-to-event data with competing risks.” Bioinformatics, 25(7), 890–896.

See Also

Examples

task = tsk("rats")
task$col_roles$feature = c("litter", "rx")
learner = lrn("surv.cv_coxboost", maxstepno = 20)
splits = partition(task)
learner$train(task, splits$train)
pred = learner$predict(task, splits$test)

Cross-Validated GLM with Elastic Net Regularization Survival Learner

Description

Generalized linear models with elastic net regularization. Calls glmnet::cv.glmnet() from package glmnet.

Initial parameter values

  • family is set to "cox" and cannot be changed.

Prediction types

This learner returns three prediction types:

  1. lp: a vector containing the linear predictors (relative risk scores), where each score corresponds to a specific test observation. Calculated using glmnet::predict.cv.glmnet().

  2. crank: same as lp.

  3. distr: a survival matrix in two dimensions, where observations are represented in rows and time points in columns. Calculated using glmnet::survfit.cv.glmnet(). Parameters stype and ctype relate to how lp predictions are transformed into survival predictions and are described in survival::survfit.coxph(). By default the Breslow estimator is used for computing the baseline hazard.

Dictionary

This Learner can be instantiated via lrn():

lrn("surv.cv_glmnet")

Meta Information

  • Task type: “surv”

  • Predict Types: “crank”, “distr”, “lp”

  • Feature Types: “logical”, “integer”, “numeric”

  • Required Packages: mlr3, mlr3proba, mlr3extralearners, glmnet

Parameters

Id Type Default Levels Range
alignment character lambda lambda, fraction -
alpha numeric 1 [0,1][0, 1]
big numeric 9.9e+35 (,)(-\infty, \infty)
devmax numeric 0.999 [0,1][0, 1]
dfmax integer - [0,)[0, \infty)
eps numeric 1e-06 [0,1][0, 1]
epsnr numeric 1e-08 [0,1][0, 1]
exclude untyped - -
exmx numeric 250 (,)(-\infty, \infty)
fdev numeric 1e-05 [0,1][0, 1]
foldid untyped NULL -
gamma untyped - -
grouped logical TRUE TRUE, FALSE -
intercept logical TRUE TRUE, FALSE -
keep logical FALSE TRUE, FALSE -
lambda untyped - -
lambda.min.ratio numeric - [0,1][0, 1]
lower.limits untyped -Inf -
maxit integer 100000 [1,)[1, \infty)
mnlam integer 5 [1,)[1, \infty)
mxit integer 100 [1,)[1, \infty)
mxitnr integer 25 [1,)[1, \infty)
nfolds integer 10 [3,)[3, \infty)
nlambda integer 100 [1,)[1, \infty)
offset untyped NULL -
newoffset untyped - -
parallel logical FALSE TRUE, FALSE -
penalty.factor untyped - -
pmax integer - [0,)[0, \infty)
pmin numeric 1e-09 [0,1][0, 1]
prec numeric 1e-10 (,)(-\infty, \infty)
predict.gamma numeric gamma.1se (,)(-\infty, \infty)
relax logical FALSE TRUE, FALSE -
s numeric lambda.1se [0,)[0, \infty)
standardize logical TRUE TRUE, FALSE -
standardize.response logical FALSE TRUE, FALSE -
thresh numeric 1e-07 [0,)[0, \infty)
trace.it integer 0 [0,1][0, 1]
type.gaussian character - covariance, naive -
type.logistic character Newton Newton, modified.Newton -
type.measure character deviance deviance, C -
type.multinomial character ungrouped ungrouped, grouped -
upper.limits untyped Inf -
stype integer 2 [1,2][1, 2]
ctype integer - [1,2][1, 2]

Super classes

mlr3::Learner -> mlr3proba::LearnerSurv -> LearnerSurvCVGlmnet

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerSurvCVGlmnet$new()

Method selected_features()

Returns the set of selected features as reported by glmnet::predict.glmnet() with type set to "nonzero".

Usage
LearnerSurvCVGlmnet$selected_features(lambda = NULL)
Arguments
lambda

(numeric(1))
Custom lambda, defaults to the active lambda depending on parameter set.

Returns

(character()) of feature names.


Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerSurvCVGlmnet$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

be-marc

References

Friedman J, Hastie T, Tibshirani R (2010). “Regularization Paths for Generalized Linear Models via Coordinate Descent.” Journal of Statistical Software, 33(1), 1–22. doi:10.18637/jss.v033.i01.

See Also

Examples

# Define the Learner
learner = mlr3::lrn("surv.cv_glmnet")
print(learner)

# Define a Task
task = mlr3::tsk("grace")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Survival DeepHit Learner

Description

Neural network 'Deephit' for survival analysis. Calls survivalmodels::deephit() from pacakge 'survivalmodels'.

Details

Custom nets can be used in this learner either using the survivalmodels::build_pytorch_net utility function or using torch via reticulate. The number of output channels depends on the number of discretised time-points, i.e. the parameters cuts or cutpoints.

Prediction types

This learner returns two prediction types:

  1. distr: a survival matrix in two dimensions, where observations are represented in rows and time points in columns. Calculated using the internal survivalmodels::predict.pycox() function.

  2. crank: the expected mortality using survivalmodels::surv_to_risk().

Dictionary

This Learner can be instantiated via lrn():

lrn("surv.deephit")

Meta Information

Parameters

Id Type Default Levels Range
frac numeric 0 [0,1][0, 1]
cuts integer 10 [1,)[1, \infty)
cutpoints untyped - -
scheme character equidistant equidistant, quantiles -
cut_min numeric 0 [0,)[0, \infty)
num_nodes untyped c(32L, 32L) -
batch_norm logical TRUE TRUE, FALSE -
dropout numeric - [0,1][0, 1]
activation character relu celu, elu, gelu, glu, hardshrink, hardsigmoid, hardswish, hardtanh, relu6, leakyrelu, ... -
custom_net untyped - -
device untyped - -
mod_alpha numeric 0.2 [0,1][0, 1]
sigma numeric 0.1 [0,)[0, \infty)
optimizer character adam adadelta, adagrad, adam, adamax, adamw, asgd, rmsprop, rprop, sgd, sparse_adam -
rho numeric 0.9 (,)(-\infty, \infty)
eps numeric 1e-08 (,)(-\infty, \infty)
lr numeric 1 (,)(-\infty, \infty)
weight_decay numeric 0 (,)(-\infty, \infty)
learning_rate numeric 0.01 (,)(-\infty, \infty)
lr_decay numeric 0 (,)(-\infty, \infty)
betas untyped c(0.9, 0.999) -
amsgrad logical FALSE TRUE, FALSE -
lambd numeric 1e-04 [0,)[0, \infty)
alpha numeric 0.75 [0,)[0, \infty)
t0 numeric 1e+06 (,)(-\infty, \infty)
momentum numeric 0 (,)(-\infty, \infty)
centered logical TRUE TRUE, FALSE -
etas untyped c(0.5, 1.2) -
step_sizes untyped c(1e-06, 50) -
dampening numeric 0 (,)(-\infty, \infty)
nesterov logical FALSE TRUE, FALSE -
batch_size integer 256 (,)(-\infty, \infty)
epochs integer 1 [1,)[1, \infty)
verbose logical TRUE TRUE, FALSE -
num_workers integer 0 (,)(-\infty, \infty)
shuffle logical TRUE TRUE, FALSE -
best_weights logical FALSE TRUE, FALSE -
early_stopping logical FALSE TRUE, FALSE -
min_delta numeric 0 (,)(-\infty, \infty)
patience integer 10 (,)(-\infty, \infty)
interpolate logical FALSE TRUE, FALSE -
inter_scheme character const_hazard const_hazard, const_pdf -
sub integer 10 [1,)[1, \infty)

Installation

Package 'survivalmodels' is not on CRAN and has to be install from GitHub via remotes::install_github("RaphaelS1/survivalmodels").

Super classes

mlr3::Learner -> mlr3proba::LearnerSurv -> LearnerSurvDeephit

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerSurvDeephit$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerSurvDeephit$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

RaphaelS1

References

Lee, Changhee, Zame, William, Yoon, Jinsung, Van Der Schaar, Mihaela (2018). “Deephit: A deep learning approach to survival analysis with competing risks.” In Proceedings of the AAAI conference on artificial intelligence, volume 32 number 1.

See Also

Examples

lrn("surv.deephit")

Survival DeepSurv Learner

Description

DeepSurv fits a neural network based on the partial likelihood from a Cox PH. Calls survivalmodels::deepsurv() from package 'survivalmodels'.

Prediction types

This learner returns two prediction types:

  1. distr: a survival matrix in two dimensions, where observations are represented in rows and time points in columns. Calculated using the internal survivalmodels::predict.pycox() function.

  2. crank: the expected mortality using survivalmodels::surv_to_risk().

Dictionary

This Learner can be instantiated via lrn():

lrn("surv.deepsurv")

Meta Information

Parameters

Id Type Default Levels Range
frac numeric 0 [0,1][0, 1]
num_nodes untyped c(32L, 32L) -
batch_norm logical TRUE TRUE, FALSE -
dropout numeric - [0,1][0, 1]
activation character relu celu, elu, gelu, glu, hardshrink, hardsigmoid, hardswish, hardtanh, relu6, leakyrelu, ... -
device untyped - -
optimizer character adam adadelta, adagrad, adam, adamax, adamw, asgd, rmsprop, rprop, sgd, sparse_adam -
rho numeric 0.9 (,)(-\infty, \infty)
eps numeric 1e-08 (,)(-\infty, \infty)
lr numeric 1 (,)(-\infty, \infty)
weight_decay numeric 0 (,)(-\infty, \infty)
learning_rate numeric 0.01 (,)(-\infty, \infty)
lr_decay numeric 0 (,)(-\infty, \infty)
betas untyped c(0.9, 0.999) -
amsgrad logical FALSE TRUE, FALSE -
lambd numeric 1e-04 [0,)[0, \infty)
alpha numeric 0.75 [0,)[0, \infty)
t0 numeric 1e+06 (,)(-\infty, \infty)
momentum numeric 0 (,)(-\infty, \infty)
centered logical TRUE TRUE, FALSE -
etas untyped c(0.5, 1.2) -
step_sizes untyped c(1e-06, 50) -
dampening numeric 0 (,)(-\infty, \infty)
nesterov logical FALSE TRUE, FALSE -
batch_size integer 256 (,)(-\infty, \infty)
epochs integer 1 [1,)[1, \infty)
verbose logical TRUE TRUE, FALSE -
num_workers integer 0 (,)(-\infty, \infty)
shuffle logical TRUE TRUE, FALSE -
best_weights logical FALSE TRUE, FALSE -
early_stopping logical FALSE TRUE, FALSE -
min_delta numeric 0 (,)(-\infty, \infty)
patience integer 10 (,)(-\infty, \infty)

Installation

Package 'survivalmodels' is not on CRAN and has to be install from GitHub via remotes::install_github("RaphaelS1/survivalmodels").

Super classes

mlr3::Learner -> mlr3proba::LearnerSurv -> LearnerSurvDeepsurv

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerSurvDeepsurv$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerSurvDeepsurv$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

RaphaelS1

References

Katzman, L J, Shaham, Uri, Cloninger, Alexander, Bates, Jonathan, Jiang, Tingting, Kluger, Yuval (2018). “DeepSurv: personalized treatment recommender system using a Cox proportional hazards deep neural network.” BMC medical research methodology, 18(1), 1–12.

See Also

Examples

lrn("surv.deepsurv")

Survival DNNSurv Learner

Description

Fits a neural network based on pseudo-conditional survival probabilities. Calls survivalmodels::dnnsurv() from package 'survivalmodels'.

Details

Custom nets can be used in this learner either using the survivalmodels::build_keras_net utility function or using keras. The number of output channels should be of length 1 and number of input channels is the number of features plus number of cuts.

Prediction types

This learner returns two prediction types:

  1. distr: a survival matrix in two dimensions, where observations are represented in rows and time points in columns. Calculated using the internal survivalmodels::predict.dnnsurv() function.

  2. crank: the expected mortality using survivalmodels::surv_to_risk().

Dictionary

This Learner can be instantiated via lrn():

lrn("surv.dnnsurv")

Meta Information

Parameters

Id Type Default Levels Range
cuts integer 5 [1,)[1, \infty)
cutpoints untyped - -
custom_model untyped - -
optimizer character adam adadelta, adagrad, adamax, adam, nadam, rmsprop, sgd -
lr numeric 0.02 [0,)[0, \infty)
beta_1 numeric 0.9 [0,1][0, 1]
beta_2 numeric 0.999 [0,1][0, 1]
epsilon numeric - [0,)[0, \infty)
decay numeric 0 [0,)[0, \infty)
clipnorm numeric - (,)(-\infty, \infty)
clipvalue numeric - (,)(-\infty, \infty)
momentum numeric 0 [0,)[0, \infty)
nesterov logical FALSE TRUE, FALSE -
loss_weights untyped - -
weighted_metrics untyped - -
early_stopping logical FALSE TRUE, FALSE -
min_delta numeric 0 [0,)[0, \infty)
patience integer 0 [0,)[0, \infty)
verbose integer 0 [0,2][0, 2]
baseline numeric - (,)(-\infty, \infty)
restore_best_weights logical FALSE TRUE, FALSE -
batch_size integer 32 [1,)[1, \infty)
epochs integer 10 [1,)[1, \infty)
validation_split numeric 0 [0,1][0, 1]
shuffle logical TRUE TRUE, FALSE -
sample_weight untyped - -
initial_epoch integer 0 [0,)[0, \infty)
steps_per_epoch integer - [1,)[1, \infty)
validation_steps integer - [1,)[1, \infty)
steps integer - [0,)[0, \infty)
callbacks untyped - -
rho numeric 0.95 (,)(-\infty, \infty)
global_clipnorm numeric - (,)(-\infty, \infty)
use_ema logical - TRUE, FALSE -
ema_momentum numeric 0.99 (,)(-\infty, \infty)
ema_overwrite_frequency numeric - (,)(-\infty, \infty)
jit_compile logical TRUE TRUE, FALSE -
initial_accumultator_value numeric 0.1 (,)(-\infty, \infty)
amsgrad logical FALSE TRUE, FALSE -
lr_power numeric -0.5 (,)(-\infty, \infty)
l1_regularization_strength numeric 0 [0,)[0, \infty)
l2_regularization_strength numeric 0 [0,)[0, \infty)
l2_shrinkage_regularization_strength numeric 0 [0,)[0, \infty)
beta numeric 0 (,)(-\infty, \infty)
centered logical FALSE TRUE, FALSE -

Installation

Package 'survivalmodels' is not on CRAN and has to be install from GitHub via remotes::install_github("RaphaelS1/survivalmodels").

Initial parameter values

  • verbose is initialized to 0.

Super classes

mlr3::Learner -> mlr3proba::LearnerSurv -> LearnerSurvDNNSurv

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerSurvDNNSurv$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerSurvDNNSurv$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

RaphaelS1

References

Zhao, Lili, Feng, Dai (2019). “Dnnsurv: Deep neural networks for survival analysis using pseudo values.” arXiv preprint arXiv:1908.02337.

See Also

Examples

lrn("surv.dnnsurv")

Survival Flexible Parametric Spline Learner

Description

Flexible parametric spline learner. Calls flexsurv::flexsurvspline() from flexsurv.

Dictionary

This Learner can be instantiated via lrn():

lrn("surv.flexible")

Meta Information

Parameters

Id Type Default Levels Range
bhazard untyped - -
k integer 0 [0,)[0, \infty)
knots untyped - -
bknots untyped - -
scale character hazard hazard, odds, normal -
timescale character log log, identity -
spline character rp rp, splines2ns -
inits untyped - -
rtrunc untyped - -
fixedpars untyped - -
cl numeric 0.95 [0,1][0, 1]
maxiter integer 30 (,)(-\infty, \infty)
rel.tolerance numeric 1e-09 (,)(-\infty, \infty)
toler.chol numeric 1e-10 (,)(-\infty, \infty)
debug integer 0 [0,1][0, 1]
outer.max integer 10 (,)(-\infty, \infty)

Prediction types

This learner returns three prediction types:

  1. lp: a vector containing the linear predictors (relative risk scores), where each score corresponds to a specific test observation. Calculated using flexsurv::flexsurvspline() and the estimated coefficients. For fitted coefficients, β^=(β0^,...,βP^)\hat{\beta} = (\hat{\beta_0},...,\hat{\beta_P}), and the test data covariates XT=(X0,...,XP)TX^T = (X_0,...,X_P)^T, where X0X_0 is a column of 11s, the linear predictor vector is lp=β^XTlp = \hat{\beta} X^T.

  2. distr: a survival matrix in two dimensions, where observations are represented in rows and time points in columns. Calculated using predict.flexsurvreg().

  3. crank: same as lp.

Initial parameter values

  • k:

    • Actual default: 0

    • Initial value: 1

    • Reason for change: The default value of 0 is equivalent to, and a much less efficient implementation of, LearnerSurvParametric.

Super classes

mlr3::Learner -> mlr3proba::LearnerSurv -> LearnerSurvFlexible

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerSurvFlexible$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerSurvFlexible$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

RaphaelS1

References

Royston, Patrick, Parmar, KB M (2002). “Flexible parametric proportional-hazards and proportional-odds models for censored survival data, with application to prognostic modelling and estimation of treatment effects.” Statistics in medicine, 21(15), 2175–2197.

See Also

Examples

lrn("surv.flexible")

Boosted Generalized Additive Survival Learner

Description

Fits a generalized additive survival model using a boosting algorithm. Calls mboost::gamboost() from mboost.

Dictionary

This Learner can be instantiated via lrn():

lrn("surv.gamboost")

Meta Information

  • Task type: “surv”

  • Predict Types: “crank”, “distr”, “lp”

  • Feature Types: “logical”, “integer”, “numeric”, “factor”

  • Required Packages: mlr3, mlr3proba, mlr3extralearners, mboost, pracma

Parameters

Id Type Default Levels Range
family character coxph coxph, weibull, loglog, lognormal, gehan, cindex, custom -
custom.family untyped - -
nuirange untyped c(0, 100) -
offset numeric - (,)(-\infty, \infty)
center logical TRUE TRUE, FALSE -
mstop integer 100 [0,)[0, \infty)
nu numeric 0.1 [0,1][0, 1]
risk character inbag inbag, oobag, none -
stopintern untyped FALSE -
trace logical FALSE TRUE, FALSE -
oobweights untyped NULL -
baselearner character bbs bbs, bols, btree -
dfbase integer 4 [0,)[0, \infty)
sigma numeric 0.1 [0,1][0, 1]
ipcw untyped 1 -
na.action untyped stats::na.omit -

Prediction types

This learner returns two to three prediction types:

  1. lp: a vector containing the linear predictors (relative risk scores), where each score corresponds to a specific test observation. Calculated using mboost::predict.gamboost(). If the family parameter is not "coxph", -lp is returned, since non-coxph families represent AFT-style distributions where lower lp values indicate higher risk.

  2. crank: same as lp.

  3. distr: a survival matrix in two dimensions, where observations are represented in rows and time points in columns. Calculated using mboost::survFit(). This prediction type is present only when the family distribution parameter is equal to "coxph" (default). By default the Breslow estimator is used for computing the baseline hazard.

Super classes

mlr3::Learner -> mlr3proba::LearnerSurv -> LearnerSurvGAMBoost

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerSurvGAMBoost$new()

Method importance()

The importance scores are extracted with the function mboost::varimp() with the default arguments.

Usage
LearnerSurvGAMBoost$importance()
Returns

Named numeric().


Method selected_features()

Selected features are extracted with the function mboost::variable.names.mboost(), with used.only = TRUE.

Usage
LearnerSurvGAMBoost$selected_features()
Returns

character().


Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerSurvGAMBoost$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

RaphaelS1

References

Bühlmann, Peter, Yu, Bin (2003). “Boosting with the L 2 loss: regression and classification.” Journal of the American Statistical Association, 98(462), 324–339.

See Also

Examples

lrn("surv.gamboost")

Survival Gradient Boosting Machine Learner

Description

Gradient Boosting for Survival Analysis. Calls gbm::gbm() from gbm.

Prediction types

This learner returns two prediction types, using the internal predict.gbm() function:

  1. lp: a vector containing the linear predictors (relative risk scores), where each score corresponds to a specific test observation.

  2. crank: same as lp.

Dictionary

This Learner can be instantiated via lrn():

lrn("surv.gbm")

Meta Information

  • Task type: “surv”

  • Predict Types: “crank”, “lp”

  • Feature Types: “integer”, “numeric”, “factor”, “ordered”

  • Required Packages: mlr3, mlr3proba, mlr3extralearners, gbm

Parameters

Id Type Default Levels Range
distribution character coxph coxph -
n.trees integer 100 [1,)[1, \infty)
cv.folds integer 0 [0,)[0, \infty)
interaction.depth integer 1 [1,)[1, \infty)
n.minobsinnode integer 10 [1,)[1, \infty)
shrinkage numeric 0.001 [0,)[0, \infty)
bag.fraction numeric 0.5 [0,1][0, 1]
train.fraction numeric 1 [0,1][0, 1]
keep.data logical FALSE TRUE, FALSE -
verbose logical FALSE TRUE, FALSE -
var.monotone untyped - -
n.cores integer 1 (,)(-\infty, \infty)
single.tree logical FALSE TRUE, FALSE -

Initial parameter values

  • distribution:

  • Actual default: "bernoulli"

  • Adjusted default: "coxph"

  • Reason for change: This is the only distribution available for survival.

  • keep.data:

    • Actual default: TRUE

    • Adjusted default: FALSE

    • Reason for change: keep.data = FALSE saves memory during model fitting.

  • n.cores:

    • Actual default: NULL

    • Adjusted default: 1

    • Reason for change: Suppressing the automatic internal parallelization if cv.folds > 0 and avoid threading conflicts with future.

Super classes

mlr3::Learner -> mlr3proba::LearnerSurv -> LearnerSurvGBM

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerSurvGBM$new()

Method importance()

The importance scores are extracted from the model slot variable.importance.

Usage
LearnerSurvGBM$importance()
Returns

Named numeric().


Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerSurvGBM$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

RaphaelS1

References

Friedman, H J (2002). “Stochastic gradient boosting.” Computational statistics & data analysis, 38(4), 367–378.

See Also

Examples

# Define the Learner
learner = mlr3::lrn("surv.gbm")
print(learner)

# Define a Task
task = mlr3::tsk("grace")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)
print(learner$importance())

# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Boosted Generalized Linear Survival Learner

Description

Fits a generalized linear survival model using a boosting algorithm. Calls mboost::glmboost() from mboost.

Dictionary

This Learner can be instantiated via lrn():

lrn("surv.glmboost")

Meta Information

  • Task type: “surv”

  • Predict Types: “crank”, “distr”, “lp”

  • Feature Types: “logical”, “integer”, “numeric”, “factor”

  • Required Packages: mlr3, mlr3proba, mlr3extralearners, mboost, pracma

Parameters

Id Type Default Levels Range
offset numeric - (,)(-\infty, \infty)
family character coxph coxph, weibull, loglog, lognormal, gehan, cindex, custom -
custom.family untyped - -
nuirange untyped c(0, 100) -
center logical TRUE TRUE, FALSE -
mstop integer 100 [0,)[0, \infty)
nu numeric 0.1 [0,1][0, 1]
risk character inbag inbag, oobag, none -
oobweights untyped NULL -
stopintern logical FALSE TRUE, FALSE -
trace logical FALSE TRUE, FALSE -
sigma numeric 0.1 [0,1][0, 1]
ipcw untyped 1 -
na.action untyped stats::na.omit -
contrasts.arg untyped - -

Prediction types

This learner returns two to three prediction types:

  1. lp: a vector containing the linear predictors (relative risk scores), where each score corresponds to a specific test observation. Calculated using mboost::predict.glmboost(). If the family parameter is not "coxph", -lp is returned, since non-coxph families represent AFT-style distributions where lower lp values indicate higher risk.

  2. crank: same as lp.

  3. distr: a survival matrix in two dimensions, where observations are represented in rows and time points in columns. Calculated using mboost::survFit(). This prediction type is present only when the family distribution parameter is equal to "coxph" (default). By default the Breslow estimator is used for computing the baseline hazard.

Super classes

mlr3::Learner -> mlr3proba::LearnerSurv -> LearnerSurvGLMBoost

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerSurvGLMBoost$new()

Method importance()

Importance scores are extracted with the function mboost::varimp() and represent a feature's individual contribution to the risk reduction per boosting step of the fitted model. The higher the risk reduction, the larger the feature importance.

Note: Importance is supported only for datasets with numeric features, as the presence of factors with multiple levels makes it difficult to get the original feature names.

Usage
LearnerSurvGLMBoost$importance()
Returns

Named numeric().


Method selected_features()

Selected features are extracted with the function mboost::coef.glmboost() which by default returns features with non-zero coefficients and for the final number of boosting iterations.

Note: Selected features can be retrieved only for datasets with numeric features, as the presence of factors with multiple levels makes it difficult to get the original feature names.

Usage
LearnerSurvGLMBoost$selected_features()
Returns

character().


Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerSurvGLMBoost$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

RaphaelS1

References

Bühlmann, Peter, Yu, Bin (2003). “Boosting with the L 2 loss: regression and classification.” Journal of the American Statistical Association, 98(462), 324–339.

See Also

Examples

# Define the Learner
learner = mlr3::lrn("surv.glmboost")
print(learner)

# Define a Task
task = mlr3::tsk("grace")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)
print(learner$importance())

# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

GLM with Elastic Net Regularization Survival Learner

Description

Generalized linear models with elastic net regularization. Calls glmnet::glmnet() from package glmnet.

Initial parameter values

  • family is set to "cox" and cannot be changed.

Prediction types

This learner returns three prediction types:

  1. lp: a vector containing the linear predictors (relative risk scores), where each score corresponds to a specific test observation. Calculated using glmnet::predict.coxnet().

  2. crank: same as lp.

  3. distr: a survival matrix in two dimensions, where observations are represented in rows and time points in columns. Calculated using glmnet::survfit.coxnet(). Parameters stype and ctype relate to how lp predictions are transformed into survival predictions and are described in survival::survfit.coxph(). By default the Breslow estimator is used for computing the baseline hazard.

Caution: This learner is different to learners calling glmnet::cv.glmnet() in that it does not use the internal optimization of parameter lambda. Instead, lambda needs to be tuned by the user (e.g., via mlr3tuning). When lambda is tuned, the glmnet will be trained for each tuning iteration. While fitting the whole path of lambdas would be more efficient, as is done by default in glmnet::glmnet(), tuning/selecting the parameter at prediction time (using parameter s) is currently not supported in mlr3 (at least not in efficient manner). Tuning the s parameter is, therefore, currently discouraged.

When the data are i.i.d. and efficiency is key, we recommend using the respective auto-tuning counterpart in mlr_learners_surv.cv_glmnet(). However, in some situations this is not applicable, usually when data are imbalanced or not i.i.d. (longitudinal, time-series) and tuning requires custom resampling strategies (blocked design, stratification).

Dictionary

This Learner can be instantiated via lrn():

lrn("surv.glmnet")

Meta Information

  • Task type: “surv”

  • Predict Types: “crank”, “distr”, “lp”

  • Feature Types: “logical”, “integer”, “numeric”

  • Required Packages: mlr3, mlr3proba, mlr3extralearners, glmnet

Parameters

Id Type Default Levels Range
alignment character lambda lambda, fraction -
alpha numeric 1 [0,1][0, 1]
big numeric 9.9e+35 (,)(-\infty, \infty)
devmax numeric 0.999 [0,1][0, 1]
dfmax integer - [0,)[0, \infty)
eps numeric 1e-06 [0,1][0, 1]
epsnr numeric 1e-08 [0,1][0, 1]
exact logical FALSE TRUE, FALSE -
exclude untyped - -
exmx numeric 250 (,)(-\infty, \infty)
fdev numeric 1e-05 [0,1][0, 1]
gamma untyped - -
grouped logical TRUE TRUE, FALSE -
intercept logical TRUE TRUE, FALSE -
keep logical FALSE TRUE, FALSE -
lambda untyped - -
lambda.min.ratio numeric - [0,1][0, 1]
lower.limits untyped -Inf -
maxit integer 100000 [1,)[1, \infty)
mnlam integer 5 [1,)[1, \infty)
mxit integer 100 [1,)[1, \infty)
mxitnr integer 25 [1,)[1, \infty)
newoffset untyped - -
nlambda integer 100 [1,)[1, \infty)
offset untyped NULL -
parallel logical FALSE TRUE, FALSE -
penalty.factor untyped - -
pmax integer - [0,)[0, \infty)
pmin numeric 1e-09 [0,1][0, 1]
prec numeric 1e-10 (,)(-\infty, \infty)
predict.gamma numeric gamma.1se (,)(-\infty, \infty)
relax logical FALSE TRUE, FALSE -
s numeric 0.01 [0,)[0, \infty)
standardize logical TRUE TRUE, FALSE -
thresh numeric 1e-07 [0,)[0, \infty)
trace.it integer 0 [0,1][0, 1]
type.logistic character Newton Newton, modified.Newton -
type.multinomial character ungrouped ungrouped, grouped -
upper.limits untyped Inf -
stype integer 2 [1,2][1, 2]
ctype integer - [1,2][1, 2]

Super classes

mlr3::Learner -> mlr3proba::LearnerSurv -> LearnerSurvGlmnet

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerSurvGlmnet$new()

Method selected_features()

Returns the set of selected features as reported by glmnet::predict.glmnet() with type set to "nonzero".

Usage
LearnerSurvGlmnet$selected_features(lambda = NULL)
Arguments
lambda

(numeric(1))
Custom lambda, defaults to the active lambda depending on parameter set.

Returns

(character()) of feature names.


Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerSurvGlmnet$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

be-marc

References

Friedman J, Hastie T, Tibshirani R (2010). “Regularization Paths for Generalized Linear Models via Coordinate Descent.” Journal of Statistical Software, 33(1), 1–22. doi:10.18637/jss.v033.i01.

See Also

Examples

# Define the Learner
learner = mlr3::lrn("surv.glmnet")
print(learner)

# Define a Task
task = mlr3::tsk("grace")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Survival Logistic-Hazard Learner

Description

Survival logistic hazard learner. Calls survivalmodels::loghaz() from package 'survivalmodels'.

Details

Custom nets can be used in this learner either using the survivalmodels::build_pytorch_net utility function or using torch via reticulate. The number of output channels depends on the number of discretised time-points, i.e. the parameters cuts or cutpoints.

Prediction types

This learner returns two prediction types:

  1. distr: a survival matrix in two dimensions, where observations are represented in rows and time points in columns. Calculated using the internal survivalmodels::predict.pycox() function.

  2. crank: the expected mortality using survivalmodels::surv_to_risk().

Dictionary

This Learner can be instantiated via lrn():

lrn("surv.loghaz")

Meta Information

Parameters

Id Type Default Levels Range
frac numeric 0 [0,1][0, 1]
cuts integer 10 [1,)[1, \infty)
cutpoints untyped - -
scheme character equidistant equidistant, quantiles -
cut_min numeric 0 [0,)[0, \infty)
num_nodes untyped c(32L, 32L) -
batch_norm logical TRUE TRUE, FALSE -
dropout numeric - [0,1][0, 1]
activation character relu celu, elu, gelu, glu, hardshrink, hardsigmoid, hardswish, hardtanh, relu6, leakyrelu, ... -
custom_net untyped - -
device untyped - -
optimizer character adam adadelta, adagrad, adam, adamax, adamw, asgd, rmsprop, rprop, sgd, sparse_adam -
rho numeric 0.9 (,)(-\infty, \infty)
eps numeric 1e-08 (,)(-\infty, \infty)
lr numeric 1 (,)(-\infty, \infty)
weight_decay numeric 0 (,)(-\infty, \infty)
learning_rate numeric 0.01 (,)(-\infty, \infty)
lr_decay numeric 0 (,)(-\infty, \infty)
betas untyped c(0.9, 0.999) -
amsgrad logical FALSE TRUE, FALSE -
lambd numeric 1e-04 [0,)[0, \infty)
alpha numeric 0.75 [0,)[0, \infty)
t0 numeric 1e+06 (,)(-\infty, \infty)
momentum numeric 0 (,)(-\infty, \infty)
centered logical TRUE TRUE, FALSE -
etas untyped c(0.5, 1.2) -
step_sizes untyped c(1e-06, 50) -
dampening numeric 0 (,)(-\infty, \infty)
nesterov logical FALSE TRUE, FALSE -
batch_size integer 256 (,)(-\infty, \infty)
epochs integer 1 [1,)[1, \infty)
verbose logical TRUE TRUE, FALSE -
num_workers integer 0 (,)(-\infty, \infty)
shuffle logical TRUE TRUE, FALSE -
best_weights logical FALSE TRUE, FALSE -
early_stopping logical FALSE TRUE, FALSE -
min_delta numeric 0 (,)(-\infty, \infty)
patience integer 10 (,)(-\infty, \infty)
interpolate logical FALSE TRUE, FALSE -
inter_scheme character const_hazard const_hazard, const_pdf -
sub integer 10 [1,)[1, \infty)

Installation

Package 'survivalmodels' is not on CRAN and has to be install from GitHub via remotes::install_github("RaphaelS1/survivalmodels").

Super classes

mlr3::Learner -> mlr3proba::LearnerSurv -> LearnerSurvLogisticHazard

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerSurvLogisticHazard$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerSurvLogisticHazard$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

RaphaelS1

References

Gensheimer, F M, Narasimhan, BA (2018). “Simple discrete-time survival model for neural networks.” arXiv.

Kvamme, Håvard, Borgan Ø, Scheel I (2019). “Time-to-event prediction with neural networks and Cox regression.” arXiv preprint arXiv:1907.00825.

See Also

Examples

lrn("surv.loghaz")

Boosted Generalized Additive Survival Learner

Description

Model-based boosting for survival analysis. Calls mboost::mboost() from mboost.

Details

distr prediction made by mboost::survFit().

Prediction types

This learner returns two to three prediction types:

  1. lp: a vector containing the linear predictors (relative risk scores), where each score corresponds to a specific test observation. Calculated using mboost::predict.mboost(). If the family parameter is not "coxph", -lp is returned, since non-coxph families represent AFT-style distributions where lower lp values indicate higher risk.

  2. crank: same as lp.

  3. distr: a survival matrix in two dimensions, where observations are represented in rows and time points in columns. Calculated using mboost::survFit(). This prediction type is present only when the family distribution parameter is equal to "coxph" (default). By default the Breslow estimator is used for computing the baseline hazard.

Dictionary

This Learner can be instantiated via lrn():

lrn("surv.mboost")

Meta Information

  • Task type: “surv”

  • Predict Types: “crank”, “distr”, “lp”

  • Feature Types: “logical”, “integer”, “numeric”, “factor”

  • Required Packages: mlr3, mlr3proba, mlr3extralearners, mboost

Parameters

Id Type Default Levels Range
family character coxph coxph, weibull, loglog, lognormal, gehan, cindex, custom -
custom.family untyped - -
nuirange untyped c(0, 100) -
offset numeric - (,)(-\infty, \infty)
center logical TRUE TRUE, FALSE -
mstop integer 100 [0,)[0, \infty)
nu numeric 0.1 [0,1][0, 1]
risk character inbag inbag, oobag, none -
stopintern logical FALSE TRUE, FALSE -
trace logical FALSE TRUE, FALSE -
oobweights untyped NULL -
baselearner character bbs bbs, bols, btree -
sigma numeric 0.1 [0,1][0, 1]
ipcw untyped 1 -
na.action untyped stats::na.omit -

Super classes

mlr3::Learner -> mlr3proba::LearnerSurv -> LearnerSurvMBoost

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerSurvMBoost$new()

Method importance()

The importance scores are extracted with the function mboost::varimp() with the default arguments.

Usage
LearnerSurvMBoost$importance()
Returns

Named numeric().


Method selected_features()

Selected features are extracted with the function mboost::variable.names.mboost(), with used.only = TRUE.

Usage
LearnerSurvMBoost$selected_features()
Returns

character().


Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerSurvMBoost$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

RaphaelS1

References

Bühlmann, Peter, Yu, Bin (2003). “Boosting with the L 2 loss: regression and classification.” Journal of the American Statistical Association, 98(462), 324–339.

See Also

Examples

lrn("surv.mboost")

Survival Nelson-Aalen Estimator Learner

Description

Non-parametric estimator of the cumulative hazard rate function. Calls survival::survfit() from survival.

Prediction types

This learner returns two prediction types:

  1. distr: a survival matrix in two dimensions, where observations are represented in rows and time points in columns. The cumulative hazard H(t)H(t) is calculated using the train data and the default parameters of the survival::survfit() function, i.e. ctype = 1, which uses the Nelson-Aalen formula. Then for each test observation the survival curve is S(t)=exp(H(t))S(t) = \exp{(-H(t))}.

  2. crank: the expected mortality using mlr3proba::.surv_return().

Dictionary

This Learner can be instantiated via lrn():

lrn("surv.nelson")

Meta Information

  • Task type: “surv”

  • Predict Types: “crank”, “distr”

  • Feature Types: “logical”, “integer”, “numeric”, “character”, “factor”, “ordered”

  • Required Packages: mlr3, mlr3proba, mlr3extralearners, survival, pracma

Parameters

Empty ParamSet

Super classes

mlr3::Learner -> mlr3proba::LearnerSurv -> LearnerSurvNelson

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerSurvNelson$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerSurvNelson$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

RaphaelS1

References

Nelson, Wayne (1969). “Hazard plotting for incomplete failure data.” Journal of Quality Technology, 1(1), 27–52.

Nelson, Wayne (1972). “Theory and applications of hazard plotting for censored failure data.” Technometrics, 14(4), 945–966.

Aalen, Odd (1978). “Nonparametric inference for a family of counting processes.” The Annals of Statistics, 701–726.

See Also

Examples

# Define the Learner
learner = mlr3::lrn("surv.nelson")
print(learner)

# Define a Task
task = mlr3::tsk("grace")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Survival Fully Parametric Learner

Description

Parametric survival model. Calls survivalmodels::parametric() from package 'survivalmodels'.

Details

This learner allows you to choose a distribution and a model form to compose a predicted survival probability distribution S(t)S(t).

The predict method is implemented in survivalmodels::predict.parametric(). Our implementation is more efficient for composition to distributions than survival::predict.survreg().

The available model forms with their respective survival functions, are as follows:

  • Accelerated Failure Time (aft)

    S(t)=S0(texp(lp))S(t) = S_0(\frac{t}{exp(lp)})

  • Proportional Hazards (ph)

    S(t)=S0(t)exp(lp)S(t) = S_0(t)^{exp(lp)}

  • Proportional Odds (po)

    S(t)=S0(t)exp(lp)+(1exp(lp))S0(t)S(t) = \frac{S_0(t)}{exp(-lp) + (1-exp(-lp)) S_0(t)}

  • Tobit (tobit)

    S(t)=1Φ((tlp)/s)S(t) = 1 - \Phi((t - lp)/s)

where S0S_0 is the estimated baseline survival distribution (in this case with a given parametric form), lplp is the predicted linear predictor, Φ\Phi is the cdf of a N(0,1)N(0, 1) distribution, and ss is the fitted scale parameter.

Whilst any combination of distribution and model form is possible, this does not mean it will necessarily create a sensible or interpretable prediction. The following combinations are 'sensible' (we note that ones mostly used in the literature):

  • dist = "gaussian"; form = "tobit";

  • dist = "weibull"; form = "ph"; (fairly used)

  • dist = "exponential"; form = "ph";

  • dist = "weibull"; form = "aft"; (fairly used, default option)

  • dist = "exponential"; form = "aft";

  • dist = "loglogistic"; form = "aft"; (fairly used)

  • dist = "lognormal"; form = "aft";

  • dist = "loglogistic"; form = "po";

Prediction types

This learner returns three prediction types:

  1. lp: a vector of linear predictors (relative risk scores), one per test observation. lp is predicted using the formula lp=Xβlp = X\beta where XX are the variables in the test data set and β\beta are the fitted coefficients.

  2. crank: same as lp.

  3. distr: a survival matrix in two dimensions, where observations are represented in rows and time points in columns. The distribution distr is composed using the lp predictions and specifying a model form in the form hyper-parameter, see Details. The survival matrix uses the unique time points from the training set. The parameter ntime allows to adjust the granularity of these time points to any number (e.g. 150).

Custom mlr3 parameters

  • discrete determines the class of the returned survival probability distribution. If FALSE, vectorized continuous probability distributions are returned using distr6::VectorDistribution, otherwise a distr6::Matdist object, which is faster for calculating survival measures that require a distr prediction type. Default option is TRUE.

Dictionary

This Learner can be instantiated via lrn():

lrn("surv.parametric")

Meta Information

Parameters

Id Type Default Levels Range
form character aft aft, ph, po, tobit -
na.action untyped - -
dist character weibull weibull, exponential, gaussian, lognormal, loglogistic -
parms untyped - -
init untyped - -
scale numeric 0 [0,)[0, \infty)
maxiter integer 30 (,)(-\infty, \infty)
rel.tolerance numeric 1e-09 (,)(-\infty, \infty)
toler.chol numeric 1e-10 (,)(-\infty, \infty)
debug integer 0 [0,1][0, 1]
outer.max integer 10 (,)(-\infty, \infty)
robust logical FALSE TRUE, FALSE -
score logical FALSE TRUE, FALSE -
cluster untyped - -
discrete logical - TRUE, FALSE -
ntime integer NULL [1,)[1, \infty)
round_time integer 2 [0,)[0, \infty)

Installation

Package 'survivalmodels' is not on CRAN and has to be install from GitHub via remotes::install_github("RaphaelS1/survivalmodels").

Super classes

mlr3::Learner -> mlr3proba::LearnerSurv -> LearnerSurvParametric

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class. returned risk from survivalmodels is hp-style ie higher value => higher risk

Usage
LearnerSurvParametric$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerSurvParametric$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

bblodfon

References

Kalbfleisch, D J, Prentice, L R (2011). The statistical analysis of failure time data. John Wiley & Sons.

See Also

Examples

# Define the Learner
learner = mlr3::lrn("surv.parametric")
print(learner)

# Define a Task
task = mlr3::tsk("grace")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Survival PC-Hazard Learner

Description

Logistic-Hazard fits a discrete neural network based on a cross-entropy loss and predictions of a discrete hazard function, also known as Nnet-Survival. Calls survivalmodels::pchazard() from package 'survivalmodels'.

Details

Custom nets can be used in this learner either using the survivalmodels::build_pytorch_net utility function or using torch via reticulate. The number of output channels depends on the number of discretised time-points, i.e. the parameters cuts or cutpoints.

Prediction types

This learner returns two prediction types:

  1. distr: a survival matrix in two dimensions, where observations are represented in rows and time points in columns. Calculated using the internal survivalmodels::predict.pycox() function.

  2. crank: the expected mortality using survivalmodels::surv_to_risk().

Dictionary

This Learner can be instantiated via lrn():

lrn("surv.pchazard")

Meta Information

Parameters

Id Type Default Levels Range
frac numeric 0 [0,1][0, 1]
cuts integer 10 [1,)[1, \infty)
cutpoints untyped - -
scheme character equidistant equidistant, quantiles -
cut_min numeric 0 [0,)[0, \infty)
num_nodes untyped c(32L, 32L) -
batch_norm logical TRUE TRUE, FALSE -
reduction character mean mean, none, sum -
dropout numeric - [0,1][0, 1]
activation character relu celu, elu, gelu, glu, hardshrink, hardsigmoid, hardswish, hardtanh, relu6, leakyrelu, ... -
custom_net untyped - -
device untyped - -
optimizer character adam adadelta, adagrad, adam, adamax, adamw, asgd, rmsprop, rprop, sgd, sparse_adam -
rho numeric 0.9 (,)(-\infty, \infty)
eps numeric 1e-08 (,)(-\infty, \infty)
lr numeric 1 (,)(-\infty, \infty)
weight_decay numeric 0 (,)(-\infty, \infty)
learning_rate numeric 0.01 (,)(-\infty, \infty)
lr_decay numeric 0 (,)(-\infty, \infty)
betas untyped c(0.9, 0.999) -
amsgrad logical FALSE TRUE, FALSE -
lambd numeric 1e-04 [0,)[0, \infty)
alpha numeric 0.75 [0,)[0, \infty)
t0 numeric 1e+06 (,)(-\infty, \infty)
momentum numeric 0 (,)(-\infty, \infty)
centered logical TRUE TRUE, FALSE -
etas untyped c(0.5, 1.2) -
step_sizes untyped c(1e-06, 50) -
dampening numeric 0 (,)(-\infty, \infty)
nesterov logical FALSE TRUE, FALSE -
batch_size integer 256 (,)(-\infty, \infty)
epochs integer 1 [1,)[1, \infty)
verbose logical TRUE TRUE, FALSE -
num_workers integer 0 (,)(-\infty, \infty)
shuffle logical TRUE TRUE, FALSE -
best_weights logical FALSE TRUE, FALSE -
early_stopping logical FALSE TRUE, FALSE -
min_delta numeric 0 (,)(-\infty, \infty)
patience integer 10 (,)(-\infty, \infty)
interpolate logical FALSE TRUE, FALSE -
sub integer 10 [1,)[1, \infty)

Installation

Package 'survivalmodels' is not on CRAN and has to be install from GitHub via remotes::install_github("RaphaelS1/survivalmodels").

Super classes

mlr3::Learner -> mlr3proba::LearnerSurv -> LearnerSurvPCHazard

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerSurvPCHazard$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerSurvPCHazard$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

RaphaelS1

References

Kvamme, Håvard, Borgan Ø (2019). “Continuous and discrete-time survival prediction with neural networks.” arXiv preprint arXiv:1910.06724.

See Also

Examples

lrn("surv.pchazard")

Survival L1 and L2 Penalized Cox Learner

Description

Penalized (L1 and L2) Cox Proportional Hazards model. Calls penalized::penalized() from penalized.

Details

The penalized and unpenalized arguments in the learner are implemented slightly differently than in penalized::penalized(). Here, there is no parameter for penalized but instead it is assumed that every variable is penalized unless stated in the unpenalized parameter.

Prediction types

This learner returns two prediction types:

  1. distr: a survival matrix in two dimensions, where observations are represented in rows and time points in columns. Calculated using the internal penalized::predict() function. By default the Breslow estimator penalized::breslow() is used for computing the baseline hazard.

  2. crank: the expected mortality using mlr3proba::.surv_return().

Initial parameter values

  • trace is set to "FALSE" to disable printing output during model training.

Dictionary

This Learner can be instantiated via lrn():

lrn("surv.penalized")

Meta Information

Parameters

Id Type Default Levels Range
unpenalized untyped - -
lambda1 untyped 0 -
lambda2 untyped 0 -
positive logical FALSE TRUE, FALSE -
fusedl logical FALSE TRUE, FALSE -
startbeta numeric - (,)(-\infty, \infty)
startgamma numeric - (,)(-\infty, \infty)
steps integer 1 [1,)[1, \infty)
epsilon numeric 1e-10 [0,1][0, 1]
maxiter integer - [1,)[1, \infty)
standardize logical FALSE TRUE, FALSE -
trace logical TRUE TRUE, FALSE -

Super classes

mlr3::Learner -> mlr3proba::LearnerSurv -> LearnerSurvPenalized

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerSurvPenalized$new()

Method selected_features()

Selected features are extracted with the method coef() of the S4 model object, see penalized::penfit(). By default it returns features with non-zero coefficients.

Note: Selected features can be retrieved only for datasets with numeric features, as the presence of factors with multiple levels makes it difficult to get the original feature names.

Usage
LearnerSurvPenalized$selected_features()
Returns

character().


Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerSurvPenalized$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

RaphaelS1

References

Goeman, J J (2010). “L1 penalized estimation in the Cox proportional hazards model.” Biometrical journal, 52(1), 70–84.

See Also

Examples

# Define the Learner
learner = mlr3::lrn("surv.penalized")
print(learner)

# Define a Task
task = mlr3::tsk("grace")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)


# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Survival Priority Lasso Learner

Description

Patient outcome prediction based on multi-omics data taking practitioners’ preferences into account. Calls prioritylasso::prioritylasso() from prioritylasso. Many parameters for this survival learner are the same as mlr_learners_surv.cv_glmnet as prioritylasso() calls glmnet::cv.glmnet() during training phase. Note that prioritylasso() has ways to deal with block-wise missing data, but this feature is not supported currently.

Prediction types

This learner returns three prediction types:

  1. lp: a vector containing the linear predictors (relative risk scores), where each score corresponds to a specific test observation. Calculated using prioritylasso::predict.prioritylasso().

  2. crank: same as lp.

  3. distr: a survival matrix in two dimensions, where observations are represented in rows and time points in columns. Calculated using mlr3proba::breslow() where the Breslow estimator is used for computing the baseline hazard.

Initial parameter values

  • family is set to "cox" for the Cox survival objective and cannot be changed

  • type.measure set to "deviance" (cross-validation measure)

Dictionary

This Learner can be instantiated via lrn():

lrn("surv.priority_lasso")

Meta Information

  • Task type: “surv”

  • Predict Types: “crank”, “distr”, “lp”

  • Feature Types: “logical”, “integer”, “numeric”

  • Required Packages: mlr3, mlr3proba, prioritylasso

Parameters

Id Type Default Levels Range
blocks untyped - -
max.coef untyped NULL -
block1.penalization logical TRUE TRUE, FALSE -
lambda.type character lambda.min lambda.min, lambda.1se -
standardize logical TRUE TRUE, FALSE -
nfolds integer 5 [1,)[1, \infty)
foldid untyped NULL -
cvoffset logical FALSE TRUE, FALSE -
cvoffsetnfolds integer 10 [1,)[1, \infty)
return.x logical TRUE TRUE, FALSE -
include.allintercepts logical FALSE TRUE, FALSE -
use.blocks untyped "all" -
alignment character lambda lambda, fraction -
alpha numeric 1 [0,1][0, 1]
big numeric 9.9e+35 (,)(-\infty, \infty)
devmax numeric 0.999 [0,1][0, 1]
dfmax integer - [0,)[0, \infty)
eps numeric 1e-06 [0,1][0, 1]
epsnr numeric 1e-08 [0,1][0, 1]
exclude untyped - -
exmx numeric 250 (,)(-\infty, \infty)
fdev numeric 1e-05 [0,1][0, 1]
gamma untyped - -
grouped logical TRUE TRUE, FALSE -
intercept logical TRUE TRUE, FALSE -
keep logical FALSE TRUE, FALSE -
lambda untyped - -
lambda.min.ratio numeric - [0,1][0, 1]
lower.limits untyped -Inf -
maxit integer 100000 [1,)[1, \infty)
mnlam integer 5 [1,)[1, \infty)
mxit integer 100 [1,)[1, \infty)
mxitnr integer 25 [1,)[1, \infty)
nlambda integer 100 [1,)[1, \infty)
offset untyped NULL -
parallel logical FALSE TRUE, FALSE -
penalty.factor untyped - -
pmax integer - [0,)[0, \infty)
pmin numeric 1e-09 [0,1][0, 1]
prec numeric 1e-10 (,)(-\infty, \infty)
standardize.response logical FALSE TRUE, FALSE -
thresh numeric 1e-07 [0,)[0, \infty)
trace.it integer 0 [0,1][0, 1]
type.gaussian character - covariance, naive -
type.logistic character Newton Newton, modified.Newton -
type.multinomial character ungrouped ungrouped, grouped -
upper.limits untyped Inf -
relax logical FALSE TRUE, FALSE -

Super classes

mlr3::Learner -> mlr3proba::LearnerSurv -> LearnerSurvPriorityLasso

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerSurvPriorityLasso$new()

Method selected_features()

Selected features, i.e. those where the coefficient is non-zero.

Usage
LearnerSurvPriorityLasso$selected_features()
Returns

character().


Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerSurvPriorityLasso$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

HarutyunyanLiana

References

Simon K, Vindi J, Roman H, Tobias H, Anne-Laure B (2018). “Priority-Lasso: a simple hierarchical approach to the prediction of clinical outcome using multi-omics data.” BMC Bioinformatics, 19. doi:10.1186/s12859-018-2344-6.

See Also

Examples

# Define a Task
task = tsk("grace")
# Create train and test set
ids = partition(task)
# check task's features
task$feature_names
# partition features to 2 blocks
blocks = list(bl1 = 1:3, bl2 = 4:6)
# define learner
learner = lrn("surv.priority_lasso", blocks = blocks, block1.penalization = FALSE,
              lambda.type = "lambda.1se", standardize = TRUE, nfolds = 5)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
# selected features
learner$selected_features()
# Make predictions for the test observations
pred = learner$predict(task, row_ids = ids$test)
pred
# Score the predictions
pred$score()

Ranger Survival Learner

Description

Random survival forest. Calls ranger::ranger() from package ranger.

Prediction types

This learner returns two prediction types:

  1. distr: a survival matrix in two dimensions, where observations are represented in rows and (unique event) time points in columns. Calculated using the internal ranger::predict.ranger() function.

  2. crank: the expected mortality using mlr3proba::.surv_return().

Custom mlr3 parameters

  • mtry: This hyperparameter can alternatively be set via our hyperparameter mtry.ratio as mtry = max(ceiling(mtry.ratio * n_features), 1). Note that mtry and mtry.ratio are mutually exclusive.

Initial parameter values

  • num.threads is initialized to 1 to avoid conflicts with parallelization via future.

Dictionary

This Learner can be instantiated via lrn():

lrn("surv.ranger")

Meta Information

  • Task type: “surv”

  • Predict Types: “crank”, “distr”

  • Feature Types: “logical”, “integer”, “numeric”, “character”, “factor”, “ordered”

  • Required Packages: mlr3, mlr3proba, mlr3extralearners, ranger

Parameters

Id Type Default Levels Range
alpha numeric 0.5 (,)(-\infty, \infty)
always.split.variables untyped - -
holdout logical FALSE TRUE, FALSE -
importance character - none, impurity, impurity_corrected, permutation -
keep.inbag logical FALSE TRUE, FALSE -
max.depth integer NULL [0,)[0, \infty)
min.node.size integer 5 [1,)[1, \infty)
minprop numeric 0.1 (,)(-\infty, \infty)
mtry integer - [1,)[1, \infty)
mtry.ratio numeric - [0,1][0, 1]
num.random.splits integer 1 [1,)[1, \infty)
num.threads integer 1 [1,)[1, \infty)
num.trees integer 500 [1,)[1, \infty)
oob.error logical TRUE TRUE, FALSE -
regularization.factor untyped 1 -
regularization.usedepth logical FALSE TRUE, FALSE -
replace logical TRUE TRUE, FALSE -
respect.unordered.factors character ignore ignore, order, partition -
sample.fraction numeric - [0,1][0, 1]
save.memory logical FALSE TRUE, FALSE -
scale.permutation.importance logical FALSE TRUE, FALSE -
seed integer NULL (,)(-\infty, \infty)
split.select.weights numeric - [0,1][0, 1]
splitrule character logrank logrank, extratrees, C, maxstat -
verbose logical TRUE TRUE, FALSE -
write.forest logical TRUE TRUE, FALSE -
min.bucket integer 3 (,)(-\infty, \infty)
time.interest integer NULL [1,)[1, \infty)
node.stats logical FALSE TRUE, FALSE -

Super classes

mlr3::Learner -> mlr3proba::LearnerSurv -> LearnerSurvRanger

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerSurvRanger$new()

Method importance()

The importance scores are extracted from the model slot variable.importance.

Usage
LearnerSurvRanger$importance()
Returns

Named numeric().


Method oob_error()

The out-of-bag error is extracted from the model slot prediction.error.

Usage
LearnerSurvRanger$oob_error()
Returns

numeric(1).


Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerSurvRanger$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

be-marc

References

Wright, N. M, Ziegler, Andreas (2017). “ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R.” Journal of Statistical Software, 77(1), 1–17. doi:10.18637/jss.v077.i01.

Breiman, Leo (2001). “Random Forests.” Machine Learning, 45(1), 5–32. ISSN 1573-0565, doi:10.1023/A:1010933404324.

See Also

Examples

# Define the Learner
learner = mlr3::lrn("surv.ranger", importance = "permutation")
print(learner)

# Define a Task
task = mlr3::tsk("grace")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)
print(learner$importance())

# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Survival Random Forest SRC Learner

Description

Random survival forest. Calls randomForestSRC::rfsrc() from randomForestSRC.

Prediction types

This learner returns two prediction types:

  1. distr: a survival matrix in two dimensions, where observations are represented in rows and (unique event) time points in columns. Calculated using the internal randomForestSRC::predict.rfsrc() function.

  2. crank: the expected mortality using mlr3proba::.surv_return().

Dictionary

This Learner can be instantiated via lrn():

lrn("surv.rfsrc")

Meta Information

Parameters

Id Type Default Levels Range
ntree integer 500 [1,)[1, \infty)
mtry integer - [1,)[1, \infty)
mtry.ratio numeric - [0,1][0, 1]
nodesize integer 15 [1,)[1, \infty)
nodedepth integer - [1,)[1, \infty)
splitrule character logrank logrank, bs.gradient, logrankscore -
nsplit integer 10 [0,)[0, \infty)
importance character FALSE FALSE, TRUE, none, permute, random, anti -
block.size integer 10 [1,)[1, \infty)
bootstrap character by.root by.root, by.node, none, by.user -
samptype character swor swor, swr -
samp untyped - -
membership logical FALSE TRUE, FALSE -
sampsize untyped - -
sampsize.ratio numeric - [0,1][0, 1]
na.action character na.omit na.omit, na.impute -
nimpute integer 1 [1,)[1, \infty)
ntime integer 150 [0,)[0, \infty)
cause integer - [1,)[1, \infty)
proximity character FALSE FALSE, TRUE, inbag, oob, all -
distance character FALSE FALSE, TRUE, inbag, oob, all -
forest.wt character FALSE FALSE, TRUE, inbag, oob, all -
xvar.wt untyped - -
split.wt untyped - -
forest logical TRUE TRUE, FALSE -
var.used character FALSE FALSE, all.trees, by.tree -
split.depth character FALSE FALSE, all.trees, by.tree -
seed integer - (,1](-\infty, -1]
do.trace logical FALSE TRUE, FALSE -
statistics logical FALSE TRUE, FALSE -
get.tree untyped - -
outcome character train train, test -
ptn.count integer 0 [0,)[0, \infty)
estimator character nelson nelson, kaplan -
cores integer 1 [1,)[1, \infty)
save.memory logical FALSE TRUE, FALSE -
perf.type character - none -
case.depth logical FALSE TRUE, FALSE -

Custom mlr3 parameters

  • estimator: Hidden parameter that controls the type of estimator used to derive the survival function during prediction. The default value is "chf" which uses a bootstrapped Nelson-Aalen estimator for the cumulative hazard function H(t)H(t), (Ishwaran, 2008) from which we calculate S(t)=exp(H(t))S(t) = \exp(-H(t)), whereas "surv" uses a bootstrapped Kaplan-Meier estimator to directly estimate S(t)S(t).

  • mtry: This hyperparameter can alternatively be set via the added hyperparameter mtry.ratio as mtry = max(ceiling(mtry.ratio * n_features), 1). Note that mtry and mtry.ratio are mutually exclusive.

  • sampsize: This hyperparameter can alternatively be set via the added hyperparameter sampsize.ratio as sampsize = max(ceiling(sampsize.ratio * n_obs), 1). Note that sampsize and sampsize.ratio are mutually exclusive.

  • cores: This value is set as the option rf.cores during training and is set to 1 by default.

Initial parameter values

  • ntime: Number of time points to coerce the observed event times for use in the estimated survival function during prediction. We changed the default value of 150 to 0 in order to be in line with other random survival forest learners and use all the unique event times from the train set.

Super classes

mlr3::Learner -> mlr3proba::LearnerSurv -> LearnerSurvRandomForestSRC

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerSurvRandomForestSRC$new()

Method importance()

The importance scores are extracted from the model slot importance.

Usage
LearnerSurvRandomForestSRC$importance()
Returns

Named numeric().


Method selected_features()

Selected features are extracted from the model slot var.used.

Usage
LearnerSurvRandomForestSRC$selected_features()
Returns

character().


Method oob_error()

OOB error extracted from the model slot err.rate.

Usage
LearnerSurvRandomForestSRC$oob_error()
Returns

numeric().


Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerSurvRandomForestSRC$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

RaphaelS1

References

Ishwaran H, Kogalur UB, Blackstone EH, Lauer MS (2008). “Random survival forests.” The Annals of Applied Statistics, 2(3). doi:10.1214/08-aoas169, https://doi.org/10.1214/08-aoas169.

Breiman, Leo (2001). “Random Forests.” Machine Learning, 45(1), 5–32. ISSN 1573-0565, doi:10.1023/A:1010933404324.

See Also

Examples

# Define the Learner
learner = mlr3::lrn("surv.rfsrc", importance = "TRUE")
print(learner)

# Define a Task
task = mlr3::tsk("grace")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)
print(learner$importance())

# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Survival Support Vector Machine Learner

Description

Survival support vector machine. Calls survivalsvm::survivalsvm() from survivalsvm.

Details

Four possible SVMs can be implemented, dependent on the type parameter. These correspond to predicting the survival time via regression (regression), predicting a continuous rank (vanbelle1, vanbelle2), or a hybrid of the two (hybrid). Whichever type is chosen determines how the crank predict type is calculated, but in any case all can be considered a valid continuous ranking.

makediff3 is recommended when using type = "hybrid".

Dictionary

This Learner can be instantiated via lrn():

lrn("surv.svm")

Meta Information

  • Task type: “surv”

  • Predict Types: “crank”, “response”

  • Feature Types: “logical”, “integer”, “numeric”, “character”, “factor”

  • Required Packages: mlr3, mlr3proba, mlr3extralearners, survivalsvm

Parameters

Id Type Default Levels Range
type character regression regression, vanbelle1, vanbelle2, hybrid -
diff.meth character - makediff1, makediff2, makediff3 -
gamma numeric NULL (,)(-\infty, \infty)
mu numeric NULL (,)(-\infty, \infty)
opt.meth character quadprog quadprog, ipop -
kernel character lin_kernel lin_kernel, add_kernel, rbf_kernel, poly_kernel -
kernel.pars untyped - -
sgf.sv integer 5 [0,)[0, \infty)
sigf integer 7 [0,)[0, \infty)
maxiter integer 20 [0,)[0, \infty)
margin numeric 0.05 [0,)[0, \infty)
bound numeric 10 [0,)[0, \infty)
eig.tol numeric 1e-06 [0,)[0, \infty)
conv.tol numeric 1e-07 [0,)[0, \infty)
posd.tol numeric 1e-08 [0,)[0, \infty)

Prediction types

This learner returns up to two prediction types:

  1. crank: a vector containing the continuous ranking scores, where each score corresponds to a specific test observation.

  2. response: the survival time of each test observation, equal to -crank. This prediction type if only available for "type" equal to regression or hybrid.

Custom mlr3 parameters

  • gamma, mu have replaced gamma.mu so that it's easier to tune these separately. mu is only used when type = "hybrid".

Super classes

mlr3::Learner -> mlr3proba::LearnerSurv -> LearnerSurvSVM

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerSurvSVM$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerSurvSVM$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Author(s)

RaphaelS1

References

Van Belle, Vanya, Pelckmans, Kristiaan, Van Huffel, Sabine, Suykens, AK J (2011). “Improved performance on high-dimensional survival data by application of Survival-SVM.” Bioinformatics, 27(1), 87–94.

Van Belle, Vanya, Pelckmans, Kristiaan, Van Huffel, Sabine, Suykens, AK J (2011). “Support vector methods for survival analysis: a comparison between ranking and regression approaches.” Artificial intelligence in medicine, 53(2), 107–118.

Shivaswamy, K P, Chu, Wei, Jansche, Martin (2007). “A support vector approach to censored targets.” In Seventh IEEE international conference on data mining (ICDM 2007), 655–660. IEEE.

See Also

Examples

set.seed(123)
# Define the Learner and set parameter values
learner = lrn("surv.svm", gamma = 0.1)
print(learner)

# Define a Task
task = mlr3::tsk("rats")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

# print the model
print(learner$model)

# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Extreme Gradient Boosting AFT Survival Learner

Description

eXtreme Gradient Boosting regression using an Accelerated Failure Time objective. Calls xgboost::xgb.train() from package xgboost with objective set to survival:aft and eval_metric to aft-nloglik.

Prediction types

This learner returns three prediction types:

  1. response: the estimated survival time TT for each test observation.

  2. lp: a vector of linear predictors (relative risk scores), one per observation, estimated as log(T)-log(T). Higher survival time denotes lower risk.

  3. crank: same as lp.

Initial parameter values

  • nrounds is initialized to 1000.

  • nthread is initialized to 1 to avoid conflicts with parallelization via future.

  • verbose is initialized to 0.

Early stopping

Early stopping can be used to find the optimal number of boosting rounds. The early_stopping_set parameter controls which set is used to monitor the performance. By default, early_stopping_set = "none" which disables early stopping. Set early_stopping_set = "test" to monitor the performance of the model on the test set while training. The test set for early stopping can be set with the "test" row role in the mlr3::Task. Additionally, the range must be set in which the performance must increase with early_stopping_rounds and the maximum number of boosting rounds with nrounds. While resampling, the test set is automatically applied from the mlr3::Resampling. Not that using the test set for early stopping can potentially bias the performance scores.

Dictionary

This Learner can be instantiated via lrn():

lrn("surv.xgboost.aft")

Meta Information

Parameters

Id Type Default Levels Range
aft_loss_distribution character normal normal, logistic, extreme -
aft_loss_distribution_scale numeric - (,)(-\infty, \infty)
alpha numeric 0 [0,)[0, \infty)
base_score numeric 0.5 (,)(-\infty, \infty)
booster character gbtree gbtree, gblinear, dart -
callbacks untyped list() -
colsample_bylevel numeric 1 [0,1][0, 1]
colsample_bynode numeric 1 [0,1][0, 1]
colsample_bytree numeric 1 [0,1][0, 1]
disable_default_eval_metric logical FALSE TRUE, FALSE -
early_stopping_rounds integer NULL [1,)[1, \infty)
eta numeric 0.3 [0,1][0, 1]
feature_selector character cyclic cyclic, shuffle, random, greedy, thrifty -
feval untyped NULL -
gamma numeric 0 [0,)[0, \infty)
grow_policy character depthwise depthwise, lossguide -
interaction_constraints untyped - -
iterationrange untyped - -
lambda numeric 1 [0,)[0, \infty)
lambda_bias numeric 0 [0,)[0, \infty)
max_bin integer 256 [2,)[2, \infty)
max_delta_step numeric 0 [0,)[0, \infty)
max_depth integer 6 [0,)[0, \infty)
max_leaves integer 0 [0,)[0, \infty)
maximize logical NULL TRUE, FALSE -
min_child_weight numeric 1 [0,)[0, \infty)
missing numeric NA (,)(-\infty, \infty)
monotone_constraints integer 0 [1,1][-1, 1]
normalize_type character tree tree, forest -
nrounds integer - [1,)[1, \infty)
nthread integer 1 [1,)[1, \infty)
ntreelimit integer - [1,)[1, \infty)
num_parallel_tree integer 1 [1,)[1, \infty)
one_drop logical FALSE TRUE, FALSE -
print_every_n integer 1 [1,)[1, \infty)
process_type character default default, update -
rate_drop numeric 0 [0,1][0, 1]
refresh_leaf logical TRUE TRUE, FALSE -
sampling_method character uniform uniform, gradient_based -
sample_type character uniform uniform, weighted -
save_name untyped - -
save_period integer - [0,)[0, \infty)
scale_pos_weight numeric 1 (,)(-\infty, \infty)
seed_per_iteration logical FALSE TRUE, FALSE -
skip_drop numeric 0 [0,1][0, 1]
strict_shape logical FALSE TRUE, FALSE -
subsample numeric 1 [0,1][0, 1]
top_k integer 0 [0,)[0, \infty)
tree_method character auto auto, exact, approx, hist, gpu_hist -
tweedie_variance_power numeric 1.5 [1,2][1, 2]
updater untyped - -
verbose integer 1 [0,2][0, 2]
watchlist untyped NULL -
xgb_model untyped - -
device untyped - -

Super classes

mlr3::Learner -> mlr3proba::LearnerSurv -> LearnerSurvXgboostAFT

Active bindings

internal_valid_scores

The last observation of the validation scores for all metrics. Extracted from model$evaluation_log

internal_tuned_values

Returns the early stopped iterations if early_stopping_rounds was set during training.

validate

How to construct the internal validation data. This parameter can be either NULL, a ratio, "test", or "predefined".

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerSurvXgboostAFT$new()

Method importance()

The importance scores are calculated with xgboost::xgb.importance().

Usage
LearnerSurvXgboostAFT$importance()
Returns

Named numeric().


Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerSurvXgboostAFT$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Note

To compute on GPUs, you first need to compile xgboost yourself and link against CUDA. See https://xgboost.readthedocs.io/en/stable/build.html#building-with-gpu-support.

Author(s)

bblodfon

References

Chen, Tianqi, Guestrin, Carlos (2016). “Xgboost: A scalable tree boosting system.” In Proceedings of the 22nd ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 785–794. ACM. doi:10.1145/2939672.2939785.

Avinash B, Hyunsu C, Toby H (2022). “Survival Regression with Accelerated Failure Time Model in XGBoost.” Journal of Computational and Graphical Statistics. ISSN 15372715, doi:10.1080/10618600.2022.2067548.

See Also

Examples

# Define the Learner
learner = mlr3::lrn("surv.xgboost.aft")
print(learner)

# Define a Task
task = mlr3::tsk("grace")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)
print(learner$importance())

# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()

Extreme Gradient Boosting Cox Survival Learner

Description

eXtreme Gradient Boosting regression using a Cox Proportional Hazards objective. Calls xgboost::xgb.train() from package xgboost with objective set to survival:cox and eval_metric to cox-nloglik.

Prediction types

Three types of prediction are returned for this learner:

  1. lp: a vector of linear predictors (relative risk scores), one per observation.

  2. crank: same as lp.

  3. distr: a survival matrix in two dimensions, where observations are represented in rows and time points in columns. By default, the Breslow estimator is used via mlr3proba::breslow().

Initial parameter values

  • nrounds is initialized to 1000.

  • nthread is initialized to 1 to avoid conflicts with parallelization via future.

  • verbose is initialized to 0.

Dictionary

This Learner can be instantiated via lrn():

lrn("surv.xgboost.cox")

Meta Information

Parameters

Id Type Default Levels Range
alpha numeric 0 [0,)[0, \infty)
base_score numeric 0.5 (,)(-\infty, \infty)
booster character gbtree gbtree, gblinear, dart -
callbacks untyped list() -
colsample_bylevel numeric 1 [0,1][0, 1]
colsample_bynode numeric 1 [0,1][0, 1]
colsample_bytree numeric 1 [0,1][0, 1]
disable_default_eval_metric logical FALSE TRUE, FALSE -
early_stopping_rounds integer NULL [1,)[1, \infty)
eta numeric 0.3 [0,1][0, 1]
feature_selector character cyclic cyclic, shuffle, random, greedy, thrifty -
feval untyped NULL -
gamma numeric 0 [0,)[0, \infty)
grow_policy character depthwise depthwise, lossguide -
interaction_constraints untyped - -
iterationrange untyped - -
lambda numeric 1 [0,)[0, \infty)
lambda_bias numeric 0 [0,)[0, \infty)
max_bin integer 256 [2,)[2, \infty)
max_delta_step numeric 0 [0,)[0, \infty)
max_depth integer 6 [0,)[0, \infty)
max_leaves integer 0 [0,)[0, \infty)
maximize logical NULL TRUE, FALSE -
min_child_weight numeric 1 [0,)[0, \infty)
missing numeric NA (,)(-\infty, \infty)
monotone_constraints integer 0 [1,1][-1, 1]
normalize_type character tree tree, forest -
nrounds integer - [1,)[1, \infty)
nthread integer 1 [1,)[1, \infty)
num_parallel_tree integer 1 [1,)[1, \infty)
one_drop logical FALSE TRUE, FALSE -
print_every_n integer 1 [1,)[1, \infty)
process_type character default default, update -
rate_drop numeric 0 [0,1][0, 1]
refresh_leaf logical TRUE TRUE, FALSE -
sampling_method character uniform uniform, gradient_based -
sample_type character uniform uniform, weighted -
save_name untyped - -
save_period integer - [0,)[0, \infty)
scale_pos_weight numeric 1 (,)(-\infty, \infty)
seed_per_iteration logical FALSE TRUE, FALSE -
skip_drop numeric 0 [0,1][0, 1]
strict_shape logical FALSE TRUE, FALSE -
subsample numeric 1 [0,1][0, 1]
top_k integer 0 [0,)[0, \infty)
tree_method character auto auto, exact, approx, hist, gpu_hist -
tweedie_variance_power numeric 1.5 [1,2][1, 2]
updater untyped - -
verbose integer 1 [0,2][0, 2]
watchlist untyped NULL -
xgb_model untyped - -
device untyped - -

Early stopping

Early stopping can be used to find the optimal number of boosting rounds. The early_stopping_set parameter controls which set is used to monitor the performance. By default, early_stopping_set = "none" which disables early stopping. Set early_stopping_set = "test" to monitor the performance of the model on the test set while training. The test set for early stopping can be set with the "test" row role in the mlr3::Task. Additionally, the range must be set in which the performance must increase with early_stopping_rounds and the maximum number of boosting rounds with nrounds. While resampling, the test set is automatically applied from the mlr3::Resampling. Not that using the test set for early stopping can potentially bias the performance scores.

Super classes

mlr3::Learner -> mlr3proba::LearnerSurv -> LearnerSurvXgboostCox

Active bindings

internal_valid_scores

The last observation of the validation scores for all metrics. Extracted from model$evaluation_log

internal_tuned_values

Returns the early stopped iterations if early_stopping_rounds was set during training.

validate

How to construct the internal validation data. This parameter can be either NULL, a ratio, "test", or "predefined".

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerSurvXgboostCox$new()

Method importance()

The importance scores are calculated with xgboost::xgb.importance().

Usage
LearnerSurvXgboostCox$importance()
Returns

Named numeric().


Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerSurvXgboostCox$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Note

To compute on GPUs, you first need to compile xgboost yourself and link against CUDA. See https://xgboost.readthedocs.io/en/stable/build.html#building-with-gpu-support.

Author(s)

bblodfon

References

Chen, Tianqi, Guestrin, Carlos (2016). “Xgboost: A scalable tree boosting system.” In Proceedings of the 22nd ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 785–794. ACM. doi:10.1145/2939672.2939785.

See Also

Examples

# Define the Learner
learner = mlr3::lrn("surv.xgboost.cox")
print(learner)

# Define a Task
task = mlr3::tsk("grace")

# Create train and test set
ids = mlr3::partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

print(learner$model)
print(learner$importance())

# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()