Package: mlr3filters 0.8.0

Michel Lang

mlr3filters: Filter Based Feature Selection for 'mlr3'

Extends 'mlr3' with filter methods for feature selection. Besides standalone filter methods built-in methods of any machine-learning algorithm are supported. Partial scoring of multivariate filter methods is supported.

Authors:Patrick Schratz [aut], Michel Lang [cre, aut], Bernd Bischl [aut], Martin Binder [aut], John Zobolas [aut]

mlr3filters_0.8.0.tar.gz
mlr3filters_0.8.0.zip(r-4.5)mlr3filters_0.8.0.zip(r-4.4)mlr3filters_0.8.0.zip(r-4.3)
mlr3filters_0.8.0.tgz(r-4.4-any)mlr3filters_0.8.0.tgz(r-4.3-any)
mlr3filters_0.8.0.tar.gz(r-4.5-noble)mlr3filters_0.8.0.tar.gz(r-4.4-noble)
mlr3filters_0.8.0.tgz(r-4.4-emscripten)mlr3filters_0.8.0.tgz(r-4.3-emscripten)
mlr3filters.pdf |mlr3filters.html
mlr3filters/json (API)
NEWS

# Install 'mlr3filters' in R:
install.packages('mlr3filters', repos = c('https://mlr-org.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/mlr-org/mlr3filters/issues

On CRAN:

feature-selectionfilterfiltersmlrmlr3variable-importance

8.08 score 20 stars 3 packages 91 scripts 3.1k downloads 28 exports 21 dependencies

Last updated 7 months agofrom:2fd6333e6c (on v0.8.0). Checks:OK: 5 NOTE: 2. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 18 2024
R-4.5-winNOTENov 18 2024
R-4.5-linuxNOTENov 18 2024
R-4.4-winOKNov 18 2024
R-4.4-macOKNov 18 2024
R-4.3-winOKNov 18 2024
R-4.3-macOKNov 18 2024

Exports:as.data.tableFilterFilterAnovaFilterAUCFilterBorutaFilterCarScoreFilterCarSurvScoreFilterCMIMFilterCorrelationFilterDISRFilterFindCorrelationFilterImportanceFilterInformationGainFilterJMIFilterJMIMFilterKruskalTestFilterMIMFilterMRMRFilterNJMIMFilterPerformanceFilterPermutationFilterReliefFilterSelectedFeaturesFilterUnivariateCoxFilterVariancefltfltsmlr_filters

Dependencies:backportscheckmatecodetoolsdata.tabledigestevaluatefuturefuture.applyglobalslgrlistenvmlbenchmlr3mlr3measuresmlr3miscpalmerpenguinsparadoxparallellyPRROCR6uuid

Readme and manuals

Help Manual

Help pageTopics
mlr3filters: Filter Based Feature Selection for 'mlr3'mlr3filters-package mlr3filters
Filter Base ClassFilter
Syntactic Sugar for Filter Constructionflt flts
Dictionary of Filtersmlr_filters
ANOVA F-Test FilterFilterAnova mlr_filters_anova
AUC FilterFilterAUC mlr_filters_auc
Burota FilterFilterBoruta mlr_filters_boruta
Correlation-Adjusted Marignal Correlation Score FilterFilterCarScore mlr_filters_carscore
Correlation-Adjusted Survival Score FilterFilterCarSurvScore mlr_filters_carsurvscore
Minimal Conditional Mutual Information Maximization FilterFilterCMIM mlr_filters_cmim
Correlation FilterFilterCorrelation mlr_filters_correlation
Double Input Symmetrical Relevance FilterFilterDISR mlr_filters_disr
Correlation FilterFilterFindCorrelation mlr_filters_find_correlation
Filter for Embedded Feature Selection via Variable ImportanceFilterImportance mlr_filters_importance
Information Gain FilterFilterInformationGain mlr_filters_information_gain
Joint Mutual Information FilterFilterJMI mlr_filters_jmi
Minimal Joint Mutual Information Maximization FilterFilterJMIM mlr_filters_jmim
Kruskal-Wallis Test FilterFilterKruskalTest mlr_filters_kruskal_test
Mutual Information Maximization FilterFilterMIM mlr_filters_mim
Minimum Redundancy Maximal Relevancy FilterFilterMRMR mlr_filters_mrmr
Minimal Normalised Joint Mutual Information Maximization FilterFilterNJMIM mlr_filters_njmim
Predictive Performance FilterFilterPerformance mlr_filters_performance
Permutation Score FilterFilterPermutation mlr_filters_permutation
RELIEF FilterFilterRelief mlr_filters_relief
Filter for Embedded Feature SelectionFilterSelectedFeatures mlr_filters_selected_features
Univariate Cox Survival FilterFilterUnivariateCox mlr_filters_univariate_cox
Variance FilterFilterVariance mlr_filters_variance